
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 6, June 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Performance Analysis for Optimizing Hadoop

MapReduce Execution

Samiksha Misal
1
, P. S Desai

2

1, 2Savitribai Phule Pune University, Smt.Kashibai Navale College of Engineering, Vadgaon (BK), Pune-41

Abstract: The Apache Hadoop data changing writing computer programs is doused in an intricate situation made out of gigantic

machine bunches, limitless data sets, and a couple taking care of vocations. Managing a Hadoop situation is time escalated, toilsome

and obliges expert customers. Likewise, nonappearance of learning may include misconfigurations adulterating the gathering

execution. To address misconfiguration issues we propose an answer completed on top of Hadoop. The goal is showing a tuning toward

oneself segment for Hadoop businesses on Big Data circumstances. Late years have witness the improvement of distributed computing

and the huge information period, which raises difficulties to conventional choice tree calculations. In the first place, as the measure of

dataset turns out to be to a great degree huge, the procedure of building a choice tree can be very tedious. Second, on the grounds that

the information can't fit in memory any all the more, some calculation must be moved to the outer stockpiling and hence builds the I/O

cost. To this end, we propose to execute a normal choice tree calculation, C4.5, utilizing MapReduce programming model.

Keywords: MapReduce, Hadoop, Self-tuning, Optimization, Decision tree.

1. Introduction

Apache Hadoop[1] is an open-source programming structure

for circulated stockpiling and disseminated preparing of Big

Data on groups of item fittings. In exceptionally

straightforward terms, Hadoop is a situated of calculations

which permits putting away gigantic measure of information,

and transforming it in a substantially more proficient and

speedier way. So basically, the center piece of Apache

Hadoop contains two things: a stockpiling part and a

preparing part. Its Hadoop Distributed File System (HDFS)

parts documents into huge squares (default 64mb or 128mb)

and disperses the pieces among the hubs in the bunch. For

preparing the information, the Hadoop Map/Reduce boats

code to the hubs that have the obliged information, and the

hubs then process the information in parallel.

Mapreduce[2][4] is a programming model and a related

execution for transforming and creating vast information sets

with a parallel, dispersed calculation on a bunch. A

Mapreduce project is made out of a Map() system that

performs separating and sorting and a Reduce() method that

performs an outline operation. The "Mapreduce System"

coordinates the handling by marshaling the appropriated

servers, running the different undertakings in parallel,

dealing with all interchanges and information exchanges

between the different parts of the framework, and

accommodating excess and flaw resistance.

The Hadoop conveyed record framework (HDFS) [2][4]is an

appropriated, adaptable, and convenient document

framework written in Java for the Hadoop system. A Hadoop

group has ostensibly a solitary namenode in addition to a

bunch of datanodes, in spite of the fact that repetition

alternatives are accessible for the namenode because of its

criticality. Every datanode serves up pieces of information

over the system utilizing a piece convention particular to

HDFS. The document framework utilizes TCP/IP

attachments for correspondence. Customers use remote

method call (RPC) to impart between every other.hdfs stores

vast records crosswise over numerous machines. It attains to

dependability by reproducing the information crosswise over

different has, and subsequently hypothetically does not

oblige RAID stockpiling on hosts. With the default

replication esteem, 3, information is put away on three hubs:

two on the same rack, and one on an alternate rack.

Information hubs can converse with one another to rebalance

information, to move duplicates around, and to keep the

replication of information high.

Execution tuning is the change of framework execution. This

is normally a machine frameworks. The inspiration for such

action is known as an execution issue, which can be genuine

or expected. Most frameworks will react to expanded burden

with some level of diminishing execution. A framework's

capacity to acknowledge higher burden is called adaptability,

and altering a framework to handle a higher burden is

synonymous to execution tuning. A tuning toward oneself

framework is equipped for enhancing its own inward

running parameters keeping in mind the end goal to expand

or minimize the satisfaction of a target capacity; commonly

the expansion of proficiency or lapse minimization. Tuning

toward oneself frameworks normally display non-direct

versatile control.

2. Related Work

In the wake of running certain time of time or some

undertaking executions are carried out in the conveyed

framework, generally all the designs, runtime insights, and

running results are spared in manifestation of logs.

