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1. Introduction 
 
The theory of fixed point equations in one of the basic tools 
to handle various physical formulations. Fuzzy set was 
defined by Zadeh [1]. Kramosil and MIchalek [2]. introduced 
fuzzy metric space. many authors extend their views. Grorge 
and Veermanyam [3]. modified the notion of fuzzy metric 
spaces with the help of continuous t-norms Grabiec[4]. 
 
In the recent year, several common fixed point theorems for 
contractive type mappings have been proved by several 
authors. Branciari [5],gave a fixed point result for a single 
mapping satisfying Banach’s contraction principle for an 
integral type inequality. 
 
Aliouche[6] established a common fixed point theorem for 
weakly compatible mappings in symmetric spaces satisfying 
a contrative condition of integral type and property (E.A.) 
introduced by Aamri and El. Moutawakil [7]. 
 
Boikanyo and Choudhary [8] prove some common fixed 
point theorem for pointwise R-weakly commuting mapping s 
in symmetric space. 
 
K.Atanassov [9] introduced and studied the concept of 
intuitionistic fuzzy sets. In 2004, J.H.Park [10] define 
intuitionistic fuzzy metrice space with the help of continuous 
t –norms and continuous t –conforms.  
 
In this paper, we obtain common fixed point theorem in 
Intuitionistic fuzzy metric space using E.A. property. 
 
2. Preliminary 
 
Definition 2.1 [11] A binary operation *:[0,1] x[0,1]→ [0,1] 
is a continuous t –norm if it satisfies the following conditions 
: 
( i ) *is associative and commutative  
( ii ) *is continuous,  

( iii ) a*1 = a, for all a ∈[0,1] 
( iv ) a*b ≤ c*d, whenever a ≤ c and b ≤ d, for all a,b,c,d ∈ 
[0,1]. 
 
Definition 2.2 [11] A binary operation ◊:[0,1] x[0,1]→ [0,1] 
is a continuous t –conorm if it satisfies the following 
conditions : 
( i ) ◊is associative and commutative  
( ii ) ◊is continuous,  
( iii ) a◊1 = a, for all a ∈[0,1] 
( iv ) a◊b ≤ c◊d, whenever a ≤ c and b ≤ d, for all a,b,c,d ∈ 
[0,1]. 
 
Definition 2.3 [12] A 5-tuple (X, M, N, *, ◊) is said to be an 
Intuitionistic fuzzy mertic space if X is an arbitrary set, * is a 
continuous t -norm, ◊ is a continuous t –conorm and M,N are 
fuzzy sets on X2 x [0,∞) satisfying the following conditions. 
( i ) M(x,y,t) + N(x,y,t) ≤ 1, for all x,y ∈ X and t > 0,  
( ii ) M(x,y,0) = 0, for all x,y ∈ X, 
( iii ) M(x,y,t) = 1, for all x,y ∈ X and t > 0, iff x = y, 
( iv ) M(x,y,t) = M(y,x,t), for all x,y ∈ X and t > 0, 
( v ) M(x,y,t)*M(y,z,s) ≤ M(x,z,t+s), for all x,y ∈ X and t ,s 
> 0, 
( vi ) for all x,y ∈ x, M(x,y,.) : [0,∞) → [0,1] is left 
continuous, 
( vii ) limt→∞ M(x,y,t) = 1, for all x,y ∈ X and t > 0, 
( viii ) N(x,y,0) = 1, for all x,y ∈ X , 
( ix ) N(x,y,t) = 0, for all x,y ∈ X and t > 0, iff x = y, 
( x ) N(x,y,t) = N(y,x,t), for all x,y ∈ X and t > 0, 
( xi ) N(x,y,t)*N(y,z,s) ≤ N(x,z,t+s), for all x,y ∈ X and t ,s > 
0, 
( xii ) for all x,y ∈ x, N(x,y,.) : [0,∞) → [0,1] is right 
continuous, 
( xiii ) limt→∞ N(x,y,t) = 0, for all x,y ∈ X. 
 
Remark 2.1[13] 
In intuitionistic metric fuzzy space (X ,M ,*) is an 
intuitionistic fuzzy space of the form (X ,M ,1- M ,*, ◊) , 
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such that t-norm * and t-conorm ◊ are associated as x◊y = 1-
((1-x) * (1-y)) for all x,y ∈ X . 
 
Remark 2.2[13] 
In intuitionistic fuzzy metric space (X ,M ,N ,*,◊) , M(x,y,*) 
is non-decreasing and N(x,y,◊) is Non-increasing for all x,y 
∈ X . 
 
