
International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391 

Volume 5 Issue 9, September 2016 
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Bayesian Estimation of the Failure Rate  
Using Extension of Jeffreys‟ Prior Information with

Three Loss Functions 
A. Lavanya1, T. Leo Alexander2

1Research Scholar, Department of Statistics, Loyola College, Chennai–34, India 

2Associate Professor, Department of Statistics, Loyola College, Chennai–34, India 

Abstract: The Weibull distribution is widely used in Reliability and life data analysis due to its versatility. We Consider the Constant 
Shape Bi-Weibull distribution which has been extensively used in the testing and reliability studies of the strength of materials. Studies 
have been done vigorously in the literature to determine the best method in estimating its Failure Rate. In this paper, we examine the 
performance of Maximum Likelihood Estimator (MLE) and Bayesian Estimator using Extension of Jeffreys’ Prior Information with 
three Loss functions, namely, the Linear Exponential (LINEX) Loss, General Entropy Loss, and Square Error Loss for estimating the 
Constant Shape Bi-Weibull Failure time distribution. The results show that Bayesian Estimator using Extension of Jeffreys’ Prior 
under Linear Exponential (LINEX) Loss function in most cases gives the smallest Mean Square Error and Absolute Bias for Failure 
Rate FR(t) for the given values of Extension of Jeffreys’ Prior. An illustrative example is also provided to explain the concepts.  
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1. Introduction 

The Weibull distribution is widely used in Reliability and 
life data analysis due to its versatility. Depending on the 
values of the parameters, the Weibull distribution can be 
used to model a variety of life behaviours. An important 
aspect of the Weibull distribution is how the values of the 
shape parameter, β, and the scale parameter, σ, affect the 
characteristics life of the distribution, the shape/slope of the 
distribution curve, the Reliability Function, and the Failure 
Rate.  

The main purpose of this paper is to compare the traditional 
Maximum Likelihood Estimation of the Failure Rate of the 
Constant Shape Bi-Weibull distribution with its Bayesian 
counterpart using Extension of Jeffreys‟ Prior Information 
obtained from Lindley‟s approximation procedure with three 
Loss Functions.  

It has been found that this distribution is satisfactory in
describing the life expectancy of components that involve 
fatigue and for assessing the Reliability of bulbs, ball 
bearings, and machine parts according to [15].The primary 
advantage of Weibull analysis according to [1] is its ability 
to provide accurate Failure Analysis and Failure Forecasts 
with extremely small samples. With Weibull, solutions are 
possible at the earliest indications of a problem without 
having to pursue further. Small samples also allow cost-
effective component testing. Maximum Likelihood
Estimation (MLE) has been the most widely used method 
for estimating the parameters of the Constant Shape Bi-
Weibull distribution. Recently, Bayesian Estimation 
approach has received great attention by most researchers 
among them is [4]. They considered Bayesian Survival 
Estimator for Weibull distribution with censored data. While 
[2] studied Bayesian Estimation for the extreme value 
distribution using progressive censored data and 

Asymmetric Loss. Bayes Estimator for Exponential 
distribution with Extension of Jeffreys‟ Prior Information 
was considered by [5]. Others including [3, 6, and 12] did 
some comparative studies on the estimation of Weibull 
parameters using complete and censored samples and [11]
determined Bayes Estimation of the extreme-value 
Reliability function.  

In recent, work we developed Functional Relationship 
between Brier Score and Area Under the Constant Shape Bi-
Weibull ROC Curve [10], Confidence Intervals Estimation 
for ROC Curve, AUC and Brier Score under the Constant 
Shape Bi-Weibull Distribution [7], Asymmetric and 
Symmetric Properties of Constant Shape Bi-Weibull ROC 
Curve Described by Kullback-Leibler Divergences [8],  and 
Bayesian Estimation of Parameters under the Constant 
Shape Bi-Weibull Distribution Using Extension of Jeffreys‟ 
Prior Information with Three Loss Functions[9].
                   
