Geometric Decomposition of Spider Tree

E. Ebin Raja Merly ${ }^{1}$, D. Subitha ${ }^{2}$
${ }^{1}$ Assistant Professor, Nesamony Memorial Christian college, Marthandam. Kanyakumari District, Tamil Nadu-629 165, India
${ }^{2}$ Research Scholar, Nesamony Memorial Christian college, Marthandam. Kanyakumari District, Tamil Nadu-629 165, India.

Abstract

Let $G=(V, E)$ be a simple connected graph with p vertices and q edges. If $G_{1}, G_{2}, G_{3}, \ldots, G_{n}$ are connected edge disjoint subgraphs of G with $E(G)=E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup E\left(G_{3}\right) \cup \ldots \cup E\left(G_{n}\right)$, then $\left(G_{1}, G_{2}, G_{3}, \ldots, G_{n}\right)$ is said to be a decomposition of G. A decomposition $\left(G_{1}, G_{2}, G_{3}, \ldots, G_{n}\right)$ of G is said to be an Arithmetic Decomposition if each G_{i} is connected and $\left|E\left(G_{i}\right)\right|=a+(i-1) d$, for every $i=1,2,3, \ldots, n$ and $a, d \in N$. In this paper, we introduced a new concept Geometric Decomposition. A decomposition (G_{a}, $G_{a r}$, $\left.G_{a r}{ }^{2}, G_{a r} r^{3}, \ldots, G_{a r}{ }^{n-1}\right)$ of G is said to be a Geometric Decomposition(GD) if each $G_{a r} r^{i-1}$ is connected and $\left|E\left(G_{a r} r^{i-1}\right)\right|=a r^{i-1}$, for every $i=1$, 2, 3, ..., n and $a, r \in N$. Clearly $q=\frac{a\left(r^{n-1}-1\right]}{r-1}$. If $a=1$ and $r=2$, then $q=2^{n}-1$. In this paper we study the Geometric Decomposition of spider tree.

Keywords: Decomposition, Arithmetic Decomposition(AD), Geometric Decomposition(GD), Geometric Path Decomposition(GPD), Geometric Star Decomposition(GSD).

1. Introduction

In this paper, we consider simple undirected graph without loops or multiple edges. For all other standard terminology and notations we follow Harary [1].
N.Gnanadhas and J.Paulraj Joseph introduced the concept of Continuous Monotonic Decomposition (CMD) of graphs [2]. E. Ebin Raja Merly and N. Gnanadhas introduced the concept of Arithmetic Odd Decomposition (AOD) of spider tree [3].

Definition: 1.1

Let $G=(V, E)$ be a simple connected graph with p vertices and q edges. If $G_{1}, G_{2}, G_{3}, \ldots, G_{n}$ are connected edge disjoint subgraphs of G with
$E(G)=E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup E\left(G_{3}\right) \cup \ldots \cup E\left(G_{n}\right)$, then
($G_{1}, G_{2}, G_{3}, \ldots, G_{n}$) is said to be a decomposition of G.

Definition: $\mathbf{1 . 2}$

A decomposition $\left(G_{1}, G_{2}, G_{3}, \ldots, G_{n}\right)$ of G is said to be an Arithmetic Decomposition(AD) if each G_{i} is connected and $\left|E\left(G_{i}\right)\right|=a+(i-1) d$, for every $i=1,2,3, \ldots, n$ and $a, d \in \mathrm{~N}$.

Definition: 1.3

Let G be a connected graph. The diameter of G is defined as $\max \{\mathrm{d}(u, v): u, v \in V(G)\}$ and is denoted by $\operatorname{diam}(G)$.

2. Geometric Decomposition of Graphs

Definition: 2.1

A decomposition $\left(G_{a}, G_{a r}, G_{a r}{ }^{2}, G_{a r}{ }^{3}, \ldots, G_{a r} r^{n-1}\right)$ of G is said to be a Geometric Decomposition(GD) if each $G_{a r}{ }^{i-1}$ is connected and $\left|E\left(G_{a r} r^{i-1}\right)\right|=a r^{i-1}$, for every $i=1,2,3, \ldots, n$ and $a, r \in \mathrm{~N}$. Clearly $q=\frac{a\left(r^{n}-1\right)}{r-1}$. If $a=1$ and $r=2$, then q $=2^{n-1}$.

We know that $2^{n}-1$ is the sum of $2^{0}, 2^{1}, 2^{2}, 2^{3}, \ldots, 2^{n-1}$. That is, $2^{n}-1$ is the sum of $1,2,4,8, \ldots, 2^{n-1}$. Thus we denote the GD as $\left(G_{1}, G_{2}, G_{4}, \ldots, G_{2^{n-1}}\right)$.

Example: 2.2

Figure 1: A Petersen graph admits GD $\left(G_{1}, G_{2}, G_{4}, G_{8}\right)$ of G.