Example 2.1 – Let (X ,d) be a metric space . Define a*b = ab 
and a◊ b = min {1,a + b} for all a,b ∈ [0,1] and let Md and Nd 
be a fuzzy sets on X2 x (0,∞) defined as  
Md (x,y,t) = t / t + d(x,y) , Nd(x,y,t) =d(x,y) / t + d(x,y)  
Then (X , Md ,Nd ,*,◊) is an intuitioistic fuzzy metric space. 
 
Definition 2.4[12] Let (X , M , N ,*,◊) be an intuitioistic 
fuzzy metric space . Then  
( 1 ) A sequence {xn} in X is set to be convergent to a point x 
in X iff Limn→∞ M(xn , x,t) = 1 and  
lim n→∞ N(xn , x,t) = 0, for all t > 0. 
 
Lemma 2.1[12] Let (X ,M ,N ,*,◊) be an intuitionistic fuzzy 
metric space. If for all x,y ∈ X and t > 0 with positive 
number k ∈ (0,1) and M(x,y,kt) ≥ M(x,y,t) and N(x,y,kt) ≤
 N(x,y,t) , then x = y. 
 
Definition 2.5[13] A pair of self mappings ( P ,Q ) of a 
intuitionistic fuzzy metric space ( X , M , N ,*,◊) is said to be 
compatible if limn→∞ M(PQxn , QPxn , t) = 1 and limn→∞ 
N(PQxn , QPxn , t) = 0 , for all t > 0. 
When ever {xn} is a sequence in X such that  
Lim n→∞ Pxn = Lim n→∞Qxn = z, for some z ∈ X . 
 
Definition 2.6[14]A pair of self mappings ( P ,Q ) of a 
intuitionistic fuzzy metric space ( X , M , N ,*,◊) is said to be 
semi compatible if lim n→∞ PQxn = Qx , When ever {xn} is a 
sequence in X such that  
Lim n→∞ Pxn = Lim n→∞Qxn = x, for some x ∈ X .  
 
Definition 2.7[7] A pair of self mapping ( P,Q ) on an 
intuitionistic fuzzy metric space ( X ,M ,N ,*,◊ ) is said to 
satisfy the E.A. property if there exist a sequence {xn} in X 
such that  
limn→∞ Pxn = z = limn→∞ Qxn for some z ∈ X . 
 
Definition 2.8[15] Mapping A, B, S and T on an 
intuitionsitic fuzzy metric space ( X ,M ,N ,*,◊ ) are said to 
satisfy the common E.A. property if there exist a sequence 
{xn} and {yn} in X such that  
limn→∞ Byn = limn→∞ Tyn = limn→∞ Axn = limn→∞ Sxn = z for 
some z ∈ X . 
 
Theorem3.1 Let (X,M,N,*,◊) be an Intuitionistic fuzzy 
metric space with continuous t- norm *and continuous t-
conorm ◊ . Let P,Q,S and T be self mappings on X, satisfying 
the following properties ; 

1. pair (P,S) and (Q,T) share the common property 
E.A. 

2. S(X) and T(X) are closed subset of X . 
3.  For any x,y ∈ X and for all t>0 there exist 
 k∈ (0,1) such that 
 ∅ 𝑡 𝑑𝑡 ≥

𝑀(𝑃𝑥 ,𝑄𝑦 ,𝑘𝑡)

0
  

 ∅ 𝑡 𝑑𝑡
min [𝑀 𝑆𝑥 ,𝑇𝑦 ,𝑡 ∗ 𝑀 𝑆𝑥 ,𝑃𝑥 ,𝑡 .𝑀 𝑄𝑦 ,𝑇𝑦 ,𝑡  ∗𝑀 𝑃𝑥 ,𝑇𝑦 ,𝑡 ]

0
  

And, 
 ∅ 𝑡 𝑑𝑡 ≤

𝑁(𝑃𝑥 ,𝑄𝑦 ,𝑘𝑡 )

0
 
 

 ∅ 𝑡 𝑑𝑡
max [𝑁 𝑆𝑥 ,𝑇𝑦 ,𝑡 ∗ 𝑁 𝑆𝑥 ,𝑃𝑥 ,𝑡 .𝑁 𝑄𝑦 ,𝑇𝑦 ,𝑡  ∗𝑁 𝑃𝑥 ,𝑇𝑦 ,𝑡 ]

0
 

For all x,y ∈ X, where ф : R+→ R+ is a Lesbegue integrable 
mapping which is summable satisfying for each 0 < 𝜀 < 1, 
0 <  ø 𝑡 𝑑𝑡 < 1,

𝜀

0
  ø 𝑡 𝑑𝑡 = 1

1

0
  

Then each of pair (P,S) and (Q,T) have a point of 
coincidence . If the pairs (P,S) and (Q,T) are semi compatible 
, then P, Q, S and T have a unique common fixed point . 
 
