Chebyshev Best Approximation of ${ }^{\prime}, p, q$)-Type and Lower ' p, q)-Type of Entire Functions of Several Complex Variables

Dr. Deepti Gupta
Department of Applied Science and Humanities, Ajay Kumar Garg Engineering College, Ghaziabad (U.P.), India

Abstract

This paper deals with the characterization of generalized (p, q) - type and generalized lower (p, q) - type with respect to proximate order of an entire function $f: C^{2} \rightarrow C$ in terms of the Chebyshev best approximation to f on compact set $E \subset C^{2}$ by polynomials. In this paper we want to establish formulae for lower'. p, q)-type of entire functions of two complex variables with index pair - p, q).

Keywords: Chebyshev approximation, polynomials, generalized, bounded, proximate order

1. Introduction

Let E be a bounded closed set in the space C^{2} of two complex variables $z=\left(z_{1}, z_{2}\right)$ with the norm

$$
\|f\|_{E}=\sup \{|f(z)|: z \in E\}
$$

For a function f defined and bounded on E.
Let P_{v} denote the set of all polynomials in z of degree $<V$. Set

$$
E_{v}(f, E)=\inf \left\{\|f-p\|_{E}: p \in P_{v}\right\} .
$$

The following theorem for single complex variable was proved by Winiarski [1].

Theorem 1: A function f defined and bounded on a closed set E with a positive transfinite diameter d, can be continued to an entire function f of order $\rho(0<\rho<\infty)$ and of type $\sigma(0<\sigma<\infty)$ if and only if
(1.1) $\limsup v^{1 / \rho}\left(E_{v}(f, E)\right)^{1 / v}=d(e \sigma \rho)^{1 / \rho}$.

It has been noted that in two or more than two complex variables, the type and lower type of $f(z)$ can not be characterized by means of the measure of the Chebyshev best approximation to f on E by polynomials of degree $\leq v$ with respect to all variable. Due to this fact Kumar D. [2] considered the measures $E_{k}^{*}(f, E), k=\left(k_{1}, k_{2}\right)$ of the Chebyshev best approximation to f in $E=E^{(1)} \times E^{(2)}$ by polynomials of degree $\leq k_{j}$ with respect to the $j^{\text {th }}$ variable, $j=1,2$, where E_{j} is bounded closed set with a positive transfinite diameter $d_{j}=d\left(E^{j}\right)$ in the complex z_{j} plane. He extended the above theorem
for two complex variables and to estimate the slow and fast growth of entire functions. This theorem also have been extended to (p, q)-scale introduced by Juneja et al. ([3],[4]). But these results are inadequate for comparing the growth of those entire functions which are of same (p, q) - order but of infinite (p, q) - types. To refine this scale we shall obtain (p, q) - type and lower (p, q) - type with respect to proximate order of index pair (p, q), for integers p and q such that $1 \leq q \leq p$. Analogous results for generalized lower (p, q) - type also have been studied.

Let D be a complex Banach space with norm $\|\cdot\|$. Let $f: C^{2} \rightarrow D$ be an entire function and $P_{k}=P_{k}\left(C^{2}, D\right), k=\left(k_{1}, k_{2}\right)$ be the set of all polynomials $p: C^{2} \rightarrow D$ of degree $\leq k_{j}$, with respect to $j^{\text {th }}$ variable, respectively, $j=1,2$.

Let E be a compact set in C^{2} and let $f: E \rightarrow D$ be a function defined and bounded on E. Set

$$
E_{k}^{*}(f, E)=\inf \left\{\|f-p\|_{E}: p \in P_{k}\right\} .
$$

Let $E=E^{(1)} \times E^{(2)}$, when $E^{(j)}(j=1,2)$ is a compact set in C containing infinitely many different points. Let $n_{j}^{k_{j}}=\left(n_{j 0}, \ldots, n_{j} k_{j}\right), j=1,2$, be a system of $k_{j}+1$ extremal points of E_{j} (see [2]).The polynomial

$$
L_{k}(z)=\sum_{u_{1}, u_{2}=0}^{k_{1}, k_{2}}\left(n_{1 u_{1}}, \eta_{2 u_{2}}\right) L^{\left(u_{1}\right)}\left(z_{1}\right) L^{\left(u_{2}\right)}\left(z_{2}\right)
$$