Execution logs of disseminated framework programming are

exceptionally important data, as they can be utilized to do

post-execution examination by examination and mining on

the logs. The examination can advantage the framework by

proposing arrangements for better execution, or catching

disappointments, slips and inconsistencies, and so on. In this

area, we are going to review and examine the current works

and devices for post-execution log examination, especially

on Hadoop.

Paper ID: NOV164736 http://dx.doi.org/10.21275/v5i6.NOV164736 2219

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 6, June 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Mochi [2] is a log-investigation based device for Hadoop

debugging. It creates visualizations for clients to reason and

debug execution issues. Mochi investigates Hadoop's

conduct as far as space, time and volume, and concentrates a

model of information stream from the group hubs, at the

Mapreduce-level reflection. Mochi builds perspectives of

group upon the execution logs of Mapreduce errands. It then

associates the execution of the errand trackers and

information hubs in time to focus information read/compose

operations on HDFS. Mochi fundamentally gives three sorts

of visualizations: "Swimlanes" for errand advance in time

and space, "MIROS" plots for information ows in space, and

"Acknowledged Execution Path" for volume-span

connections.

Rumen [3] is a device for information extraction and

investigation focused around Hadoop Jobhistory logs.

Helpful Mapreduce related data separated from Jobhistory

logs are put away in a process that can be effortlessly parsed

and got to. The crude follow information from Mapreduce

logs are regularly lacking for reenactment, copying, and

benchmarking, as these apparatuses frequently endeavor to

quantify conditions that did not happen in the source

information. Rumen does a factual examination focused

around the condensation to gauge the variables the follow

does not give. The factual examination of different traits of a

Mapreduce Job, for example, undertaking runtimes,

assignment disappointments can be then utilized for

benchmarking and reproduction. Rumen creates Cumulative

Distribution Functions for the Mapreduce errand runtimes,

which can be utilized for surmising runtime of fragmented

and missing errands.

Chukwa [2] is given to log gathering and investigation in

substantial scale. Chukwa is based on top of the Hadoop

conveyed filesystem (HDFS) and Mapreduce structure,

meaning to give an adaptable and compelling stage for

circulated information gathering and quick information

transforming. Chukwa is organized as a pipeline of

accumulation and preparing stages, with clean and restricted

interfaces between stages. It has three essential parts:

specialists that run on each one machine and discharge

information, authorities that get information from the

operators and compose it to stable stockpiling, and

Mapreduce occupations for parsing and documenting the

information. To surprisingly better use the gathered

information, Chukwa incorporates an influential toolbox,

which is a web-entryway style interface for showing

observing and examining results. Gridmix [3] is a

benchmark and recreation device for Hadoop groups. It

forces manufactured occupations that model a profile mined

from generation loads onto Hadoop for immersion and

anxiety at scale. A Mapreduce occupation follow depicting

the employment blend for a given bunch, which is normally

created by Rumen, is obliged to run Gridmix. The latest

variant Gridmix3 takes assignment circulation,

accommodation interim, data dataset, client differences and

employment multifaceted nature for benchmarking. Gridmix

is a benchmark for Hadoop groups. It submits a mixof

engineered employments, displaying a profile mined from

generation loads. There exist three renditions of the Gridmix

instrument. This archive talks about the third, different from

the two registered with the src/benchmarks sub-index. While

the initial two adaptations of the device included stripped-

down variants of basic employments, both were basically

immersion devices for focusing on the system at scale. In

backing of a more extensive scope of organizations and

better tuned employment blends, this variant of the device

will endeavor to model the asset profiles of creation

occupations to distinguish bottlenecks, guide improvement,

and serve as a trade for the current Gridmix benchmarks.

3. Proposed System

3.1 Configuration Parameters

Guide Reduce work process. It portrays diverse periods of

Map-Reduce operations and utilization of arrangement

parameters at distinctive stages in the Map-Reduce job. The

design parameters, their default values, masters, cons, and

recommended values in distinctive conditions.