Proof – Since the pairs (P,S) and (Q,T) Share the common 
property (E.A.), then there exists two sequences {xn} and 
{yn} in X such that  
limn→∞P xn= lim n→∞ Sxn = lim n→∞Qyn= lim n→∞ Tyn=z, for 
some z∈ X . 
Since S(X) is closed subset of X ,therefore there exists a 
point v∈ X such that z=Sv 
Now, we prove that Pv=z 
By inequality (3), Putting x=v, and y=yn we get 
  ∅ t dt ≥

 M(Pv ,Q ,kt)

0
  

 ∅ 𝑡 𝑑𝑡
min [𝑀 𝑆𝑣 ,𝑇 ,𝑡  ∗ 𝑀 𝑆𝑣 ,𝑃𝑣 ,𝑡 .𝑀 𝑄 ,𝑇 ,𝑡  ∗𝑀 𝑃𝑣 ,𝑇 ,t ]

0
  

Taking lim n→ ∞, we get 

 ∅ 𝑡 𝑑𝑡 ≥

 𝑀(𝑃𝑣 ,𝑧 ,𝑘𝑡)

0

 

  ∅ 𝑡 𝑑𝑡
min [𝑀 𝑧 ,𝑧,𝑡 ∗ 𝑀 𝑧,𝑃𝑣,𝑡 .𝑀 𝑧,𝑧 ,𝑡  ∗𝑀 𝑃𝑣,𝑧,𝑡 ]

0
  

  ∅ 𝑡 𝑑𝑡 ≥
𝑀(𝑃𝑣,𝑧 ,𝑘𝑡)

0
  

  ∅ 𝑡 𝑑𝑡
min [1∗ 𝑀 𝑧 ,𝑃𝑣 ,𝑡 .1 ∗𝑀 𝑃𝑣 ,𝑧 ,𝑡 ]

0
  

  ∅ 𝑡 𝑑𝑡 ≥
𝑀(𝑃𝑣,𝑧 ,𝑘𝑡)

0
  ∅ 𝑡 𝑑𝑡

𝑀(𝑧,𝑃𝑣,𝑡)

0
  

Similarly, 
  ∅ 𝑡 𝑑𝑡 ≤

𝑁(𝑃𝑣 ,𝑄 ,𝑘𝑡)

0
  

  ∅ 𝑡 𝑑𝑡
max [𝑁 𝑆𝑣 ,𝑇 ,t ◊ N Sv ,Pv ,t .N Q ,T ,t  ◊N Pv ,T ,t ]

0
  

Taking lin n→∞, we get 
  ∅ 𝑡 𝑑𝑡 ≤

𝑁(𝑃𝑣 ,𝑧 ,𝑘𝑡)

0
  

  ∅ 𝑡 𝑑𝑡
max [𝑁(𝑧 ,𝑧 ,𝑡)◊{𝑁 𝑧 ,𝑃𝑣 ,𝑡 .𝑁 𝑧 ,𝑧 ,𝑡 }◊𝑁(𝑃𝑣 ,𝑧 ,𝑡)

0
  

  ∅ 𝑡 𝑑𝑡 ≤
𝑁(𝑃𝑣 ,𝑧 ,𝑘𝑡)

0
  

  ∅ 𝑡 𝑑𝑡
max [1◊{𝑁 𝑧 ,𝑃𝑣 ,𝑡 .1}◊𝑁(𝑃𝑣 ,𝑧 ,𝑡)

0
  

  ∅ 𝑡 𝑑𝑡 ≤
 𝑁(𝑃𝑣 ,𝑧 ,𝑘𝑡)

0
  ∅ 𝑡 𝑑𝑡

𝑁(𝑃𝑣 ,𝑧 ,𝑡)

0
 

By Lemma 2.1, we conclude that Pv=z  
 
Since z=Sv and we proved that z=Pv, then from this we get 
z=Pv= Sv, which shows that v is a coincidence point of the 
pair (P,S). 
 
Since T(x) is also closed subset of X. There fore lim n→∞ 
Tyn=z in T(X) and hence there exists w∈ Ssuch that Tw= z = 
Sv = Pv . 
 