is the Lagrange interpolation polynomial for f with nodes $n_{1}^{\left(k_{1}\right)} \times n_{2}^{\left(k_{2}\right)}$ of degree $\leq k_{j}$ with respect to the $j^{\text {th }}$ variable. Here
$\left.L^{\left(u_{j}\right)}\left(z_{j}\right)=L^{\left(u_{j}\right)}\left(z_{j}-E_{j}\right)=\frac{\left(z_{j}-n_{j^{0}}\right) \cdots}{\left(n_{j} u_{j}-n_{j^{0}}\right) \cdots} \right\rvert\, \frac{\left(z_{j} n_{j} k_{j}\right)}{\left(n_{j} u_{j}-n_{j} k_{j}\right)}$
where $\mid u_{j}$ means that the factor u_{j} is omitted. The inequality
(1.2)
$E_{k}^{*}(f, E) \leq\left\|f-L_{k}\right\|_{E}\left(1+\prod_{j=1}^{2}\left(k_{j}+1\right)\right) E_{k}^{*}(f, E)$
can be proved in a similar manner as Lemma 1.1 of [2].
Definition 1: An entire function defined on C^{2} is said to be $(p, q)-$ order $\quad \rho(p, q) \quad$ and \quad if $\quad(b<\rho(p, q)<\infty$ (p, q) - type $\tau(p, q)$ and lower $(p, q)-$ type $t(p, q)$ if $\rho(p, q)=\limsup _{r \rightarrow \infty} \frac{\log ^{[p]} \rho(r, f)}{\log ^{[q]} r}$
$\tau(p, q)=\lim _{r \rightarrow \infty} \sup ^{\inf } \frac{\log ^{[p-1]} S(r, f)}{\left(\log ^{[q-1]} r\right)^{\rho(p, q)}}, O<t(p, q) \leq \tau(p, q) \leq \infty, ~$ where
$S(r, f)=\sup _{|z|=r}\{\|f(z)\|\} \forall r \in R^{+}, \log ^{|m|} x=\exp ^{|-m|} x<\infty$
with $\quad \log ^{|0|} x=\exp ^{|0|}=x, b=1$ if $p=q \quad$ and $b=0$ if $p>q$.

Definition 2: The generalized $(p, q)-\operatorname{type} \tau^{*}$ and generalized lower $(p, q)-\operatorname{type} t^{*}$ of $f(z)$ are defined as

$$
\lim _{r \rightarrow \infty} \sup \frac{\log ^{[p-1]} S(r, f)}{\left(\log ^{[q-1]} r\right)^{\rho(r)}}=\begin{aligned}
& \tau^{*}(p, q) \equiv \tau^{*} \\
& t^{*}(p, q) \equiv t^{*}
\end{aligned}
$$

The function $\rho(r)$ is said to be proximate order and lower proximate order of the given function f if τ^{*} and t^{*} are nonzero and finite respectively.

Now we shall prove the main results.
Theorem 2: Let $f\left(z_{1}, z_{2}\right)=\sum_{m_{1}, m_{2}=0}^{\infty} a_{m_{1}, m_{2}} z_{1}^{m_{1}} z_{2}^{m_{2}}$ be an entire function of index-pair (p, q). If $0<U<\infty$, the function $f\left(z_{1}, z_{2}\right)$ is of $(p, q)-$ order $\rho(p, q)=\left(\rho_{1}(p, q), \rho_{2}(p, q)\right)>(b, b) \quad$ and generalized
(p, q) - type
$\tau^{*}(p, q)$
$=\left(\tau_{1}^{*}(p, q), \tau_{2}^{*}(p, q)\right)(0,0)$, with respect to proximate order $\rho(r)$. Then
$\tau^{*}(p, q)=M^{\prime} U$
where
$U \equiv U(p, q)=\limsup _{\min \left(k_{j}\right) \rightarrow \infty}\left[\frac{\varphi\left(\log ^{[p-2]}(k)\right)}{\log ^{[q-1]} E_{k}^{*}(f, E)^{-1 / k}}\right]^{\rho(p, q)-A}$.
$M^{\prime}=\left[\begin{array}{ll}\frac{(\rho(2,2)-1)^{\rho(2,2)-1}}{\rho(2,2)^{\rho(2,2)}} & \text { if }(p, q)=(2,2) \\ 1 / e \rho(2,1) d^{\rho(2,1)} & \text { if }(p, q)=(2,1)\end{array}\right.$
1 otherwise.
$A=\left[\begin{array}{cc}1 & \text { for }(p, q)=(2,2) \\ 0 & \text { otherwise; }\end{array}\right.$
$b=\left[\begin{array}{cc}1 & \text { for }(p, q)=(2,2) \\ 0 & \text { otherwise; }\end{array}\right.$
$k=\left(k_{1}, k_{2}\right)$ and $d_{j}=d\left(E^{j}\right)>0(j=1,2)$ are the transfinite diameters of E^{j}.

