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Abstract: A large number of experiments are being conducted in industrial and other branches of science with an objective to compare 

and test quantity of inputs applied as mixture of two or more components. In particle, there are many situations where mixture 

experiments involve large number of factors, such types of mixture experiments are known as multifactor mixture experiments. Due to 

their practical applicability it is important to make such experiment user friendly. Reducing the number of factors without loss of 

information is an important step in this direction. Therefore, in present study rough set theory (RST), which is an extension of the set 

theory and has the implicit feature of compressing the dataset, is used to reduce the factors in the multifactor mixture experiments.  
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1. Introduction 
 
Experimental design is a powerful tool for quality 
improvement. In some situation, however, the design 
variables are subject to multiple linear constraints. These 
situations arise quite frequently in oil industry, the alloy 
industry and the food industry [11, 3]. Empirical models that 
relate the characteristics of the products manufactured in 
different industries with the proportions of their ingredient 
are called mixture model and related designs of experiments 
are called mixture designs or simplex designs. Studies of this 
branch of science called experiments with mixtures or 
mixture experiments [8] and appear to have started in late 
fifties [6]. 
 
Mixture experiments introduced by Scheffe [6, 7] allow 
investigating only one factor at a time. There do occur 
experimental situations where proportions of components of 
two or more independent factors are to be tested. Designs 
and models for such multifactor mixture experiments were 
suggested by Lambrakis [5] and Nigam [1]. If a multifactor 
mixture experiments consist of two factors 𝑋 and 𝑍 where 
the first factor (𝑋) has 𝑝 −components and second factor 
(𝑍) has 𝑞 −components, then this two factor mixture will 
have the following constraints. 

0 ≤ 𝑥𝑖 ≤ 1  𝑥𝑖

𝑝

𝑖=1

= 1 

and 

0 ≤ 𝑧𝑗 ≤ 1  𝑥𝑗

𝑞

𝑗 =1

= 1 

In general, for 𝑛 −factors mixture experiment, if 𝑥𝑖𝑗  
represent the 𝑗𝑡ℎ  component of 𝑖𝑡ℎ  factor is having 𝑝𝑖  
components, then the restrictions are  

 0 ≤ 𝑥𝑖𝑗 ≤ 1 𝑗 = 1,2, … , 𝑝𝑖 ; 
 𝑖 = 1,2, … , 𝑛 

 𝑥𝑖𝑗

𝑝𝑖

𝑖=1

= 1 

Such experimental situations are known as multifactor 
mixture experiments.  

In practice, when 𝑛 is very large, it is very difficult to deal 
with such type of experiments. So it is important to develop 
some techniques to reduce the dimensionality of mixture 
structure with loss of generality and technique of attribute 
reduction in rough set theory may play an important role in 
such type situations.Pawlak[12] introduce the concept of 
RST to deal with uncertain, incomplete or vague 
information. RST is easy to use since it does not require 
additional information such as probability distribution, a 
prior probability etc [2]. RST is an extension of set theory 
and has the implicit feature of compressing the dataset. Such 
compression is due to definition of equivalence classes 
based on indiscernibility relations and to the elimination of 
redundant or meaningless attributes. In short, attribute 
reduction in RST implies in the calculation of the reducts. 
The classic approach is to obtain the discernibility matrix, to 
determine its corresponding discernibility function and to 
simplify it, in order to get the set of reducts. In this 
approach, the calculation of reducts requires the 
discernibility matrix. For given information system 𝑆 with 𝑛 
elements has a symmetric discernibility matrix with 
dimension 𝑛 × 𝑛. The entries of the matrix are denoted by 
𝑐𝑖𝑗 for 𝑖 ≠ 𝑗. Each entry contains the subset of attributes that 
distinguishes element 𝑥𝑖and 𝑥𝑗 , being the diagonal entries 
null, according to the definition  

𝑐𝑖𝑗 =  𝑎 ∈ 𝐴 𝑎 𝑥𝑖 ≠ 𝑎 𝑥𝑗   for 𝑖 = 1,2, … . . , 𝑛; 𝑖 ≠ 𝑗 
The corresponding discernibility function 𝑓𝐴 is a Boolean 
function of 𝑚 attributes  𝑎1 , 𝑎2 , … . , 𝑎𝑛  given by  

