Effect of Methanol Extract of *Carica papaya* Seed on Some Hormone Function in Male Albino Rats

Reuben A.¹, Wurochekke A. U.²,³, Mahmoud S. J.³

Department of Biochemistry, Modibbo Adama University of Technology, Yola, Adamawa State, Nigeria

Abstract: In this study, the anti-fertility activity of the methanolic seed extract of *Carica papaya* was investigated. Phytochemical screening of crude extract revealed the presence of alkaloids, flavonoids, glycosides, saponins and tannins while anthraquinone and phlobatannins were found to be absent. The study was conducted on 25 healthy male albino rats following oral administration of 100 mg/kg body weight, 200 mg/kg body weight, 400 mg/kg body weight and 800mg/kg body weight methanolic seed extract for the period of 7 days. Epididymidal sperm count, total motility and viability, serum testosterone, luteinizing hormone, follicle stimulating hormone and prolactin were studied. There was a significant p<0.05 reduction in sperm counts and viability, testosterone and luteinizing hormone as compared to the control group. While there was elevated serum level of follicle stimulating hormone and Prolactin as compared to the control group. These results suggest that methanolic extract of *Carica papaya* possesses anti-fertility activities which could impair spermatogenesis, hormonal synthesis and other functions which might lead to infertility.

Keywords: *Carica papaya*, Phytochemical screening, Anti-fertility activity, Hormones, Male rats.

1. Introduction

Fertility is the ability to become pregnant and generate offspring. Anti-fertility agents induce inability to conceive and produce offspring. Several plant products inhibit male fertility and may be developed into contraceptive. Even though, many indigenous plants have so far been investigated for anti-fertility (Chowdhury et al., 2001, Kamal, 2003).

The importance of plants as a source of anti-fertility drugs has been emphasized by many researchers (Oderinde et al., 2002, McNeil et al., 2003, Olabiyi et al., 2006). Anti-fertility agents obtained from indigenous medicinal plants would be of immense benefit especially to inhabitants of developing countries, since the cost of these drugs would be within their means. Therefore, this study was to investigate the anti-fertility activity of the seed extract on some functions in male rats.

2. Materials and Method

Plant

Carica papaya seed was bought from Jimeta Modern Market, Yola, Adamawa State and was authenticated by a Botanist at the Department of Plant Science Modibbo Adama University of Technology, Yola.

Experimental Animals.

A total number of 25 male wister rats weighing between 90-110g were purchased from National Veterinary Research Institute, Vom, Nigeria. The animals were housed in a plastic cage and allowed to acclimatize and feed with standard diet and water *ad-libitum*.

Plant Extraction

Fresh seeds of *Carica papaya* was allowed to dry at room temperature under shed, dried seed was made into powder using mortar and pestle where 200g of the dried sample was extracted with 80% aqueous methanol over 24 hours period. The extract was then filtered using a filter paper (Whatmann No.1) and concentrated using water bath at 40°C (Lohiya et al., 2006).

Treatment

Twenty five adult male albino rats weighing between 120-150 g were divided into 5 groups, (n=5). Group 1 received normal diet which served as control group, group 2, 3, 4 and 5 were administered daily with doses of 100, 200, 400 and 800 mg/kg body weight for 7 days respectively following the method of Udoh, (2007). The rats were anaesthetized at the time of sacrifice by placing them in inhalation Jar soaked with chloroform in sealed cotton wool. Epididymal spermatozoa were collected and blood sera were prepared for hormonal assays.

Hormonal Assays

Serum sample were assayed for testosterone, luteinizing hormone, Follicle stimulating hormones and prolactin. The method used was Microwell enzymes-linked immunoassay (ELISA) using analytical grade reagent (Syntron bioresearch Inc. following the instructions provided by manual).

Statistical Analysis

Values obtained were expressed as mean ± SEM and data were analysed using ANOVA with multiple comparison versus control group with the help of SPSS version 20. The values P<0.05 was considered significant (Duncan et al., 1997).