In this paper, the Bayesian Estimation of Failure Rate under 
the Constant Shape Bi-Weibull Distribution is studied by 
Using Extension of Jeffreys‟ Prior Information with Three 
Loss Functions. This paper is organized as follows: In 
Section 2, estimation of Failure Rate under MLE is obtained. 
In Section 3, Extension of Jeffreys‟ Prior Information with 
Three Loss functions is discussed. Section 4, provides 
simulation study for proposed theory. In Section 5, the 
proposed theory is validated by using real data. Finally in 
Section 6 we provide all the findings. 

2. Maximum Likelihood Estimation of the 
Failure Rate for Constant Shape Bi-Weibull 
Distribution 

Let t1, t2 … tn be a random sample of size n with respect to the 
Constant Shape Bi-Weibull distribution, with σ and β as the 
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parameters, where σ is the scale parameter and β is the shape 
parameter. The probability density function (𝑝𝑑𝑓),
cumulative distribution function (𝑐𝑑𝑓) and Failure Rate are 
given, respectively, as 

𝑓 𝑡;𝜍,𝛽 =
𝛽

𝜍
𝑡𝛽−1𝑒

− 
𝑡𝛽

𝜍
  

.                                   (1)

The Cumulative distribution function (CDF) is

𝐹 𝑡;𝜍,𝛽 = 1 − 𝑒
− 

𝑡𝛽

𝜍
    .

                                   (2)

The Failure rate is 

 𝐹𝑅 𝑡 =
𝛽

𝜍
𝑡𝛽−1  .                                               (3)

The likelihood function of the pdf is 

𝐿 𝑡𝑖 ,𝜍,𝛽 =  
𝛽

𝜍

𝑛

𝑖=1

𝑡𝑖
𝛽−1𝑒

− 
𝑡𝑖
𝛽

𝜍
 
.                               (4)

The log-likelihood function is 

𝑙𝑛𝐿 = 𝑛𝑙𝑛𝛽 +  𝛽 − 1   𝑙𝑛𝑡𝑖

𝑚

𝑖=1

 − 𝑛𝑙𝑛𝜍 −
1

𝜍
 𝑡𝑖

𝛽

𝑛

𝑖=1

.    (5)

By differentiating the equation (5) with respect to σ and β
and equating to zero, we get 

𝜕𝑙𝑛𝐿

𝜕𝜍
= −

𝑛

𝜍
+
 𝑡𝑖

𝛽𝑛
𝑖=1

𝜍2
= 0 .                             (6)

𝜕𝑙𝑛𝐿

𝜕𝛽
=
𝑛

𝛽
+   𝑙𝑛𝑡𝑖

𝑛

𝑖=1

 −
1

𝜍
 𝑡𝑖

𝛽

𝑛

𝑖=1

𝑙𝑛𝑡𝑖  = 0 .               (7)

From equation (6), we get 

𝜍 =
1

𝑛
   𝑡𝑖

𝛽

𝑛

𝑖=1

   .                                             (8)

First we shall find 𝜷  and so that 𝝈  can be determined. So 
that we propose to find 𝜷  by using Newton-Raphson method 
as given below. Let 𝑓 𝜷  be the same as equation (6) and 
taking the first differential of 𝑓 𝜷 , we have 

𝑓 ′ 𝛽 = − 
𝑛

𝛽2
 −

1

𝜍
 𝑡𝑖

𝛽

𝑛

𝑖=1

 𝑙𝑛𝑡𝑖   
2   .                  (9)

By substituting equation (8) into equation (7), we call 𝑓 𝜷 
as

𝑓(𝛽) =
𝑛

𝛽
+   𝑙𝑛𝑡𝑖

𝑛

𝑖=1

 −
 𝑡𝑖

𝛽𝑛
𝑖=1 𝑙𝑛𝑡𝑖  

1
𝑛

   𝑡𝑖
𝛽𝑛

𝑖=1

   .             (10)