Proof. From [2], eq. 1.10], we have

$$
\begin{equation*}
\left\|f-L_{k}\right\|_{E} \leq \lambda \frac{M(r, f)}{r^{k}}\left(d e^{\epsilon}\right)^{k} \tag{2.1}
\end{equation*}
$$

for $r>r^{(1)}=\left(r_{1}^{(1)}, r_{2}^{(1)}\right), k>k^{(1)}=\left(k_{1}^{(1)}, k_{2}^{(1)}\right)$,
where $\lambda=\lambda_{1}, \lambda_{2}, \in=\left(\in_{1}, \in_{2}\right), e^{\epsilon}=\left(e^{\epsilon_{1}}, e^{\epsilon_{2}}\right)$.
Let $\quad k(p, q)=\left(k_{1}(p, q), k_{2}(p, q)\right)>\tau^{*}(p, q)$. Ву definite of generalized (p, q) - type of $f\left(z_{1}, z_{2}\right)$ there exists an $r^{(2)}>r^{(1)}$ such that
$\frac{\log ^{[p-1]} S(r, f)}{\left(\log ^{[q-1]} r\right)^{\rho(r)}} \leq K(p, q)$ for $r>r^{(2)}$,
or

$$
\begin{equation*}
S(r, f) \leq \exp ^{[p-1]}\left[K(p, q)\left(\log ^{[q-1]} r\right)^{\rho(r)}\right] \tag{2.2}
\end{equation*}
$$

For $(p, q)=(2,1)$, using (2.2) with (2.1) we get

$$
\begin{equation*}
\left\|f-L_{k}\right\|_{E} \leq \lambda\left(d e^{\epsilon}\right)^{k}\left[\frac{e^{k(2,1)} r^{\rho(r)}}{r^{k}}\right] \tag{2.3}
\end{equation*}
$$

Let $k^{(2)}>k^{(1)} \quad$ such that $\frac{k_{j}}{r_{j} \rho_{j}(2,1)}>r_{j}^{(\rho(r))}$ for $j=1,2, k>k^{(2)}$.
Choosing
$r=\left[\varphi\left(\frac{k_{1}}{K_{2}(2,1) \rho_{2}(2,1)}\right), \varphi\left(\frac{k_{2}}{K_{2}(2,1) \rho_{2}(2,1)}\right)\right]$
in (2.3) we get

$$
\left\|f-L_{k}\right\|_{E}<\lambda\left(d e^{\epsilon}\right)^{k} \frac{\left(e^{\phi} k(2,1) \rho(2,1)\right)^{k / \rho(2,1)}}{[\varphi(k)]^{k}}
$$

$$
\leq \lambda d^{k}\left(\frac{\left(e \tau^{*}(2,1) \rho(2,1)\right)^{k / \rho(2,1)}}{[\varphi(k)]^{k}}\right)\left(e^{\epsilon-\delta / k}\right)^{k} \text { for } k>k^{(2)}, \delta=\left(\delta_{1}, \delta_{2}\right)
$$

which gives

$$
\left[\varphi(k)\left(\left\|f-L_{k}\right\|_{E}\right)^{1 / k}\right]^{\rho(2,1)} \leq e \rho(2,1) \tau^{*}(2,1) d^{\rho(2,1)} \lambda^{\rho(2,1) / k}\left(e^{\epsilon-\delta / k}\right)^{\rho(2,1)}
$$

or

$$
\left[\frac{\varphi(k)}{\log \left\|f-L_{k}\right\|_{E}^{-1 / k}}\right]^{\rho(2,1)} \leq \frac{\tau^{*}(2,1)}{M^{\prime}} \text { as } k \rightarrow \infty
$$