3. Results and Discussion

The results in table 1 shows the phytochemical components detected in the seed sample of *Carica papaya*, alkaloids, saponins, phenols, flavoroids and glycosides were present while anthraquinone and phlobatannins were absent.
Table 1: Some phytochemical components of *Carica papaya* seed extract.

<table>
<thead>
<tr>
<th>Phytochemical components</th>
<th>Seed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaloids</td>
<td>+</td>
</tr>
<tr>
<td>Anthraquinone</td>
<td>-</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>+</td>
</tr>
<tr>
<td>Phlobaphemin</td>
<td>-</td>
</tr>
<tr>
<td>Phenols</td>
<td>+</td>
</tr>
<tr>
<td>Glycosides</td>
<td>+</td>
</tr>
<tr>
<td>Saponins</td>
<td>+</td>
</tr>
<tr>
<td>Tannins</td>
<td>-</td>
</tr>
</tbody>
</table>

Key: + present of phytochemical components
- Absent of phytochemical components

Table 2 revealed a significant decrease \(p<0.05 \) in sperm count and viability in all groups treated with various doses of *Carica papaya* seed extract. However, the total motility remains significantly increased \(p<0.05 \) in 400 mg/kg body weight and 800 mg/kg body weight compared to the normal control group.

Table 2: Effects of *Carica papaya* seed extract on sperm parameters.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Sperm count ((X10^6))</th>
<th>Total motility (%)</th>
<th>Viability (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal control</td>
<td>14.05 ± 0.35</td>
<td>32.50 ± 0.5</td>
<td>61.00 ± 2.00</td>
</tr>
<tr>
<td>100 mg/kg bwt</td>
<td>13.10 ± 0.10</td>
<td>29.00 ± 0.8</td>
<td>54.00 ± 4.00</td>
</tr>
<tr>
<td>200 mg/kg bwt</td>
<td>11.20 ± 0.10</td>
<td>14.50 ± 9.15</td>
<td>28.50 ± 1.55*</td>
</tr>
<tr>
<td>400 mg/kg bwt</td>
<td>10.20 ± 0.90</td>
<td>60.50 ± 0.5*</td>
<td>17.13 ± 0.15*</td>
</tr>
<tr>
<td>800 mg/kg bwt</td>
<td>8.35 ± 1.05*</td>
<td>60.00 ± 0.50*</td>
<td>49.00 ± 1.90*</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± SEM \((n=5)\), bwt - body weight.

Key: * significantly decreased as compared with normal control group \(p<0.05 \)
significantly increased as compared with normal control group \(p<0.05 \)

The results from Table 3 show that there is a significant decrease \(p<0.05 \) in serum testosterone \((T)\) and luteinizing hormone \((L)\) in treated groups as compared to control group, but there is significant \(p<0.05 \) increase in serum follicle stimulating hormone \((FSH)\) and prolactin \((PRL)\) in treated groups as compared to control group.

Table 3: Effects of *Carica papaya* seed on some hormones.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>T ((\mu g/kg))</th>
<th>LH ((N/ml))</th>
<th>FSH ((N/ml))</th>
<th>PRL ((\mu g/ml))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal control</td>
<td>3.5 ± 0.37</td>
<td>1.60 ± 0.13</td>
<td>1.03 ± 0.03</td>
<td>0.81 ± 0.05</td>
</tr>
<tr>
<td>100 mg/kg bwt</td>
<td>2.80 ± 0.13</td>
<td>0.97 ± 0.05*</td>
<td>1.64 ± 0.08*</td>
<td>9.40 ± 0.16</td>
</tr>
<tr>
<td>200 mg/kg bwt</td>
<td>1.63 ± 0.19*</td>
<td>0.74 ± 0.03*</td>
<td>1.98 ± 0.08*</td>
<td>11.90 ± 0.22*</td>
</tr>
<tr>
<td>400 mg/kg bwt</td>
<td>0.52 ± 0.09*</td>
<td>0.51 ± 0.07*</td>
<td>2.24 ± 0.15*</td>
<td>12.50 ± 0.03*</td>
</tr>
<tr>
<td>800 mg/kg bwt</td>
<td>0.25 ± 0.01*</td>
<td>0.23 ± 0.0</td>
<td>2.00 ± 0.08*</td>
<td>14.21 ± 0.03*</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± SEM \((n=5)\), bwt - body weight.

