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Abstract: Survival Analysis is the study about time-to-event data. It stands apart from classical estimation, in the sense that it has 

censoring objects with incomplete information to be dealt with. Classical Survival models usually contain two events, of which one is 

treated as terminal event. Multi State Models (MSM) involve more than two states, of which some may be transient and others 

absorbing. The multi-state Markov model is a useful way of describing a process in which an individual moves through a series of states 

in continuous time. Multi-state models can be used to model the movement of patients between different states, such as, hospitalization, 

recovery, relapse and death. These models may offer a better understanding of the process due to transition specific nature of the events. 

Also, the estimated transition probabilities from one state to another throws more light on the nature of movements and the possible 

reasons behind the transitions. In this paper, a multi state model with three states is considered under Semiparametric multi state 

approach. This method enables us to identify transition specific covariates that throw more light on the entire transition process and the 

factors influencing the same. A Cox Proportional hazard multi state model is used to derive the necessary estimates and testing 

procedures are carried out using ‘mstate’ package of R, a open source software.  
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1. Introduction 
 

Survival analysis is the analysis of data measured from a 

specific time of origin until an event of interest or a 

specified endpoint (Collett, 1994). For example, in order to 

determine the incidence of death due to AIDS among HIV 

positive patients, every patient will be followed from a 

baseline date (such as date of diagnosis) until the date of 

death due to AIDS or study closing date. A patient who dies 

of HIV during the study period would be considered to have 

an „event‟ at the date of death. A patient who is alive at the 

end of the study would be considered to be „censored‟. Thus, 

every patient provides two pieces of information: follow-up 

time and status (censored status). This model is called as 

Classical Survival model. In longitudinal studies, patients 

are observed over time and covariate information is 

collected at several occasions. In such studies, some state 

may be partitioned into two or more intermediate (transient) 

states, each of which corresponds to a particular stage.  

 

2. Multi state Models 
 

The simplest form of MSM is the mortality model for 

survival analysis with states “alive” and “dead” and only one 

possible transition. Splitting the “alive” state into two 

transient states, it is called as simplest progressive three-

state model. Both models are special cases of the k-

progressive model, illustrated in Figure 2.1  

 

 
Figure 2.1: k- Progressive Model 

 

Another MSM used for the disease progression is the illness-

death model which can be used to study the incidence of the 

disease and the rate of death. This is illustrated in Figure 2.2. 

 

 
Figure 2.2: Illness-Death Model. 

 

An MSM is a stochastic process (X(t), t ϵT) with a finite 

state space, where X(t) represents the state occupied by the 

process at time t ≥ 0. In general, the future state transitions 

of an MSM may depend on past events. However, for the 

special case of a Markov model the past and future are 

independent given its present state. Extensive literature on 

MSMs are available. Main contribution include books by 

Anderson, Borgan, Gill, and Keiding (1993), Hougaard 

(1999), Beyersmann, Schumacher and Allignol (2012) and 

Willekens, F. (2014). Recent reviews on this topic may be 

found in the papers by Putter, Fiocco, and Geskus (2007), 

Putter (2014). The „mstate‟ package in R for the analysis of 

multi-state models was developed by Wreede, Fiocco and 

Putter (2011). 

 
2.1 Preliminaries in Multi State Models 

 

2.2.1Transition intensity  If T denotes the time of reaching 

state j from state i then hazard rate (transition intensity) of 

the i j transition is  

 
This definition makes an assumption that the multi-state 

model is Markovian, which implies that the probability of 

going to future state depends only on the present state and 

not on its history.  
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2.2.2 Cumulative transition hazard  

Cumulative transition hazard for transition i j is defined as  
 

 
 

2.2.3 Cox Proportional Hazards model 

The hazard for the transition i  j for a subject with 

covariate vector Z is  

𝜆𝑖𝑗  𝑡|𝒁 =  𝜆𝑖𝑗 ,0 𝑡 exp(𝜷𝑖𝑗
𝑇 𝒁) 

where 𝜆𝑖𝑗 ,0 𝑡  is the baseline hazard of transition i  j, and 

𝛽𝑖𝑗  is the vector of regression coefficients that describe the 

effect of Z on transition i  j. 