Choosing
$r=\left[\exp \varphi\left(\frac{k_{1}}{K_{1}(2,2) \rho_{2}(2,2)}\right), \exp \varphi\left(\frac{k_{2}}{K_{2}(2,2) \rho_{2}(2,2)}\right)\right]$
in (2.5), we get
For $(p, q)=(2,2)$, in view of (2.2), we have
$\left\|f-L_{k}\right\|_{E} \leq \lambda\left(d e^{\epsilon}\right)^{k} \exp \left[k(2,2)(\log r)^{\rho(r)}\right]\left(\frac{1}{r^{k}}\right) .(2.5)$
$\left\|f-L_{k}\right\|_{E} \leq \frac{\lambda\left(d e^{\epsilon}\right)\left\{\exp \left[\frac{k}{\rho(2,2)} \cdot \frac{\varphi(k)}{(K(2,2) \rho(2,2))^{1 /(\rho(2,2)-1)}}\right]\right\}}{\left[\exp \left[\frac{\varphi(k)}{(K(2,2) \rho(2,2))^{1 /(\rho(2,2)-1)}}\right]\right]^{k}}$
Let
such that
$r^{\rho(r)}=\frac{k_{j}}{k(2,2) \rho_{j}(2,2)}>r_{j}^{\rho(r)},(j=1,2), k>k^{(2)}$.

$$
\begin{gathered}
\log \left\|f-L_{k}\right\|_{E} \leq \log \lambda+\frac{k \varphi(k)}{K(2,2) \rho(2,2))^{\rho / \rho-1}}-\frac{k \varphi(k)}{[K(2,2) \rho(2,2)]^{1 /(\rho(2,2)-1)}} \\
{\left[\log \left\|f-L_{k}\right\|_{E}^{-1 / k}\right]^{\rho(2,2)-1} \geq \frac{[\varphi(k)]^{\rho(2,2)-1}}{K(2,2)}\left(\frac{(\rho(2,2)-1)^{\rho(2,2)-1}}{\rho(2,2)^{\rho(2,2)}}\right)[1-O(1)]^{\rho(2,2)-1}}
\end{gathered}
$$

or

$$
\begin{equation*}
\frac{K(2,2)}{M^{\prime}} \geq \limsup _{\min \left(k_{j}\right) \rightarrow \infty}\left[\frac{\varphi(k)}{\log \left\|f-L_{k}\right\|_{E}^{-1 / k}}\right]^{\rho(2,2)-1} \tag{2.6}
\end{equation*}
$$

Now we consider the case when $(p, q) \neq(2,1)$ and $(2,2)$ i.e. $3 \leq q \leq p<\infty$, let $k^{(2)}>k^{(1)}$ such that
$\exp ^{[q-1]}\left[\frac{\log ^{[p-2]}\left(k_{j} / K(p, q) \rho_{j}(p, q)\right)}{K(p, q)}\right]>r_{j}^{\rho(r)}$
for $k>k^{(2)}, j=1,2$.
Choosing

$$
r=\left[\exp ^{[q-1]}\left[\varphi\left(\frac{\log ^{[p-2]}\left(k_{1} / K_{1}(p, q) \rho_{1}(p, q)\right.}{K_{1}(p, q)}\right)\right], \exp ^{[q-1]}\left[\varphi\left(\frac{\log ^{[p-2]}\left(k_{2} / K_{2}(p, q) \rho_{2}(p, q)\right.}{K_{2}(p, q)}\right)\right]\right]
$$

in (2.1) and (2.2), we obtain

$$
\log \left\|f-L_{k}\right\|_{E}^{-1 / k} \geq \exp ^{[q-2]}\left[\varphi\left(\frac{\log ^{[p-2]}(k / K(p, q) \rho(p, q)}{K(p, q)}\right)\right][1-O(1)]
$$

Volume 5 Issue 6, June 2016

for sufficiently large values of $k_{j}{ }^{\prime} s$ or

$$
K(p, q) \geq\left[\frac{\varphi\left(\log ^{[p-2]}(k / K(p, q) \rho(p, q))\right)}{\log ^{[q-1]}\left\|f-L_{k}\right\|_{E}^{-1 / k}}\right]^{\rho(p, q)}+o(1)
$$