Hadoop setup parameters regarding execution tuning-

 dfs.block.size : Specifies the span of information squares

in which the info information set is part

 mapred.compress.map.output: Specifies whether to pack

yield of maps.

 mapred.map/reduce.tasks.speculative.execution: When an

undertaking (guide/diminish) runs gradually (because of

fittings corruption or programming mis-arrangement) than

anticipated. The Job Tracker runs an alternate identical

assignment as a reinforcement on an alternate hub. This is

known as speculative execution. The yield of the errand

which completes first is taken and the other undertaking is

murdered.

 mapred.tasktracker.map/reduce.tasks.maximum : The most

extreme number of guide/decrease assignments that will

be run all the while by an assignment tracker.

 io.sort.mb : The extent of in-memory cushion (in Mbs)

utilized by guide assignment for sorting its yield.

 io.sort.factor : The most extreme number of streams to

union immediately when sorting records. This property is

additionally utilized as a part of diminish stage. It's

genuinely regular to expand this to 100.

 mapred.job.reuse.jvm.num.tasks : The most extreme

number of assignments to run for a given employment for

every JVM on a tasktracker. An estimation of –1 shows no

restriction: the same JVM may be utilized for all

assignments for work.

 mapred.reduce.parallel.copies : The quantity of strings

used to duplicate guide yields to the Reducer.

 Map Operations: Map undertaking includes the

accompanying activities

 •map Processing: HDFS parts the expansive info

information set into littler information hinders (64 MB

naturally) controlled by the property dfs.block.size.

Information pieces are given as a data to guide

assignments. The quantity of squares to each one guide

relies on upon mapred.min.split.size and

mapred.max.split.size. In the event that

mapred.min.split.size is short of what piece size and

mapred.max.split.size is more prominent than square size

then 1 square is sent to each one guide undertaking. The

piece information is part into key quality sets focused

Paper ID: NOV164736 http://dx.doi.org/10.21275/v5i6.NOV164736 2220

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 6, June 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

around the Input Format. The guide capacity is summoned

for each key worth match in the info. Yield created by

guide capacity is composed in a roundabout memory

cradle, connected with each one guide. The cradle is 100

MB naturally and can be controlled by the property

io.sort.mb.

 spill: When the cradle size achieves a limit size controlled

by io.sort.spill.percent, a foundation string begins to spill

the substance to plate. While the spill happens guide keeps

on composing information to the cradle unless it is full.

Spills are composed in round-robin style to the indexes

pointed out by the mapred.local.dir property, in work

particular subdirectory. Another spill document is made

each one time the memory support ranges to spill edge.

 partitioning Before keeping in touch with the plate the

foundation string partitions the information into parcels

relating to the Reducer where they will be sent.

 sorting: In-memory sort is performed on key . The sorted

yield is given to the combiner capacity if any.

 merging: Before the guide undertaking is done, the spill

records are blended into a solitary apportioned and sorted

yield document. The setup property io.sort.factor controls

the most extreme number of streams to consolidation on

the double; the default is 10.

 compression: The guide yield can be packed before

keeping in touch with the plate for quicker circle written

work, lesser plate space, and to lessen the measure of

information to exchange to the Reducer. Of course the

yield is not packed, however it is not difficult to empower

by setting mapred.compress.map.output to genuine. The

squeezing library to utilize is tagged by

mapred.map.output.compression.codec. Yield document

parcels are made accessible to the Reducers over HTTP.

The quantity of laborer strings used to serve the record

allotments is controlled by the assignment

tracker.http.threads property—this setting is every

tasktracker, not every guide undertaking space. The

default of 40 may need expanding for expansive groups

running vast employments.

Decrease Operations: The Reducer has three stages

 copy: Each guide assignment's yield for the comparing

Reducer is duplicated when guide errand finishes. The

lessen assignment has a little number of copier strings with

the goal that it can get guide yields in parallel. The default

is 5 strings, however can be changed by setting the

mapred.reduce.parallel.copies property. The guide yield is

replicated to the decrease tasktracker's memory support

which is controlled by

mapred.job.shuffle.input.buffer.percent. At the point when

the inmemory cradle achieves an edge size, or achieves a

limit number of guide yields, it is combined and spilled to

plate. As the duplicates amass on circle, a foundation

string unions them into bigger, sorted records. This spares

sooner or later in ensuing consolidating.