Substituting equation (8) into equation (9), we obtain 

𝑓 ′ 𝛽 = − 
𝑛

𝛽2
+
 𝑡𝑖

𝛽𝑛
𝑖=1  𝑙𝑛𝑡𝑖   

2

1
𝑛

   𝑡𝑖
𝛽𝑛

𝑖=1

    .                  (11)

Therefore, 𝜷 is obtained from the equation below by 
carefully choosing an initial value β as 𝜷𝒊 and iterating the 
process till it converges: 

𝛽𝑖+1 = 𝛽𝑖 −

𝑛
𝛽

+   𝑙𝑛𝑡𝑖
𝑛
𝑖=1  −

 𝑡𝑖
𝛽𝑛

𝑖=1 𝑙𝑛𝑡𝑖  
1
𝑛

   𝑡𝑖
𝛽𝑛

𝑖=1

− 
𝑛
𝛽2 +

 𝑡𝑖
𝛽𝑛

𝑖=1  𝑙𝑛𝑡𝑖   
2

1
𝑛

   𝑡𝑖
𝛽𝑛

𝑖=1

 

 .           (12) 

The estimate of the Failure Rate of the Constant Shape Bi-
Weibull distribution under MLE is  

𝐹𝑅  𝑡 =
𝛽 

𝜍 
𝑡𝛽
 −1    .                                            (13) 

3. Bayesian Estimation of the Failure Rate for 
Constant Shape Bi-Weibull Distribution 

                       
Bayesian Estimation approach has received a lot of attention 
in recent times for analyzing Failure time data, which has 
mostly been proposed as an alternative to that of the 
traditional methods.  

Bayesian Estimation approach makes use of once prior 
knowledge about the parameters as well as the available 
data. When once prior knowledge about the parameter is not 
available, it is possible to make use of the noninformative 
prior in Bayesian analysis.  

Since we have no knowledge on the parameters, we seek to 
use the Extension of Jeffreys‟ Prior Information, where 
Jeffreys‟ Prior is the square root of the determinant of the 
Fisher information.  

According to [5], the Extension of Jeffreys‟ prior is obtained 
by taking u θ ∝  I θ  c , cϵR+, so that 

𝑢 𝜃 ∝  
1

𝜃
 

2𝑐

.

Thus, 

𝑢 𝜍,𝛽 ∝  
1

𝜍𝛽
 

2𝑐

. 

Given a sample t= (t1, t2, …, tn) from the likelihood function 
of the pdf (1) is 

𝐿 𝑡𝑖  | 𝜍,𝛽 =  
𝛽

𝜍

𝑛

𝑖=1

𝑡𝑖
𝛽−1𝑒

− 
𝑡𝑖
𝛽

𝜍
 
. 

With Bayes theorem, the joint posterior distribution of the 
parameters σ and β is

π∗(σ, β|t) ∝ L t| σ, β u σ, β 

𝐿 𝑡𝑖 | 𝜍,𝛽 =
𝑘

 𝜍𝛽 2𝑐
 

𝛽

𝜍

𝑛

𝑖=1

𝑡𝑖
𝛽−1𝑒

− 
𝑡𝑖
𝛽

𝜍
 
 , 

where k is the normalizing constant that makes 𝛑∗ a proper 
pdf. 

Remark 3.1

Here we consider two Asymmetric Loss Functions namely 
Linear Exponential Loss Function (LINEX), General 
Entropy Loss Function and the one Symmetric Loss 
Function is the Squared Error Loss. 
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3.1 Linear Exponential (LINEX) Loss Function  

The LINEX Loss Function is under the assumption that the 
minimal loss occurs at θ = θ and is expressed as 

L θ − θ ∝ exp  a θ − θ  − a θ − θ − 1  , 

where 𝛉  is an estimation of θ and a ≠ 0. The sign and 
magnitude of the shape parameter „a‟ represents the 
direction and degree of symmetry, respectively. There is 
overestimation if a > 0 and underestimation if a < 0 but 
when  𝐚 ≅ 0 , the LINEX Loss Function is approximately 
the Squared Error Loss Function.  