Key: * significantly decreased as compared to control group \(p<0.05 \)
significantly increased as compared to control group \(p<0.05 \)

4. Discussion

The presence of alkaloids, flavonoids, tannins, saponins, glycosides and phenols has been revealed by the study as the phytochemical components in the *Carica papaya* seed. These various phytochemicals detected in *Carica papaya* seeds are known to have beneficial uses and exhibit physiological activity (Adeneye et al., 2006).

The study has demonstrated a significant decrease in sperm count and viability of the treated rats with methanolic extract. This decrease in sperm count and viability could be attributed to the action of the extract which could target the internal milieu of the epididymis (Hucynh et al., 2006) The exert mechanism by which *Carica papaya* seed reduced sperm count and viability is not known, but it has been suggested that the compound papain may cross the blood testis barrier to exert harmful effects on control of the seminiferous tubules of the testes (Oyekunle and Omope, 2010).

The presence of alkaloids, flavonoids, tannins, saponins, glycosides and phenols has been revealed by the study as the phytochemical components in the *Carica papaya* seed. These various phytochemicals detected in *Carica papaya* seeds are known to have beneficial uses and exhibit physiological activity (Adeneye et al., 2006).

The study has demonstrated a significant decrease in sperm count and viability of the treated rats with methanolic extract. This decrease in sperm count and viability could be attributed to the action of the extract which could target the internal milieu of the epididymis (Hucynh et al., 2006) The exert mechanism by which *Carica papaya* seed reduced sperm count and viability is not known, but it has been suggested that the compound papain may cross the blood testis barrier to exert harmful effects on control of the seminiferous tubules of the testes (Oyekunle and Omope, 2010).

The study has demonstrated a significant decrease in the serum level of testosterone of the treated groups as compared to the control group. This observation was similar to the earlier findings of Udoh et al., 2005. Udoh and Ekpennyong, 2001. The reduction in the serum level of testosterone could be probably be due to the decrease of serum levels of LH observed in this study.

Leydig cells secrete testosterone by the stimulation effect of luteining hormone (Udoh and Udoh, 2005, Udoh et al., 2005, Udoh et al., 2005) and follicle stimulating hormone induces spermatogenesis in the seminiferous tubules (Sharpe, 1994). In males, reduction of testosterone level might impair spermatogenesis and cause male infertility.

This study further observed an increase in serum prolactin level in treated groups as compared to the control group. Prolactin also associated primarily with male infertility. Acute hyperprolactinemia is known to suppress testosterone.
synthesis and male fertility through prolactin induced hypersecretion of gonadotropin releasing hormone (GnRH) through prolactin receptors on hypothalamic dopaminergic neurons (Albertson et al., 1987; Bartke et al., 1986). However, prolactin has also been reported to play role in the synthesis of testosterone (Gill-sharma, 2009).

5. Conclusion

It is therefore reasonable to suggest that the results clearly demonstrate that short term administration of Carica papaya seed extract which provides beneficial anti-fertility effects on male albino rats and have inhibited the hormonal regulation of spermatogenesis indicating infertility.

In this regard, this Carica papaya seed extract have shown great promise in the quest for safer, cheaper and alternative method of regulating fertility in male which might be useful to the health professionals, scientists, and scholars working the field of pharmacology and therapeutics to develop evidence based male contraceptive in man and animal model. However, knowledge on the specific modes of action of the seed extract to exerts anti-fertility effects is not fully understood, but studies have shown that most of the seed plant have been found to contain substances like alkaloids, glycosides, tannins, flavonoids and saponins that are frequently implicated as having anti-fertility effects.

References

