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Abstract: This paper deals with the characterization of generalized ),( qp type and generalized lower ),( qp type with respect 

to proximate order of an entire function CCf 2:  in terms of the Chebyshev best approximation to f  on compact set 
2CE   

by polynomials. In this paper we want to establish formulae for lower -)(p,q type of entire functions of two complex variables with 

index pair - )(p,q . 
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1. Introduction 
 

Let E  be a bounded closed set in the space 
2C  of two 

complex variables ),( 21 zzz   with the norm 

  Ezzff
E

 :)(sup  

For a function f  defined and bounded on .E  

Let P  denote the set of all polynomials in z  of degree 

.V  Set 

  .:inf),(  PppfEfE
E

  

The following theorem for single complex variable was 

proved by Winiarski [1]. 

 

Theorem 1: A function f  defined and bounded on a closed 

set E  with a positive transfinite diameter d, can be 

continued to an entire function f  of order )0(    

and of type )0(    if and only if  
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It has been noted that in two or more than two complex 

variables, the type and lower type of )(zf  can not be 

characterized by means of the measure of the Chebyshev 

best approximation to f  on E  by polynomials of degree 

  with respect to all variable. Due to this fact Kumar D. 

[2] considered the measures ),(,),( 21 kkkEfEk 
of 

the Chebyshev best approximation to f  in 

)2()1( EEE   by polynomials of degree jk  with 

respect to the 
thj  variable, ,2,1j  where jE  is bounded 

closed set with a positive transfinite diameter )( j

j Edd   

in the complex jz  plane. He extended the above theorem 

for two complex variables and to estimate the slow and fast 

growth of entire functions. This theorem also have been 

extended to ),( qp scale introduced by Juneja et al. 

([3],[4]). But these results are inadequate for comparing the 

growth of those entire functions which are of same 

),( qp order but of infinite ),( qp types. To refine this 

scale we shall obtain ),( qp type and lower 

),( qp type with respect to proximate order of index pair 

),,( qp  for integers p and q  such that .1 pq   

Analogous results for generalized lower ),( qp type also 

have been studied.  

 

Let D  be a complex Banach space with norm .  Let 

DCf 2:  be an entire function and 

),(,),( 21

2 kkkDCPP kk   be the set of all 

polynomials DCp 2:  of degree ,jk  with respect 

to 
thj  variable, respectively, .2,1j  

 

Let E  be a compact set in 
2C  and let DEf :  be a 

function defined and bounded on .E  Set  

  .:inf),( kEk PppfEfE 
 

Let ,)2()1( EEE   when )2,1()( jE j
 is a compact 

set in C  containing infinitely many different points. Let 

2,1,),,( 0  jknnn jjj
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j
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extremal points of jE  (see [2]).The polynomial 
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is the Lagrange interpolation polynomial for f  with nodes 
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where 
ju means that the factor ju  is omitted. The 

inequality  
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can be proved in a similar manner as Lemma 1.1 of [2]. 

 

Definition 1: An entire function defined on 
2C  is said to be 

),( qp order ),( qp  and if  ),(( qpb   

),( qp type ),( qp  and lower ),( qp type ),( qpt  if  
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Definition 2: The generalized ),( qp type
  and 

generalized lower ),( qp type
t  of )(zf  are defined as  
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The function )(r  is said to be proximate order and lower 

proximate order of the given function f  if 
  and 

t  are 

nonzero and finite respectively. 

 

Now we shall prove the main results. 

 

Theorem 2: Let 21
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entire function of index-pair ).,( qp  If ,0 U  the 

function ),( 21 zzf  is of ),( qp order 
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transfinite diameters of .jE  

 

Proof. From [2], eq. 1.10], we have  
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For ),2,2(),( qp  in view of (2.2), we have  
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for sufficiently large values of sk j '  or  
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Proceeding to limits, we get  
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(2.7) 

Since (2.4), (2.6) and (2.7) are valid for 

every ),,()),(),,((),( 21 qpqpKqpKqpK    it follows 

that  
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(2.8) 

To prove the reverse inequality, let 

1;0,),(~ 2   R  and in view of Lemma 1.1 

of [2] to the function f  in the series  
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We have the property of extremal function ),( Ez  [5]  
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Applying (2.9) in above for every variable separately, we get  
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follows that )(zg  is entire function. From (2.10) we obtain  
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Now applying Theorem , for each variable separately, we 

get  
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(2.12) 

Using inequality (2.4) with (2.8) and (2.12) together proves 

the theorem.  
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