 

2.2.4. Test based on the Schoenfeld Residuals 
Several formal statistical tests have been proposed for 

assessment of proportionality of hazards. A simulation study 

by Ng‟andu (1997) described and compared several tests in 

the Cox PH framework, and concluded that the scaled 

Schoenfeld residuals test (Grambsch and Therneau,1994), 

the linear correlation test (Harrell, 1986) and the time-

dependent covariate test(Cox, 1972) were the most powerful 

diagnostic tools for proportionality. The other statistical test 

of the proportional hazards assumption is based on the 

Schoenfeld residual. The Schoenfeld residuals are defined 

for each subject who is observed to fail. If the PH 

assumption holds for a particular covariate then the 

Schoenfeld residual for that covariate will be independent of 

survival time. So this test is accomplished by finding the 

correlation between the Schoenfeld residuals for a particular 

covariate and the ranking of individual survival times. The 

null hypothesis is that the correlation between the 

Schoenfeld residuals and the ranked survival time is zero. 

Rejection of null hypothesis concludes that PH assumption 

is violated.  

 

The scaled residuals scatter in a nonsystematic way around 

the zero line, and the polygon connecting the values of the 

smoothed residuals has approximately a zero slope and 

crosses the zero line several times. Then we conclude that 

hazard function may be proportional in that covariate. If the 

polygons connecting the values of smoothed residuals have 

not zero slope and crosses the zero line only once or it has 

consistent positive slope, suggesting that the importance of 

the covariate increases over time and thus has a non 

proportional hazard. 

 
2.2.5 Approaches in Time Scale 
Clock forward: Time t refers to the time since the patient 

entered the initial state. 

Clock reset: Time t in 𝜆𝑖𝑗  𝑡  refers to the time since entry in 

state i. The clock is reset to 0 each time the patient enters a 

new state. 

 

3. Applications to German Breast Cancer 

Study (GBCS) 
 

3.1 Data and Model Description  

 

GBCS data obtained from the German Breast Cancer Study 

Group, which they used to illustrate the methods for building 

prognostic models (Sauerbrei and Royston, 1999) is used for 

this study. In the main study, a total of 720 patients with 

primary node positive breast cancer were recruited between 

July 1984, and December 1989. Data used in this study 

consists of 686 subjects with complete data contain three 

events primary node positive, recurrence and death 

respectively. Using Purposeful selection of covariates 

method, the following prognostic factors were identified and 

their distribution of the values is shown in table 3.1 

 

387(299) 128(171)  

 
Figure 3.1 Transition numbers of events and Censored 

observations 

(Figures inside the bracket denotes the events) 

 

Table 3.1: Distribution of Prognostic factors  
Progonastic factor Categories Number in % 

Hormone Therapy No 440 64 

 Yes 246 36 

Tumour Grade 1 81 12 

 2 444 65 

 3 161 23 

Number of Nodes < 4 376 55 

 ≥ 4 310 45 

Age (20,46] 181 26 

 (46,53] 182 27 

 (53,61] 155 23 

 (61,81] 168 24 

Tumour Size in mm (2,25] 353 51 

 (25,120] 333 49 

Number of Progesterone receptors < 33 343 50 

 ≥ 33 343 50 

 

The above table indicates that the covariate values are 

evenly spread among different categories. 

 

The model development and testing are carried out using 

„mstate‟ package in R and the corresponding outputs are 

provided below: 

 

Table 3.2: Parameter estimates using „Clock forward‟ 

approach 

covariates coef exp(coef) SE(coef) z p 

hormone.1 -0.4241 0.6543 0.1283 -3.3100 0.0010 

hormone.2 -0.1633 0.8493 0.1882 -0.8700 0.3856 

grade.1 0.1686 1.1836 0.1106 1.5200 0.1274 

grade.2 0.1536 1.1660 0.1691 0.9100 0.3639 

nodescut.1 0.9228 2.5163 0.1219 7.5700 0.0000 

nodescut.2 0.2311 1.2600 0.1901 1.2200 0.2241 

agecut1.1 -0.1555 0.8560 0.1649 -0.9400 0.3458 

agecut1.2 0.5653 1.7600 0.2263 2.5000 0.0125 

agecut2.1 0.1718 1.1874 0.1632 1.0500 0.2926 

agecut2.2 0.3503 1.4195 0.2396 1.4600 0.1437 

agecut3.1 0.0530 1.0544 0.1628 0.3300 0.7449 

agecut3.2 0.4018 1.4945 0.2379 1.6900 0.0913 

sizecut.1 0.0895 1.0936 0.1210 0.7400 0.4593 

sizecut.2 0.2905 1.3372 0.1730 1.6800 0.0931 

progcut.1 -0.6552 0.5194 0.1276 -5.1400 0.0000 

progcut.2 -0.8421 0.4308 0.2122 -3.9700 0.0001 
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Table 3.3: Test of the proportional hazards assumption 