Now, we will prowe that Qw=z. 
 
By using in equality (3) , putting x = v, y = w, we get  

 ø 𝑡 𝑑𝑡 ≥ 
𝑀(𝑃𝑣 ,𝑄𝑤 ,𝑘𝑡 )

0

 

 

 

yn 

yn yn yn yn 

yn 

yn yn yn yn 
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 ø 𝑡 𝑑𝑡
min [𝑀 𝑆𝑣 ,𝑇𝑤 ,𝑡 ∗ 𝑀 𝑆𝑣 ,𝑃𝑣 ,𝑡 .𝑀 𝑄𝑤 ,𝑇𝑤 ,𝑡  ∗𝑀 𝑃𝑣 ,𝑇𝑤 ,𝑡 ]

0

 

 ø 𝑡 𝑑𝑡 ≥ 
𝑀(𝑃𝑣 ,𝑄𝑤 ,𝑘𝑡 )

0

 

 ø 𝑡 𝑑𝑡
min [𝑀 𝑧 ,𝑧 ,𝑡 ∗ 𝑀 𝑧 ,𝑧 ,𝑡 .𝑀 𝑄𝑤 ,𝑧 ,𝑡  ∗𝑀 𝑧 ,𝑧 ,𝑡 ]

0

 

 ø 𝑡 𝑑𝑡 ≥
𝑀(𝑧 ,𝑄𝑤 ,𝑘𝑡 )

0

 

 ø 𝑡 𝑑𝑡
min [1∗ 1.𝑀 𝑄𝑤 ,𝑧 ,𝑡  ∗1]

0

 

 ø 𝑡 𝑑𝑡 ≥ 
𝑀(𝑧 ,𝑄𝑤 ,𝑘𝑡 )

0

 ø 𝑡 𝑑𝑡
𝑀(𝑄𝑤 ,𝑧 ,𝑡)

0

 

Similarly, 

 ø 𝑡 𝑑𝑡 ≤
𝑁(𝑧 ,𝑄𝑤 ,𝑘𝑡)

0

  ø 𝑡 𝑑𝑡
𝑁(𝑄𝑤 ,𝑧 ,𝑡)

0

 

Hence, from Lemma 2.1, we get Qw = z. 
Combining all results we get Tw = Qw =z. 
which shows that w is the coincidence point of the pair ( Q ,T 
). 
Now , since the pairs (P ,S) and (Q ,T) are semi compatible 
and hence we get  
PSxn → Sz So , Pz = Sz . 
and , QTyn → Tz so , Qz = Tz . 
Now , we will prove that Pz = z 
Again , using inequality (3), putting x = z , y = w, we get  

 ø 𝑡 𝑑𝑡 ≥
𝑀(𝑃𝑧 ,𝑄𝑤 ,𝑘𝑡)

0

 

 ø 𝑡 𝑑𝑡
min [𝑀 𝑆𝑧 ,𝑇𝑤 ,𝑡 ∗ 𝑀 𝑆𝑧 ,𝑃𝑧 ,𝑡 .𝑀 𝑄𝑤 ,𝑇𝑤 ,𝑡  ∗𝑀 𝑃𝑧 ,𝑇𝑤 ,𝑡 ]

0

 

 ø 𝑡 𝑑𝑡 ≥
𝑀(𝑃𝑧 ,𝑧 ,𝑘𝑡)

0

 

 ø 𝑡 𝑑𝑡
min [𝑀 𝑃𝑧 ,𝑧 ,𝑡 ∗ 𝑀 𝑃𝑧 ,𝑃𝑧 ,𝑡 .𝑀 𝑧 ,𝑧 ,𝑡  ∗𝑀(𝑃𝑧 ,𝑧 ,𝑡)

0

 

 ø 𝑡 𝑑𝑡 ≥
𝑀 𝑃𝑧 ,𝑧  ,𝑘𝑡 

0

 ø 𝑡 𝑑𝑡
𝑀(𝑃𝑧 ,𝑧 ,𝑡)

0

 

Similarly, we get  
 ø 𝑡 𝑑𝑡 ≤

𝑁(𝑃𝑧 ,𝑧 ,𝑘𝑡)

0
  ø 𝑡 𝑑𝑡

𝑁(𝑃𝑧 ,𝑧 ,𝑡)

0
  

and hence from Lemma 2.1 we get Pz = z. 
Since Pz = Sz , there for we get  
Pz = z = Sz . 
Similarly, we can proved that  
Qz = Tz = z. 
from this we conclude that  
Pz = Qz = Sz = Tz = z , 
which implies that z is a common fixed point of P , Q , S and 
T . 
 
