
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 7, July 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Development Task Based Navigation for Software
Documentation

Swapnil Gangadhar Thaware1, Dinesh Bhagwan Hanchate2

1ME Second year Student Computer Engineering, Vidya Pratishthan’s College of Engineering, Baramati, Pune, India

2 Professor, Department of Computer Engineering, Vidya Pratishthan’s College of Engineering, Baramati, Pune, India

Abstract: In requirement gathering and analysis phase of software model, knowledge is needed by software developers and other

stakeholder is captured in different forms of documentation written by different stakeholder. Developer works on project or any

software, we face problem to find the right information in the right form at the right time. This paper not only helps developers but also

for other stakeholder like project admin, software developer, project designer, project manager, software tester and technical support to

navigate documentation. In this paper, we have proposed Development Task Extraction Navigator (DTE Navigator). Job of this tool

extracts essential information needed for stakeholder and annotates it automatically.

Keywords: software documentation; development tasks; data extraction; retrieved task; bookmark; classification.

1. Introduction

A software developer or other any stakeholder who joins an
existing software development team must come up to speed
on a large for varied amount of information before becoming
productive. Today’s all types of documentation suffers from
a number of potential problems such as documentation
written by people who can't write. They are unavailable,
developer can't find it when they need it [9]. Today’s search
engines are not sufficient for enabling effective navigation of
software documentation because they require stakeholder to
use search terms that match the vocabulary used by the
documentation writers and documentation may be in the
form of softcopy of project or hardcopy. There is still a gap
between the information needs for software developers and
the structure of today’s documentation [4]. Today’s structure
comes with sections and subsections, it can only be enabled
effective navigation if the section headers are adequate for
the information needs of developers. To overcome these
issues, we introduced DTE Navigator, a task based search
engine for software documentation. DTE Navigator
automatically analyzes a documentation corpus (typically an
online tutorial) and detects every passage that describes how
to accomplish some programming task. Here document
extraction is the client (in our case developer) server
application where client interacts with server through the
web browser. Web server (in our case apache tomcat)
receives client request for document search. To send request
and get response back, we designed a user interface with
HTML, JSP, and SERVLET. We divided our main project
with different module such as Pre-processing, Task
Extraction and Task Navigation [7].

2. Literature Survey

Information extraction provides services to user who
retrieves the information by firing query on the internet. But,
this approach is not so effective to produce accurate results
because of human involvement and poor quality of data
extraction output. In requirements engineering, the state of
the practice. Colin J. Neill refers to prevalent, dominant and

techniques used in the software development industry [1].
These authors did literature survey on web based technology.
In paper [2], Vivek D. Mohod and J.V. Megha did survey
on different HTML structure based technique to scrap data
from web pages in data extraction of web pages using tag
tree structure. Hubert F. Hofmann and Franz Lehner
discussed how deficient requirements can be single biggest
cause of software project failure in Requirements
Engineering (RE) as a success factor [4]. In the paper [6],
TaskNav: Task-based Navigation of Software
Documentation bridges the gap between documentation
structure and the information needs of software developers
according to Christophe Treude. Christoph proposed
TaskNav, a tool that automatically discovers and indexes
task descriptions in software documentation [11] for helping
developers to navigate documentation.

3. Proposed System

Proposed Development Task Extraction Navigator is a user
interface for search queries that suggests tasks extracted with
proposed technique in an auto complete list along with code
elements, concepts and section headers [5]. We have given a
google access for DTE Navigator which gives an advantage
of no need to open separate tab for google without exiting
current tool. DTE Navigator can automatically analyze and
index any documentation corpus based on a starting URL
such as ignoring HTML tags. Documentation stakeholders
can benefit from this tool by taking advantage of the task
based navigation offered by the auto complete search
interface.

4. Proposed System Architecture

In document extraction process, client is stakeholder and
developer who request for results and tasks through DTE
Navigator and server application where stakeholder interact
with WEB server through the web browser [2]. At web server
in this case apache tomcat will receive client request for
document search. To send request and get response back, we
designed user interface with HTML, JSP and SERVLET. We

Paper ID: ART2016369 1031

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 7, July 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

divided our DTE Navigator with different phases such as
preprocessing, Task Extraction and Task Navigation [3]. The
stakeholder asks a query for document extraction, server
checks keyword and phrases by extracting concepts from
search query.

Figure 4.1: Proposed System architecture

In task extraction process, search process is followed by
Bigram, Trigram and N Gram which used. Bigram checks
pattern with two keyword or phrases e.g. “add link”. Trigram
checks the pattern with the help of three keywords or phrases.
For example “what is synchronization?” N-gram checks
pattern for multiple keywords as per given in [6]. Search code
element considers all text as code from original HTML
document. Index generation for document is preprocessed as
per given in [8]. It creates tag by removing header, footer and
summary from web page and converts that page into text file.
Indexer will look for reference file from page history in
document repository. If the reference exists in database then
page is returned to the recommendation for client. In reverse
engineering phase, server will extract necessary document if
index exists. If it is not there then it preprocesses the
document and results are achieved from google links. Task
navigation phase executes algorithm for the search document
with and index number. It navigates through documentation
for expected page. Extraction phase will extract document
from repository list as per given in [2]. It returns response
with index of that page to the same server. Recommendation
phase fetches document according to the index and show
intelligence to navigate through documentation. Search
Interface shows auto complete search for document in User
Interface.