𝑓𝐴 𝑎1
∗, 𝑎2

∗ , … . , 𝑎𝑛
∗  =  ⋀ ⋁𝑐𝑖𝑗  1 ≤ 𝑗 ≤ 𝑖 ≤ 𝑛, 𝑐𝑖𝑗 ≠ ∅  

 
2. Methodology 
 
Consider the mixture model proposed by Alam[9] for 
multifactor mixture experiment with 𝑛 −factors and 𝑖𝑡ℎ  
factor is having 𝑝𝑖components 𝑖 = 1,2, … , 𝑛. Let 𝑥𝑖𝑗  be the 
𝑗𝑡ℎ  component of the 𝑖𝑡ℎ  factor, 𝑗 = 1,2, … , 𝑝𝑖 . Then the 
second order mixture model is given by  

𝑌 =   𝛽𝑖𝑗
′ 𝑥𝑖𝑗

𝑝𝑖

𝑗 =1

𝑛

𝑖=1

+   𝛾𝑖𝑗𝑗 ′
′ 𝑥𝑖𝑗 𝑥𝑖𝑗 ′

𝑝𝑖

𝑗<𝑗 ′

𝑛

𝑖=1

+   𝛿𝑖𝑖′
′ 𝑥𝑖𝑗 𝑥𝑖′ 𝑗 ′

𝑝𝑖

𝑗 ,𝑗 ′

𝑛

𝑖=𝑖′

+ 𝜀 
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Layout plan of design for multifactor mixture experiments 
obtained by above model using central composite design as 
initial design with one center point for 𝑛 = 3 and 𝑝1 = 𝑝2 =
𝑝3 = 2 is given in Table1.  

 

Table 1 

S. No. 
Factor 1 Factor 2 Factor 3 

x11 x12 x21 x22 x31 x32 

1 0.272 0.728 0.427 0.573 0.203 0.797 
2 0.272 0.728 0.427 0.573 0.797 0.203 
3 0.272 0.728 0.854 0.146 0.203 0.797 
4 0.272 0.728 0.854 0.146 0.797 0.203 
5 0.815 0.185 0.427 0.573 0.203 0.797 
6 0.815 0.185 0.427 0.573 0.797 0.203 
7 0.815 0.185 0.854 0.146 0.203 0.797 
8 0.815 0.185 0.854 0.146 0.797 0.203 
9 0.086 0.914 0.641 0.359 0.500 0.500 

10 0.543 0.457 0.282 0.718 0.500 0.500 
11 0.543 0.457 0.641 0.359 0.500 0.500 

 
Now, if the experimenter wants to study the situation in 
which first component of first and last factor should be 
greater than 0.5 and first component of second factor should 
by greater than 0.5 and second component should be less 
than or equal to 0.1. Now assign the attribute Yes (Y) and 
No (N) to the different components of different factor 
according to the experimental situation under consideration. 
This will help us to construct the intermediate dataset with 
three conditional attributes. 

Table 2 

S. No. 
Factor 1 Factor 2 Factor 3 

𝑥11  𝑥12  𝑥11⋀ 𝑥12 𝑥21  𝑥22  𝑥21⋀ 𝑥22 𝑥31  𝑥32  𝑥31⋀ 𝑥32 

1 N N N N N N N N N 
2 N N N N N N Y Y Y 
3 N N N Y N N N N N 
4 N N N Y N N Y Y Y 
5 Y Y Y N N N N N N 
6 Y Y Y N N N Y Y Y 
7 Y Y Y Y N N N N N 
8 Y Y Y Y N N Y Y Y 
9 N N N Y N N N Y N 