 sort: This stage ought to really be known as the Merge

stage as the sorting is carried out at the guide side. This

stage begins when all the maps have been finished and

their yield has been duplicated. Guide yields are

consolidated keeping up their sorting request. This is

carried out in rounds. Case in point if there were 40 guide

yields and the consolidation element was 10 then there

would be 4 rounds. In first cycle 4 records will be

combined and in staying 3 adjusts 10 documents are

consolidated. The last clump of records is not united and

straightforwardly given to the lessen stage.

 reduce: During decrease stage the diminish capacity is

summoned for each one key in the sorted yield. The yield

of this stage is composed straight forwardly ,typically

HDFS.

 B) Parameters influencing Performance

 dfs.block.size: File framework piece size

 Default: 67108864 Small group and expansive information

set: default square size will make a substantial number of

guide undertakings.

 e.g.

 Data information size = 160 GB and dfs.block.size = 64

MB then the base no. of maps= (160*1024)/64 = 2560

maps. In the event that dfs.block.size = 128 MB least no.

of maps= (160*1024)/128 = 1280 maps. On the off chance

that dfs.block.size = 256 MB least no. of maps=

(160*1024 (bytes)

 Prescription:

 lesser.

 mapred.compress.map.output: Map Output Compression

 Default: False

)/256 = 640 maps. In a little bunch (6-7 hubs) the guide

errand creation overhead is extensive. So dfs.block.size

ought to be extensive for this situation yet sufficiently

little to use all the bunch assets. o The piece size ought to

be set by of the bunch, map undertaking multifaceted

nature, guide assignment limit of bunch and normal size of

information documents. In the event that the guide

contains the reckoning such that one information piece is

taking considerably additional time than the other square,

then the dfs piece size ought to be

 Pros: Faster plate compose, spares circle space, less time

in information exchange.

 Cons: Overhead in clamping at Mappers and

decompression at Reducers.

 Prescription: For extensive group and huge employments

this property ought to be set genuine. The squeezing codec

can likewise be set through the property

mapred.map.output.compression.codec.

 mapred.map/reduce.tasks.speculative.execution:

Enable/Disable assignment (guide/decrease) speculative

execution

 Default: True

 Pros: Reduces the employment time if the assignment

advancement is abate because of memory inaccessibility,

equipment corruption.

 Cons: Increases the employment time if the errand

advancement is moderate because of intricate and

substantial computations. On an occupied group

speculative execution can decrease general throughput,

since repetitive undertakings are being executed trying to

cut down the execution time for a solitary employment.

 Prescription: In huge employments where normal

undertaking fruition time is noteworthy (> 1 hr) because of

intricate and extensive computations and high throughput

is obliged the speculative execution should be set to false.

 mapred.tasktracker.map/reduce.tasks.maximum:

Maximum errands (guide/decrease) for a tasktracker

Paper ID: NOV164736 http://dx.doi.org/10.21275/v5i6.NOV164736 2221

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 6, June 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 Default: 2

 Prescription: This quality ought to be set by equipment

determination of bunch hubs and asset necessities of

assignments (guide/diminish).

 e.g. a hub has 8gb principle memory + 8 center CPU +

swap space Maximum memory needed by an assignment ~

500mb Memory needed by tasktracker, Datanode and

different methods ~ (1 + 1 +1) =3gb Maximum

undertakings that can be run = (8-3) GB/500mb = 10

Number of guide or lessen errand can be chosen the

premise of memory use and processing complexities of the

errands. The memory accessible to each one errand (JVM)

is controlled by mapred.child.java.opts property. The

default is –xmx200m (200 MB). Other JVM choices can

likewise be given in this property.

 io.sort.mb: Buffer size (Mbs) for sorting

 Default: 100

 Prescription: For substantial employments, this worth

ought to be expanded remembering that it will build the

memory needed by each one guide undertaking. So the

addition in this worth ought to be as per the accessible

memory at the hub. More prominent the estimation of

io.sort.mb, lesser will be the spills to the circle, sparing

keep in touch with the plate.