The posterior expectation of the LINEX Loss Function, 
according to [10], is 

𝐸𝜃𝐿 𝜃 − 𝜃 ∝ 𝑒𝑥𝑝 𝑎𝜃  𝐸𝜃 exp −𝑎𝜃  

−𝑎 𝜃 − 𝐸𝜃 (𝜃) − 1 .                     (14)

The Bayes Estimator of θ, represented by 𝜽 𝑩𝑳 under LINEX 
Loss Function, is the value of 𝛉  which minimizes equation 
(14) and is given as 

𝜃 𝐵𝐿 = −
1

𝑎
𝑙𝑛 𝐸𝜃 𝑒𝑥𝑝 −𝑎𝜃  .  

Provided 𝐸𝜃(𝑒𝑥𝑝 −𝑎𝜃  exists and is finite.  

The posterior density function of the Failure Rate under 
LINEX loss is given as  

 𝐹𝑅  𝑡 𝐵𝐿 = 𝐸  𝑒𝑥𝑝  −𝑎
𝛽

𝜍
𝑡𝑖
𝛽−1 |𝑡𝑖 

=
 𝑒𝑥𝑝  −𝑎

𝛽
𝜍
𝑡𝑖
𝛽−1 𝜋∗ 𝜍,𝛽 𝑑𝜍𝑑𝛽

 𝜋∗ 𝜍,𝛽 𝑑𝜍𝑑𝛽
 .           (15)

From (15), it can be observed that ratio of integrals which 
cannot be solved analytically and for that we employ 
Lindley‟s approximation procedure to estimate the Failure 
Rate.

Lindley considered an approximation for the ratio of 
integrals for evaluating the posterior expectation of an 
arbitrary function  𝒖  𝜽 as

𝐸 𝑢 𝜃  𝑥 =
 𝑢 𝜃 𝑣 𝜃  𝐿 𝜃  𝑑𝜃

 𝑣(𝜃) 𝐿 𝜃  𝑑𝜃

According to [13], Lindley‟s expansion can be approximated 
asymptotically by 

𝜃 = 𝑢 +
1

2
 𝑢11𝛿11 + 𝑢22𝛿22 + 𝑢1𝜌1𝛿11 + 𝑢2𝜌2𝛿22

+
1

2
 𝐿30𝑢1𝛿

2
11

+ 𝐿03𝑢2𝛿
2

22
  ,            16 

where L is the log-likelihood function in equation (5), 

𝑢 = 𝑒𝑥𝑝  −𝑎
𝛽

𝜍
𝑡𝑖
𝛽−1 ,

 𝑝 =
𝛽

𝜍
𝑡𝑖
𝛽−1,

𝑢1 =
𝜕𝑢

𝜕𝜍
=
𝑎

𝜍
𝑝𝑢,

 𝑢11 =
𝜕2𝑢

𝜕2𝜍
= 𝑢𝑞2  

𝑎

𝜍
 

2

−
2𝑎𝑢𝑞

𝜍2
,

𝑢2 =
𝜕𝑢

𝜕𝛽
= −𝑎𝑢𝑞  𝑙𝑛𝑡𝑖 +

1

𝛽
 ,

𝑢22 =
𝜕2𝑢

𝜕2𝛽
= −𝑎𝑢𝑞   𝑙𝑛𝑡𝑖 

2 +
2𝑙𝑛𝑡𝑖
𝛽

 