10 Y Y Y N N N N Y N 
11 Y Y Y Y N N N Y N 

 
The discernibility matrix for the example dataset is appears 
as  
 
 1 2 3 4 5 6 7 8 9 10 11 

1 − −           

2 𝐹3 − −          

3 ∅ 𝐹3 − −         

4 𝐹3 ∅ 𝐹4 − −        

5 𝐹1 𝐹1, 𝐹3 𝐹1 𝐹1, 𝐹3 − −       

6 𝐹1, 𝐹3 𝐹1 𝐹1, 𝐹3 𝐹1 𝐹3 − −      

7 𝐹1 𝐹1, 𝐹3 𝐹1 𝐹1, 𝐹3 ∅ 𝐹3 − −     

8 𝐹1, 𝐹3 𝐹1 𝐹1, 𝐹3 𝐹1 𝐹3 ∅ 𝐹3 − −    

9 𝐹1 𝐹1, 𝐹3 𝐹1 𝐹1, 𝐹3 ∅ 𝐹3 ∅ ∅ − −   

10 𝐹1 𝐹1, 𝐹3 𝐹1 𝐹1, 𝐹3 ∅ 𝐹3 ∅ ∅ ∅ − −  

11 𝐹1 𝐹1, 𝐹3 𝐹1 𝐹1, 𝐹3 ∅ 𝐹3 ∅ ∅ ∅ ∅ − − 

 
The Boolean simplification of 𝑓𝐴 yields the set of reducts of 
𝐴 is given by  
𝑓 𝑥 =   𝐹3 ⋀ 𝐹3 ⋀ 𝐹1 ⋀ 𝐹1⋁𝐹3 ⋀ 𝐹1 ⋀ 𝐹1⋁𝐹3 . .   

…⋀  𝐹3 ⋀ 𝐹1⋁𝐹3 … . . ⋀(𝐹1⋁𝐹3) ⋀ (𝐹3)  
This logical function is expressed by the conjunction of 
many terms, with each one corresponding to column of the 
related discernibility matrix. The Boolean simplifications of 
this function yields then a single reduct 

𝑓 𝑥 = 𝐹1⋀𝐹3 
Therefore, this reduct is composed of factor 𝐹1 and 𝐹3 and 
the original dataset with three factors which can be 
represented in the shorter form without the loss of generality 
by a new dataset with two factors (Factor 1 and Factor 3) 
  

Table 3 

S. No. 
Factor 1 Factor 2 

x11 x12 x31 x32 

1 0.272 0.728 0.203 0.797 
2 0.272 0.728 0.797 0.203 
3 0.272 0.728 0.203 0.797 
4 0.272 0.728 0.797 0.203 
5 0.815 0.185 0.203 0.797 
6 0.815 0.185 0.797 0.203 
7 0.815 0.185 0.203 0.797 
8 0.815 0.185 0.797 0.203 
9 0.086 0.914 0.500 0.500 
10 0.543 0.457 0.500 0.500 
11 0.543 0.457 0.500 0.500 

 
Design with three factors and two factors are then compared 
by obtaining the G-efficiency which seeks to minimize the 
maximum entry in the diagonal of the hat matrix [8]. The 
imparical formulation of G-efficiency is given by  

𝐺 − 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑝

𝑛 × 𝑑
 

where𝑛 is the number of design point in the design, 𝑝 is the 
number of parameters in the model and 
𝑑 = 𝑚𝑎𝑥 𝑋 𝑋′𝑋 ′𝑋′   over a specified set of design points.  

𝐺 − 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑤𝑖𝑡ℎ 𝑡ℎ𝑟𝑒𝑒 𝑓𝑎𝑐𝑡𝑜𝑟𝑠 = 0.9524 
𝐺 − 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑤𝑖𝑡ℎ 𝑡𝑤𝑜 𝑓𝑎𝑐𝑡𝑜𝑟𝑠 = 0.7964 

For practical purpose, Wheeler [10] suggested that any 
design with G-efficiency ≥ 50% could be good design and 
showed that pursuit of higher efficiencies is not generally 
justified in practice. The G-efficiency for both the designs is 
greater than 0.5 so both the designs are good for practical 
purpose.  
 
3. Discussion and Conclusion 
 
Formulation of multifactor mixture experiments are 
commonly found in pharmaceutical, chemical and food 
industries as well as in other industrial segments. In these 
experiments, the factors are proportions of the components 
in mixture and the response is a variable that characterizes 
the quality of the product manufactured. In general, the 
experiments conduct in industries involved the large number 
of factors. So it is very important to reduce these factors 
with the loss of information. For doing such dimension 
reduction rough set theory is very powerful problem solving 
technique that assists industries for tackling quality control 
problems effectively and economically. This paper illustrates 
the factor reduction technique in multifactor mixture 
experiments using rough set theory. The reduced design is 
evaluated with G-efficiency. It is found that after reducing 
the factors the design is still good for the practical purpose.  
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