3. Uniquness 
 
Let u be another common fixed point of P , Q , S and T . 
Then 
z = Pz = Qz = Sz = Tz , 
u = Pu = Qu = Su = Tu . 
Now , by using inequality (3) , Putting x = z and y = u, 
we get  

 ø 𝑡 𝑑𝑡 ≥
𝑀(𝑃𝑧 ,𝑄𝑢 ,𝑘𝑡 )

0

 

 ø 𝑡 𝑑𝑡 
min [𝑀 𝑆𝑧 ,𝑇𝑢 ,𝑡 ∗ 𝑀 𝑆𝑧 ,𝑃𝑧 ,𝑡 .𝑀 𝑄𝑢 ,𝑇𝑢 ,𝑡  ∗𝑀 𝑃𝑧 ,𝑇𝑧 ,𝑡 ]

0

 

 ø 𝑡 𝑑𝑡 ≥
𝑀(𝑧 ,𝑢 ,𝑘)

0

 

 ø 𝑡 𝑑𝑡 
min [𝑀 𝑧 ,𝑢 ,𝑡 ∗ 𝑀 𝑧 ,𝑧 ,𝑡 .𝑀 𝑢 ,𝑢 ,𝑡  ∗𝑀 𝑧 ,𝑧 ,𝑡 ]

0

 

 ø 𝑡 𝑑𝑡 ≥
𝑀(𝑧 ,𝑢 ,𝑘𝑡)

0

 ø 𝑡 𝑑𝑡 
min [M z,u,t ∗ 1.1 ∗1]

0

 

 ø 𝑡 𝑑𝑡 ≥
𝑀(𝑧 ,𝑢 ,𝑘𝑡)

0

  ø 𝑡 𝑑𝑡 
𝑀(𝑧 ,𝑢 ,𝑡)

0

 

Similarly, we can proved that  

 ø 𝑡 𝑑𝑡 ≤
𝑁(𝑧 ,𝑢 ,𝑘𝑡 )

0

 ø 𝑡 𝑑𝑡 
N z,u,t 

0

 

Hence from Lemma 2.1 we get z = u . This completes the 
proof. 
 
Corollary 3.2 Let (X , M , N ,*,◊) be a complete 
intuitionistic fuzzy metric apace and let P,Q,S and T be self 
mappings of X satisfying the conditions of theorem 3.1and 
there exists k ∈ (0,1) such that for all x,y ∈ X and t > 0,  

 ø 𝑡 𝑑𝑡
𝑀(𝑃𝑥 ,𝑄𝑦 ,𝑘𝑡)

0

≥   ø 𝑡 𝑑𝑡
𝑀(𝑆𝑥 ,𝑇𝑦 ,𝑡)

0

 

 ø 𝑡 𝑑𝑡 ≤
𝑁(𝑃𝑥 ,𝑄𝑦 ,𝑘𝑡 )

0

  ø 𝑡 𝑑𝑡
𝑁(𝑆𝑥 ,𝑇𝑦 ,𝑡)

0

 

Then P,Q,S and T have a unque common fixed point in X . 
 
Corollary 3.3 Let (X , M , N ,*,◊) be a complete 
intuitionistic fuzzy metric apace and let P,Q,S and T be self 
mappings of X satisfying the conditions of theorem 3.1and 
there exists k ∈ (0,1) such that for all x,y ∈ X and t > 0, 

 ø 𝑡 𝑑𝑡 ≥
𝑀(𝑃𝑥 ,𝑄𝑦 ,𝑘𝑡)

0

  

 ø 𝑡 𝑑𝑡
𝑀 𝑆𝑥 ,𝑇𝑦 ,𝑡 ∗𝑀 𝑆𝑥 ,𝑃𝑥 ,𝑡 ∗𝑀(𝑃𝑥 ,𝑇𝑦 ,𝑡)

0

 

And  

 ø 𝑡 𝑑𝑡 ≤
𝑁(𝑃𝑥 ,𝑄𝑦 ,𝑘𝑡 )

0

  

 ø 𝑡 𝑑𝑡
𝑁 𝑆𝑥 ,𝑇𝑦 ,𝑡 ∗𝑁 𝑆𝑥 ,𝑃𝑥 ,𝑡 ∗𝑁(𝑃𝑥 ,𝑇𝑦 ,𝑡)

0

 

Then P,Q,S and T have a unque common fixed point in X . 
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