+  𝑎𝑞 2𝑢   𝑙𝑛𝑡𝑖 
2 +

2𝑙𝑛𝑡𝑖
𝛽

+
1

𝛽2
 

𝜌 𝜍,𝛽 = −𝑙𝑛 𝜍2𝑐 − 𝑙𝑛(𝛽2𝑐),

𝜌1 =
𝜕𝜌

𝜕𝜍
= −

1

𝜍2𝑐
,  

𝜌2 =
𝜕𝜌

𝜕𝛽
= −

1

𝛽2𝑐
, 

𝛿11 =  −𝐿20 
−1,  𝛿22 =  −𝐿02 

−1,

𝐿02 = − 
𝑛

𝛽2
 −

1

𝜍
 𝑡𝑖

𝛽

𝑛

𝑖=1

 𝑙𝑛𝑡𝑖   
2, 

𝐿03 = 2  
𝑛

𝛽3 −
1

𝜍
 𝑡𝑖

𝛽𝑛
𝑖=1  𝑙𝑛𝑡𝑖   

3, 

𝐿20 =
𝑛

𝜍2
− 2

 𝑡𝑖
𝛽𝑛

𝑖=1

𝜍3
,

 𝑎𝑛𝑑 𝐿30 = −2
𝑛

𝜍3
+ 6

 𝑡𝑖
𝛽𝑛

𝑖=1

𝜍4
.

3.2 General Entropy Loss Function 
            
Another useful Asymmetric Loss Function is the General 
Entropy (GE) Loss which is a generalization of the Entropy 
Loss and is given as 

L θ − θ ∝  
θ 
𝜃
 

𝑘

− 𝑘 𝑙𝑛  
θ 
𝜃
 − 1

The Bayes Estimator 𝜽 𝑩𝑮 of θ under the General Entropy 
Loss is 

𝜃 𝐵𝐺 =  𝐸𝜃 (𝜃−𝑘) −
1
𝑘       ,

provided  𝐸𝜃 𝜃−𝑘  exists and is finite.  

The posterior density function of the Failure Rate under 
General Entropy loss is given as 

 𝐹𝑅  𝑡 𝐵𝐺 = 𝐸   
𝛽

𝜍
𝑡𝑖
𝛽−1 

−𝑘

|𝑡𝑖 
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=
  

𝛽
𝜍
𝑡𝑖
𝛽−1 

−𝑘

𝜋∗ 𝜍,𝛽 𝑑𝜍𝑑𝛽

 𝜋∗ 𝜍,𝛽 𝑑𝜍𝑑𝛽
 .  

Applying the same Lindley approach here as in (16) with u1,
u11 and u2, u22 are the first and second derivatives for σ and 
β, respectively, and are given as 

𝑢 =  
𝛽

𝜍
𝑡𝑖
𝛽−1 

−𝑘

,

 𝑟 = 𝑡𝑖
𝛽−1, 

𝑢1 =
𝜕𝑢

𝜕𝜍
=
𝑘

𝜍
𝑢, 

𝑢11 =
𝜕2𝑢

𝜕2𝜍
=
𝑘𝑢

𝜍2
 𝑘 − 1 ,

𝑢2 =
𝜕𝑢

𝜕𝛽
= −𝑘𝑢  

𝑙𝑛𝑡𝑖
𝜍

+
𝑙𝑛𝑡𝑖
𝛽
 ,  

𝑎𝑛𝑑  𝑢22 =
𝜕2𝑢

𝜕2𝛽
= 𝑢   

𝑘

𝜍
 

2
 𝑙𝑛𝑡𝑖 

2 +
2𝑘2𝑙𝑛𝑡𝑖

𝜍𝛽
+  

𝑘

𝛽
 

2

+
𝑘

𝛽2 .  

3.3 Symmetric Loss Function 

The Symmetric Loss Function is the Squared Error Loss is 
given by  

L θ − θ ∝  θ − θ 
2
. 

This Loss Function is symmetric in nature, that is, it gives 
equal weightage to both over and under estimation. In real 
life, we encounter many situations where overestimation 
may be more serious than underestimation or vice versa.  

The most common loss function used for Bayesian 
estimation is the squared error (SE), also called quadratic 
loss. The square error loss denotes the punishment in using
to θ  estimate θ and is given as 

 𝐸𝜃 𝑡 𝜃 =   θ (t) − θ 
2
, 

where the expectation is taken over the joint distribution of θ 
and (t).