based on the Schoenfeld residual using „Clock forward‟ 

approach 

covariates rho Chi-square p 

hormone.1 -0.0116 0.0607 0.8054 

hormone.2 0.0442 0.9429 0.3315 

grade.1 -0.0864 2.9429 0.0863 

grade.2 -0.0235 0.2602 0.6100 

nodescut.1 -0.0838 3.0185 0.0823 

nodescut.2 0.0142 0.1079 0.7426 

agecut1.1 0.0440 0.8661 0.3520 

agecut1.2 0.0214 0.2144 0.6433 

agecut2.1 0.1270 7.1586 0.0075 

agecut2.2 0.0170 0.1243 0.7244 

agecut3.1 0.1009 4.5632 0.0327 

agecut3.2 -0.0588 1.5368 0.2151 

sizecut.1 0.0086 0.0347 0.8523 

sizecut.2 -0.0024 0.0027 0.9588 

progcut.1 0.1420 8.8152 0.0030 

progcut.2 0.0873 3.6615 0.0557 

GLOBAL NA 38.3936 0.0013 

 

 
Figure 3.2: Scatter plot of scaled Schoenfeld residuals using 

„Clock forward‟ approach 

 

Table 3.4: Parameter estimates using „Clock reset‟ approach 

Parameters coef exp(coef) se(coef) z p 

hormone.1 -0.4241 0.6543 0.1283 -3.3100 0.0009500* 

hormone.2 -0.1536 0.8576 0.1713 -0.9000 0.3698 

grade.1 0.1686 1.1836 0.1106 1.5200 0.1274 

grade.2 0.1925 1.2122 0.1573 1.2200 0.2212 

nodescut.1 0.9228 2.5163 0.1219 7.5700 0.0000000* 

nodescut.2 0.2833 1.3275 0.1721 1.6500 0.0998 

agecut1.1 -0.1555 0.8560 0.1649 -0.9400 0.3458 

agecut1.2 0.6289 1.8756 0.2167 2.9000 0.0037100* 

agecut2.1 0.1718 1.1874 0.1632 1.0500 0.2926 

agecut2.2 0.4134 1.5120 0.2290 1.8100 0.0710 

agecut3.1 0.0530 1.0544 0.1628 0.3300 0.7449 

agecut3.2 0.4912 1.6342 0.2228 2.2000 0.0275100* 

sizecut.1 0.0895 1.0936 0.1210 0.7400 0.4593 

sizecut.2 0.2148 1.2396 0.1616 1.3300 0.1838 

progcut.1 -0.6552 0.5194 0.1276 -5.1400 0.0000003* 

progcut.2 -0.8387 0.4323 0.1945 -4.3100 0.0000160* 

*Denotes significance at 5% level. 

 

Table 3.5: Test of the proportional hazards assumption 

based on the Schoenfeld residual using „Clock reset‟ 

approach 
Parameters rho chi-square p 

hormone.1 -0.0108 0.0549 0.8147 

hormone.2 -0.0048 0.0117 0.9137 

grade.1 -0.0748 2.3100 0.1287 

grade.2 -0.0101 0.0507 0.8219 

nodescut.1 -0.0757 2.5800 0.1082 

nodescut.2 0.0302 0.4950 0.4818 

agecut1.1 0.0386 0.7000 0.4028 

agecut1.2 -0.0366 0.6280 0.4281 

agecut2.1 0.1110 5.7300 0.01670* 

agecut2.2 -0.0153 0.1070 0.7435 

agecut3.1 0.0882 3.6500 0.0562 

agecut3.2 -0.0975 4.3400 0.0373 

sizecut.1 0.0092 0.0412 0.8392 

sizecut.2 -0.0001 0.0000 0.9990 

progcut.1 0.1200 6.5900 0.01020* 

progcut.2 0.0169 0.1500 0.6984 

GLOBAL NA 29.6000 0.0204 

 

*Denotes significance at 5% level. 

 
Figure 3.3: Scatter plot of scaled Schoenfeld residuals using 

„Clock reset‟ approach 

 

4. Summary and Conclusion 
 

Multi state model identifies significance of each state and 

their respective transitions in survival analysis. In this study, 

subjects who have undergone hormone therapy have 

recurrence at a rate 35% lower than subjects who do not 

undergo hormone therapy. In transition 1, subjects who have 

more than three tumor nodes have higher hazard than those 

with lesser number of nodes. In both transitions, subjects 

having higher (greater than 33) number of Progesterone 

receptors have lower hazard compared to those with 

relatively lower number of Progesterone receptors. 

Difference between „clock forward‟ and „clock reset‟ 

approaches is quite small with regard to the estimated 
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regression coefficients. No evidence of non-proportionality 

of the base line transition intensities are seen in the two 

transitions (P value > 0.05), except for a few subclasses in 

the covariates. Multistate model, when compared to classical 

survival models, brings out extra features that aid in 

analyzing survival structures. 
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