Proceeding to limits, we get

$$
\begin{equation*}
K(p, q) \geq \limsup _{\min \left(k_{j}\right) \rightarrow \infty}\left[\frac{\varphi\left(\log ^{[p-2]}(k / K(p, q) \rho(p, q))\right)}{\log ^{[q-1]}\left\|f-L_{k}\right\|_{E}^{-1 / k}}\right]^{\rho(p, q)} . \tag{2.7}
\end{equation*}
$$

Since (2.4), (2.6) and (2.7) are valid for every $K(p, q)=\left(K_{1}(p, q), K_{2}(p, q)\right)>\tau^{*}(p, q)$, it follows that

$$
\begin{equation*}
\limsup _{\min \left(k_{j}\right) \rightarrow \infty}\left[\frac{\varphi\left(\log ^{[p-2]} k\right)}{\log ^{[q-1]}\left\|f-L_{k}\right\|_{E}^{-1 / k}}\right]^{\rho(p, q)-A} \leq \frac{\tau^{*}(p, q)}{M^{\prime}} \tag{2.8}
\end{equation*}
$$

To prove the reverse inequality, let $\tilde{v}=(v, v) \in R^{2}, v=0 ; 1 \cdots$ and in view of Lemma 1.1 of [2] to the function f in the series

$$
f(z)=L_{\tilde{0}}(z)+\sum_{v=0}^{\infty}\left(L_{\tilde{v}+1}(z)-L_{\tilde{v}}(z)\right) \quad z \in C^{2} .
$$

We get $\|f(z)\| \leq\left\|L_{\tilde{0}}(z)\right\|+\sum_{v=0}^{\infty}\left\|L_{\tilde{v}+1}(z)-L_{\tilde{v}}(z)\right\|$,

We have the property of extremal function $\varphi(z, E)$ [5]

$$
\begin{equation*}
\|p(z)\| \leq\|p\|_{E} \varphi^{v}(z), z \in C^{2} \tag{2.9}
\end{equation*}
$$

Applying (2.9) in above for every variable separately, we get

$$
\begin{equation*}
\|f(z)\| \leq a_{0}+2 \sum_{v=0}^{\infty}\left\|f-L_{\tilde{v}}\right\|_{E}(r / d)^{\tilde{v}} \text { for } z \in E_{r_{j}}^{(j)} \tag{2.10}
\end{equation*}
$$

Consider the function

$$
g(z)=\sum_{v=0}^{\infty}\left\|f-L_{\tilde{v}}\right\|_{E} z^{\tilde{\nu}} .
$$

Since $\lim _{\tilde{v} \rightarrow \infty}\left\|f-L_{\tilde{v}}\right\|_{E}^{1 / \tilde{v}}=0$ in view of Lemma 1.1 of [2] it follows that $g(z)$ is entire function. From (2.10) we obtain

$$
S(r, f) \leq a_{0}+2 g(r / d)
$$

Now applying Theorem, for each variable separately, we get

$$
\begin{equation*}
\frac{\tau^{*}(p, q)}{M^{\prime}} \leq \limsup _{\min \left(\widetilde{v}_{j}\right) \rightarrow \infty}\left[\frac{\varphi\left(\log ^{[p-2]} \tilde{v}\right)}{\log ^{[q-1]}\left\|f-L_{k}\right\|_{E}^{-1 / \tilde{v}}}\right]^{\rho(p, q)-A} . \tag{2.12}
\end{equation*}
$$

Using inequality (2.4) with (2.8) and (2.12) together proves the theorem.

References

[1] Winiarski, T.N., Approximation and interpolation of entire functions, Ann. Polon. Math. 23 (1970), 259-273.
[2] Kumar, D., On approximation and interpolation of entire functions in two complex variables with index pair (p, q), Commun. Fac. Sci. Univ. Ank, Series A1 No.2, 51 (2002), 47-56.
[3] Juneja, O.P., Kapoor, G.P. and Bajpai, S.K., On the (p, q) - order and lower (p, q) - order of an entire function, J. Reine Angew. Math. 282 (1976), 53-67.
[4] Juneja, O.P., Kapoor, G.P. and Bajpai, S.K., On the (p, q)-type and lower (p, q)-type of an entire function, J. Reine Angew. Math. 290 (1977), 180-190.
[5] Siciak, J., On some extremal functions and their applications in the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc. 105 (1962), 322-357.