 io.sort.factor: Stream consolidation element

 Default: 10

 Prescription: For expansive occupations which have

extensive number of spills to plate, estimation of this

property ought to be expanded. Augmentation in

io.sort.factor, profits in fusing at Reducers since the last

cluster of streams are sent to the lessen capacity without

combining, in this manner sparing time in consolidating.

 mapred.job.reuse.jvm.num.tasks: Reuse single JVM

 Default: 1

 Prescription: The overhead of JVM creation for each one

undertaking is around 1 second. So for the assignments

which live for quite a long time or a couple of minutes and

have extensive instatement, this quality can be expanded

to pick up execution.

 mapred.reduce.parallel.copies:threads for parallel

duplicate at Reducer

 Default: 5

 Description: The quantity of strings used to duplicate

guide yields to the Reducer.

 Prescription: For vast employments, estimation of this

property can be expanded remembering that it will

increase the total CPU usage.

3.2 Objectives

Hadoop group configurations assume a significant part on

the execution conveyed to applications, i.e., even a small

change to one configuration parameter's worth has a

tremendous effect to execution when running the same

MapReduce work with the same size of information info .

Additionally, as a result of its blackbox-like element, it is

likewise staggeringly difficult to find a clear numerical

model relating the bunch configuration to a specific work. In

synopsis, it is absurd to utilize the same configuration for a

wide range of MapReduce occupations; in any case, it is

likewise hard for designers to find an ideal configuration for

their employment.

To address this issue, we have built up the Decision Tree

bunch Based Self-tuning (DTBS) structure. The DTBS

structure includes two unmistakable stages called the

Analyzer, which trains DTBS to frame an arrangement of

comparability classes of MapReduce applications for which

the optimal1 Hadoop configuration parameters are resolved,

and the Recognizer, which classifies an approaching obscure

occupation to one of these equality classes so that its Hadoop

configuration parameters can act naturally tuned.

Choice trees are a standout amongst the most prominent

strategies for characterization in different information

mining applications and help the procedure of basic

leadership. A choice tree is a coordinated tree with a root

hub which has no approaching edges and every single other

hub with precisely one approaching edges, known as choice

hubs. At the preparation arrange, each inner hub split the

occurrence space into two or more parts with the target of

improving the execution of classifier. After that, each way

from the root hub to the leaf hub frames a choice standard to

figure out which class another example has a place with. One

of the surely understood choice tree calculations is RDT, an

augmentation of essential DT calculation. The enhancements

of RDT for Hadoop Acceleration include:

1) Employ information gain ratio instead of information gain

as a measurement to select splitting attributes;

2) Not only discrete attributes, but also continuous ones can

be handled;

3) Handling incomplete training data with missing values;

4) Prune during the construction of trees to avoid over fitting

Nonetheless, with the expanding improvement of distributed

computing and additionally the enormous information,

customary choice tree calculations display different

confinements. Above all else, building a choice tree can be

exceptionally tedious when the volume of dataset is to a

great degree huge, and new figuring worldview ought to be

connected for groups. Second, albeit parallel processing in

bunches can be utilized in choice tree based grouping, the

methodology of information circulation ought to be

advanced so that required information for building one hub

is limit and in the interim the correspondence expense of

minimized. To this end, in this paper we propose a circulated

execution of RDT calculation utilizing Map Reduce

registering show, and send it on a Hadoop group. We will

probably quicken the development of choice trees

furthermore guarantee the exactness of order by utilizing

parallel processing procedures. In particular, our

commitments can be abridged as tails: We propose a few

information structures modified for disseminated parallel

figuring environment; I propose a MapReduce execution of

unique RDT calculation with a pipeline of Map and Reduce

systems.

3.3 Architecture Diagram

Paper ID: NOV164736 http://dx.doi.org/10.21275/v5i6.NOV164736 2222

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 6, June 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

4. Conclusions and Future work

This anticipate displayed DTBS, which is an execution

examination based self-tuning framework utilizing choice

Tree that is gone for improving the configuration of the

Hadoop MapReduce bunch. This framework comprises of

two noteworthy parts: the Analyzer and the Recognizer. It

investigates and forms information accumulated from the

guide occupations and after that uses a bunching calculation

to assemble these employments in view of their execution

design into one of an anticipated arrangement of

proportionality classes. A DT calculation is exhibited to scan

for the ideal answers for every "middle" found from the Job

Clustering step. At that point prun when another

employment enters the framework. It tests the new

occupation by running it just with a little piece of its whole

information set at first. At that point the Recognizer contrasts

the new occupation's setup and profiles of the "focuses" and

classifies this new-approaching employment into one

gathering we already found. The last stride for the

Recognizer is selecting the tuned configuration files to load

and run the new employment with upgraded configuration

settings.