5. Development Task Extraction

In this section, we described DTE Navigator as well as the
interactive auto-complete interface. There are total six menu
in which project is executed.

Home : After registring user profile and their account loging

in, DTE Navigator tool will open. Then it will go for user

query, developer can search using search box. It will show

all related pages from google with bookmark and user can

save bookmark pages.

Task Extraction : In second module, user have to develope

task from bookmarks and code elements too.

Upload Document : Here, user can upload HTML files for

task extraction and preprocessing will be done. All tags will

be removed.

Task Search From File : Results are obtained in three

forms i.e. Tasks, Code elements and concept. It is shown in

column wise.

Task Navigation : DTE Navigator suggests the extracted

documentation elements and the section headers from the

original documentation and associates them with documents,

sections, and paragraphs of the documentation.

Search Classification and Report : We have shown pie chart

and graph chart for classification of result and report.

i) Data set :
Data is added into database which is MYSQL to extract task
to retrieve from database. We use google links and HTML
pages so the developed task will be extracted.

ii) Which method is used for data collection?
We didn’t use predefined dataset. Instead of that, we collect
document from Google. Whenever user needs information
about development task, He will enter query and collect data
from Google for related query. It works not only offline but
also online we can add HTML pages into tool also.

iii) Flow of project:
First user need to create a user profile. User collects task
details from internet as input for searching query. User
extracts task detail like task name, task result, and task
concept. User store extracted task detail for future use in the
database. Now, user search for existing task by entering
search query. So user can collect the search details about task
document from database and navigate search task from
database to user of system [10].

iv) Coding Flow
1) User profile creation according his role in the software

development.(Index.jsp)
2) Login to system (Index.jsp)
3) Extracting new task detail from internet (Homepage.jsp)
4) Controller goes to SearchController.java
5) Algorithm for collecting data for ReverseSearching().
6) Cluster document by NaiveBayes Classification.
7) Extract task from ExtractionController.java
8) Display result from database to page.

Paper ID: ART2016369 1032

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 7, July 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

6. Implementation

Input of this tool is a either html files or google links and
output is in the form of concepts, code element and section
header from DTE navigator. Task based navigation for
software documentation is having three modules such as pre-
processing, task extraction and task navigation. In pre-
processing module, document is pre-processed first by
transforming HTML files into normal text files and in this
step of transformation most of the HTML mark-up is
removed and stored in one list for indexing. In the next step,
redundant information that is repeated on each page of the
documentation, such as summaries, headers, and footers, are
removed from the documents [8]. The only metadata is kept
during pre-processing. In task extraction, we also use of
grammatical dependencies to detect tasks in document. We
need to recover the relationships between some common
verbs, objects and prepositions. Use of the order of words or
sentences is also insufficient as the order can be reversed,
e.g., both “add module” and “module is added” refer to the
same task. In third module of task navigation, we navigate
document and suggest word after typing bigrams, trigrams
from stakeholder. We use indexed file for navigation.

7. Results

7.1 Following home page shows DTE Navigator’s first
page after stakeholder sign up.

7.2 Following diagram shows extraction module for
synchronization keyword and results are displayed with
four tasks.

7.3 Following diagram shows pop up window after
navigation of synchronization keyword and results are
stored in the form of yes and no.

7.4 Following chart shows for task extraction per number
of letters typed in search box.

7.5 Following pie chart shows results from domain such
as general, java points, java points and social sites.

Paper ID: ART2016369 1033

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 7, July 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

8. Accuracy of The task extraction

To evaluate the accuracy of the task extraction algorithm, we
entered ten tasks in to a DTE Navigator then we determined
the average precision and recall the paragraphs returned by
DTE Navigator. For example, after typing synchronization
characters of a task, DTE Navigator returned paragraphs
with a precision of 0.40 and recall of 0.90 on an average. We
decided to evaluate precision and recall after each typed
character instead of each typed word. figure. 8.1 shows
precision and recall after each typed character [10].

Figure 8.1: Precision and Recall Graph

8.1Methodology

We studied data which is obtained during the field study for
common patterns from all developers as a participants[5].
After getting such search result, we asked “Are you satisfied
with result ??” through a pop-up window, giving “yes” and
“no” as answer options[3]. The pilot study of participants
remarked that it would be useful to also have section titles
appear as auto-complete suggestions. We added this feature
for the field study and accuracy of the tool [10].