Theorem 2.3: A graph G admits GD $\left(G_{1}, G_{2}, G_{4}, \ldots, G_{2^{n-1}}\right)$ if and only if $q=2^{n}-1$ for each $n \in \mathrm{~N}$.

Proof:

Let G be a connected graph with $q=2^{n}-1$. Let u, v be two vertices of G such that $d(u, v)$ is maximum. Let $N_{r}(u)=$ $\{v \in V / d(u, v)=r\}$. If $d(u)=2^{n-1}$, choose 2^{n-1} edges incident with u. Let $G_{2}{ }^{n-1}$ be a subgraph induced by these 2^{n-} 1 edges. If $d(u)<2^{n-1}$, then choose 2^{n-1} edges incident with
u vertices of $N_{1}(u), N_{2}(u), \cdots$ successively such that the subgraph $G_{2}{ }^{n-1}$ induced by these edges is connected. In both cases $G-G_{2}{ }^{n-1}$ has a connected component H_{1} with $2^{n}-2^{n-1}$ - 1 edges.

Now, consider H_{1} and proceed as above to get $G_{2^{n-2}}$ such that $H_{1}-G_{2}{ }^{n-2}$ has a connected component H_{2} of size $2^{n}-2^{n-1}$ -$2^{n-2}-1$ edges. Proceeding like this we get a connected subgraph G_{2} such that $H_{2}{ }^{n-2}$ is a graph with one edge taken as G_{1}. Thus $\left(G_{1}, G_{2}, G_{4}, \ldots, G_{2}{ }^{n-1}\right)$ is a GD of G.

Conversely, Suppose G admits GD $\left(G_{1}, G_{2}, G_{4}, \ldots, G_{2^{n-1}}\right)$. Then obviously, $q(G)=1+2+4+\ldots+2^{n-1}=2^{n}-1$ for each $n \in \mathrm{~N}$.

Definition 2.4:
A GD in which each $G_{2}{ }^{\mathrm{i}-1}$ is a path of size $2^{\mathrm{i}-1}$ is said to be a Geometric Path Decomposition (GPD).

Example 2.5:

Figure 2: A triangular snake graph T_{5} admits GPD.

Definition: 2.6

A GD in which each $G_{2}{ }^{\mathrm{i}-1}$ is a star of size $2^{\mathrm{i}-1}$ is said to be a Geometric star Decomposition (GSD).

Example: 2.7

Figure 3: Fish graph admits GSD.

3. Geometric Decomposition of Spider Graphs

Definition 3.1: A tree T with exactly one vertex of degree \geq 3 is called a Spider tree.

Notation 3.2: Let W denote the set of pendent vertices of T and u be the vertex of degree ≥ 3 in T.

Theorem 3.3: If T is a spider tree with $\operatorname{diam}(\mathrm{T})=\mathrm{t}, 2 \leq$ $\mathrm{t} \leq 5$ with $\mathrm{d}(u)=\left(2^{n}-1\right)-(\mathrm{t}-2)$, then T admits GSD.

Proof:

Case (i): $\mathrm{t}=2$. Since $\operatorname{diam}(\mathrm{T})=2, \mathrm{~T}$ is a star. Also, since $\mathrm{d}(u)=2^{n}-1, \mathrm{~T}$ is $\mathrm{K}_{1,2^{n}-1}$. Therefore, $q(\mathrm{~T})=2^{n}-1$. Hence T admits GSD.

Case (ii) $\mathrm{t}=3$. Since $\operatorname{diam}(\mathrm{T})=3$ and $d(u)=\left(2^{n}-1\right)-1$, there are $\left(2^{n}-1\right)-2$ pendent edges incident with u. Let $S_{1}=$ e. Then T $-e$ is a star $K_{1,\left(2^{n}-1\right)-1}$ and $q(\mathrm{~T}-e)=\left(2^{n}-1\right)-1$. Then we can easily decompose T - e into $S_{2}, S_{4}, S_{8}, \ldots, S_{2}^{n-1}$. Hence T admits GSD.

Case (iii) $t=4$.
Subcase (i): u is the origin of P_{3}.
Let u_{1} be a non pendent vertex adjacent to u and u_{2} be a terminus of $u-u_{2}$ path of length 3 . Let $S_{1}=u_{1} u$ and $S_{2}=u_{2}$ u_{1}. Then the remaining edges of tree is a star which can be decomposed into $S_{4}, S_{8}, S_{16}, \ldots, S_{2}{ }^{n-1}$.

Subcase(ii): u is not the origin of P_{3}.
Let u_{1} and u_{2} be the two non pendent vertices adjacent to u and let v_{1} and v_{2} be the pendent vertices adjacent to u_{1} and u_{2} respectively. Then $S_{1}=u_{1} v_{1}$ and $S_{2}=u-v_{2}$ path in T and the remaining edges form a star $K_{1,\left(2^{n}-1\right)-3}$. Then we can easily decomposed into $S_{4}, S_{8}, S_{16}, \ldots, S_{2^{n-1}}$.