References

[1] Dilli Wu_and Aniruddha ―A Self-Tuning System based

on Application Profiling and Performance Analysis for

Optimizing Hadoop MapReduce Cluster Configuration‖

IEEE Conference.

[2] White paper ―Hadoop Performance tunning‖ .

[3] Yandong Mao, Robert Morris, and Frans

Kaashoek.Optimizing mapreduce for multicore

architectures. Technical Report MIT-CSAIL-TR-2010-

020, MIT, May 2010.

[4] P. H. Carns and W. B. Ligon III and R. B. Ross and R.

Thakur. VFS: A Parallel File System For Linux

Clusters. In Proceedings of the 4th Annual Linux

Showcase and Conference, pages 317–327, Atlanta,

GA, October 2000.

[5] Colby Ranger, Ramanan Raghuraman, Arun

Penmetsa,Gary R. Bradski, and Christos Kozyrakis.

Evaluating mapreduce for multi-core and multiprocessor

systems. In Int’l Symp. on High Performance Computer

Architecture (HPCA), pages 13–24. IEEE Computer

Society, 2007. High Performance Support of Parallel

Virtual File System (PVFS2) over Quadrics. In

Proceedings of The 19th ACM International conference

on Supercomputing (ICS), Boston, Massachusetts, June

2005.

[6] Matei Zaharia, Andrew Konwinski, Anthony D. Joseph,

Randy H. Katz, and Ion Stoica. Improving mapreduce

performance in heterogeneous environments. Technical

Report UCB/EECS-2008-99, EECS Department,

University of California, Berkeley, Aug 2008

[7] Sangwon Seo, Ingook Jang, Kyungchang Woo, Inkyo

Kim, Jin-Soo Kim, and Seungryoul Maeng. HPMR:

Prefetching and pre-shuffling in shared MapReduce

computation environment. In IEEE Cluster Conference,

pages 1–8, August 2009.

[8] Konstantin Shvachko, Hairong Kuang, Sanjay Radia,

and Robert Chansler. The hadoop distributed file

system. In Proceedings of the 2010 IEEE 26th

Symposium on Mass Storage Systems and Technologies

(MSST), pages 1–10, Washington, DC, USA, 2010.

IEEE Computer Society.

[9] S. Sur, H. Wang, J. Huang, X. Ouyang, and D. K.

Panda. Can High-Performance Interconnects Benefit

Hadoop Distributed File System? In Workshop on

Micro Architectural Support for Virtualization, Data

Center

[10] Computing, and Clouds (MASVDC). Held in

Conjunction with MICRO, Dec 2010.

[11] Apache Hadoop Project. http://hadoop.apache.org/.

[12] Open Fabrics Alliance. http://www.openfabrics.org.

[13] Test-TCP.

http://www.pcausa.com/Utilities/pcattcp.htm.

[14] The Public Netperf Homepage.

http://www.netperf.org/netperf/NetperfPage.html.

[15] Tyson Condie, Neil Conway, Peter Alvaro, Joseph

M.Hellerstein, Khaled Elmeleegy, and Russell Sears.

MapReduce Online. In 7th USENIX Symp. on

Networked Systems Design and Implementation

(NSDI), pages 312–328, April 2010.

[16] J. Dean and S. Ghemawat. Mapreduce: Simplified data

processing on large clusters. Sixth Symp. on Operating

System Design and Implementation (OSDI), pages 137–

150, December 2004.

[17] HPC Wire. RoCE: An Ethernet-InfiniBand Love Story.

[18] http://www.hpcwire.com/blogs/.

Paper ID: NOV164736 http://dx.doi.org/10.21275/v5i6.NOV164736 2223