9. Conclusion

Proposed DTE Navigator is a bridge in between today’s
documentation structure. Using this DTE Navigator not only
developer but also other stakeholder’s like project admin,
software developer, project designer, project manager,
software tester and technical support can find the right
information in the right form at the right time. In comparison
with existing system, this tool is easy to use and not time
consuming.

10. Acknowledgment

This paper would not have been written without the valuable
advices and encouragement of Prof. D.B. Hanchate, guide of
ME Dissertation work. Author’s special thanks go to Prof. P.
M. Patil and Prof. S. S. Nandgaonkar, Head Of Computer
Department and Hon’ble principal Prof. V. U. Deshmukh,
for their support and for giving an opportunity to work on
software task extraction and navigation.

References

[1] C. Neill and P. Laplante, “Requirements Engineering

:The State of the Practice,” IEEE SOFTWARE
Published by the IEEE Computer Society, pp. 40–45,
Dec 1955.

[2] V. Mohod and Mrs. J. Megha, “A Survey on Data
Extraction of Web Pages Using Tag Tree Structure,”
IJCSIT International Journal of Computer Science and
Information Technologies, pp.4361-4363, Jan 2005.

[3] J. Guyette and W. Huen, “Task-List Manager – A CS2
Lab on Advanced Graphical User Interface and Data
Structures,” 38th ASEE/IEEE Frontiers in Education
Conference, pp.11-16, Oct 2008.

[4] H. Hofmann and F. Lehner, “Requirements Engineering
as a Success Factor in Software Projects,”IEEE
SOFTWARE Published by the IEEE Computer Society,
pp. 58–66, July 2001.

[5] G. Palshikar and R. Srivastava, “Information Extraction
for Effective Knowledge Management,” TCS White
paper, pp. 1-14, Nov 2015.

[6] C. Treude and M. Sicard, “TaskNav: Task-based
Navigation of Software Documentation,” IEEE/ACM
37th IEEE International Conference on Software
Engineering, pp. 649-652, June 2015.

[7] B. Lawrence and K. Wiegers, “The Top Risks of
Requirements Engineering,” IEEE SOFTWARE
Published by the IEEE Computer Society, pp. 62–63,
Dec 2001.

[8] S. Abebe and P. Tonella, “Natural Language Parsing of
Program Element Names for Concept Extraction,” 18th
IEEE International Conference on Program
Comprehension, pp.156-159 Feb. 2010.

[9] J. Bhogal and A. Macfarlane, “A review of ontology
based query expansion”, Elsevier Information
Processing and Management, pp. 866-886 Oct 2006.

[10] B. Sumit and M. Debapriyo, “Query Suggestions in the
Absence of Query Logs,” ACM SIGIR, pp. 795-804
July 2011.

[11] H. Zhong and L. Zhang, “Inferring resource
specifications from natural language API
documentation,” in Proc. 24th IEEE/ACM Int. Conf.
Automated Soft. Eng., 2009, pp. 307–318.

[12] N. Wilde and M. C. Scully, “Software reconnaissance:
Mapping program features to code,” J. Softw.
Maintenance, vol. 7, no. 1, pp. 49–62, 1995.

[13] S. Thummalapenta and T. Xie, “PARSEWeb: A
programmer assistant for reusing open source code on
the web,” in Proc. 42nd IEEE/ACM Int. Conf.
Automated Soft. Eng., 2016, pp. 204–213.

[14] J.-R. Falleri, M. Huchard, M. Lafourcade, C. Nebut, V.
Prince, and M. Dao, “Automatic extraction of a
WordNet-like identifier network from software,” in

Paper ID: ART2016369 1034

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 7, July 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Proc. 67th IEEE Int. Conf. Program Comprehension, pp.
4–13, Jan 2016.

Author Profile

Swapnil G. Thaware Received B.Tech in Information
Technology from Dr. B.A.T. University, Lonere in
2014. Now pursuing Master of Engineering in
Computer Engineering at Vidya Pratishthans college of
engineering, Baramati, Savitribai Phule Pune

University.

Dinesh B. Hanchate received BE in Computer Engineering from
Walchand College of Engineering, Sangli (1995), Lecturer in
Gangamai College Of Engineering, Dhule (1995-96), Lecturer in
S.S.V.P.S. B.S.D. College Of Engineering, Dhule In Computer IT
dept. (1996-2005), M.Tech. Computer from Dr.Babasaheb
Ambedkar Technological University, Lonere (2002-05), Currently
Asst. Prof. Computer Engineering, in Vidya pratishthans College
Of Engineering, Baramati, currently doing research at SGGS
Institute of Technology and Engg, Nanded affiliated to SRTMU,
under the guidance of Dr. Bichkar R.S. ,G.H. Raisoni College of
Engineering and Management,Wagholi,,Pune.

Paper ID: ART2016369 1035