Case (iv) $\mathrm{t}=5$.
Subcase (i): u is the origin of P_{4}.
Let u_{1} be a non pendent vertex adjacent to u and u_{2} be a terminus of $u-u_{2}$ path of length 4 . Then $u_{2}-u_{1}$ path can be decomposed in to S_{1}, S_{2} and the remaining edges is a star. Clearly $q\left(\mathrm{~T}-\left\{S_{1} S_{2}\right\}\right)=\left(2^{n}-1\right)-3$. Then T can easily decompose $S_{4}, S_{8}, S_{16}, \ldots, S_{2}{ }^{n-1}$.

Subcase(ii): u is not the origin of P_{4}.
Let u_{1} and u_{2} be the two non pendent vertices adjacent to u and v_{1} be a pendent vertex adjacent to u_{1}. Let v_{2} be the pendent vertex of T such that there is a $u_{2}-v_{2}$ path of length 2 is adjacent to u_{2}. Then $S_{1}=u_{1} v_{1}$ and $S_{2}=u_{2}-v_{2}$ path in T and the remaining edges is a star with $\left(2^{n}-1\right)-3$ edges. Hence T admits GSD

Theorem 3.4 : If T is a spider tree with $\operatorname{diam}(\mathrm{T})=\mathrm{t}, 3 \leq$ $\mathrm{t} \leq 5$ and $\mathrm{d}(u)=\left(2^{n}-1\right)-(\mathrm{t}-2)$ admits GSD if and only if T - $\mathrm{W}=P_{x}$ where $x \leq 3$.

Proof:

Assume T - W $=P_{x}$ where $x \leq 3$. Then by previous theorem T admits GSD. Conversely, the result is obvious.

Result 3.5: If T is a spider tree with $\operatorname{diam}(\mathrm{T})=2$ and $\mathrm{d}(u)=$ 3 , then T admits GSD and GPD.

Proof:

Since $\operatorname{diam}(\mathrm{T})=2$ and $\mathrm{d}(u)=3$. Clearly T is a spider tree with 3 edges. Then we can easily decompose T into paths P_{1} and P_{2}. Therefore, by theorem(3.3) T admits GSD and GPD.

Result 3.6: If T is a spider tree with $\operatorname{diam}(\mathrm{T})=4$ and $\mathrm{d}(u)=$ 5 , then T admits GSD and GPD.

Proof:

Since $\operatorname{diam}(T)=4$ and $\mathrm{d}(u)=5$, then there is a path of length 4. Therefore, the spider tree can be decomposed into P_{1}, P_{2} and P_{4}. Also by theorem (3.3) T admits GSD and GPD.

Result 3.7: If T is a spider tree with $\operatorname{diam}(\mathrm{T})=5$ and $\mathrm{d}(u)=$ 4,then T admits GSD and GPD.

Proof:

Sinc Since $\operatorname{diam}(T)=5$, then there is path of length 5 . Then P_{5} can be decomposed into P_{1} and P_{4}. Also by theorem (3.3) T admits GPD and GSD.

Results 3.8:

(i) If T is a spider tree with $\left(2^{n}-1\right)-5 \leq \operatorname{diam}(\mathrm{T}) \leq\left(2^{n}-\right.$ 1) -1 , then T admits GPD but not GSD.
(ii) If T is a spider tree with $6 \leq \operatorname{diam}(\mathrm{T}) \leq\left(2^{n}-1\right)-6$, then T admits neither GPD nor GSD.

Example 3.9: Consider a spider tree T with $q=15$.

Diam (T)	GSD	GPD
2	Yes	No
3	Yes	No
4	Yes	No
5	Yes	No
6	No	No
7	No	No
8	No	No
9	No	No
10	No	Yes
11	No	Yes
12	No	Yes
13	No	Yes
14	No	Yes

References

[1] Harary,F.,1988, "Graph Theory",Narosa Publishing House, New Delhi.
[2] Gnanadhas, N., and Paulrai Joseph, J.,2000 "Continuous Monotonic Decomposition of Graphs", International Journal of Management and Systems.,Vol.16,pp. 333 344.
[3] Ebin Raja Merly, E., and Gnanadhas, N., 2011 "Arithmetic Odd Decomposition of Spider tree" Asian Journal of Current Engineering and Maths., 2:2 MarchApril (2013) pp.99-101.
[4] Foulds, L. R., 1991, "Graph Theory Application", Narosa Publishing House, New Delhi.
[5] Nagarajan, A., and Navavaneetha Krishnan, S., 2005"Continuous Monotonic Decomposition of some
special class of Graphs" ,International Journal of Management and Systems.,Vol.21,No.1, pp.91-106.