The posterior density function of the Failure Rate under the 
Symmetric loss function are given as 

 𝐹𝑅 (𝑡)𝐵𝑆 = 𝐸  
𝛽

𝜍
𝑡𝑖
𝛽−1 |𝑡𝑖 =

 
𝛽
𝜍
𝑡𝑖
𝛽−1 𝜋∗ 𝜍,𝛽 𝑑𝜍𝑑𝛽

 𝜋∗ 𝜍,𝛽 𝑑𝜍𝑑𝛽
 

Applying the same Lindley approach here as in (16) with u1,
u11 and u2, u22 are the first and second derivatives for σ and 
β, respectively, and are given as 

𝑢 =
𝛽

𝜍
𝑡𝑖
𝛽−1,𝑑 = 𝑙𝑛𝑡𝑖  ,

𝑢1 =
𝜕𝑢

𝜕𝜍
=
−𝑢

𝜍
, 

𝑢11 =
𝜕2𝑢

𝜕2𝜍
=

2𝑢

𝜍2
,

𝑢2 =
𝜕𝑢

𝜕𝛽
= 𝑢  𝑑 +

1

𝛽
 ,

 𝑎𝑛𝑑 𝑢22 =
𝜕2𝑢

𝜕2𝛽
= 𝑢   𝑑 2 +

2𝑑

𝛽
 .  

4. Simulation Study 
                    
Since it is difficult to compare the performance of the 
estimators theoretically and also to validate the data 
employed in this paper, we have performed extensive 
simulations to compare the estimators through Mean 
Squared Errors and Absolute Biases by employing different 
sample sizes with different parameter values.  

The Mean Squared Error and Absolute Bias given as  

𝑀𝑆𝐸 =
  𝜃 𝑟 − 𝜃 

25000
𝑟=1

𝑅 − 1
,

𝑎𝑛𝑑 𝐴𝑏𝑠 =
  𝜃 𝑟 − 𝜃 5000
𝑟=1

𝑅 − 1
 .

In our Simulation study, we chose a sample size of n= 25, 
50, and 100 to represent small, medium, and large dataset. 
The Failure Rate is estimated for Constant Shape Bi-Weibull 
distribution with Maximum Likelihood and Bayesian using 
Extension of Jeffreys‟ Prior methods. 

The values of the parameters chosen are 𝝈 = 0.5 and 1.5, 
𝛃 = 0.8 and 1.2. The values of Jeffreys Extension are 
 𝒄 = 0.4 and 1.4. The values for the Loss parameters (𝑎, 𝑘)
are 𝑎 = 𝑘 𝑎𝑛𝑑 . These were iterated (R) 5000 
times and the Failure Rate for each method was calculated.  

The results are presented below for the estimated Failure 
Rate and their corresponding Mean Squared Error and 
Absolute Bias values.  
                       
In Table 4.1 we present the Mean Square Error estimated 
values for the Failure Rate  𝐹𝑅(𝑡) for both the MLE and 
Bayesian Estimation using extension of Jeffrey‟s prior 
information with the three loss functions. 
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Table 4.1: MSE Estimated Failure Rate  

From Table 4.1 it is observed that Bayes estimation with 
LINEX loss function provides the smallest MSE values in
most cases especially when the loss parameter values are 0.6 
and 1.6. Also sample size increases MLE and Bayes 
estimation under all loss functions have increases in MSE 
values. 

In Table 4.2 we present the Absolute Bias estimated values 
for the Failure Rate  𝐹𝑅(𝑡) for both the Maximum 
Likelihood Estimation and Bayesian Estimation using 
extension of Jeffreys‟ prior information with the three loss 
functions. 

Table 4.2: Absolute Bias Estimated Failure Rate

From Table 4.2 it is observed that Bayes estimation with 
LINEX loss function provides the smallest Absolute Bias 

values in most cases especially when the loss parameter 
values are (0.6, 1.6).  

n σ c β 𝐹 (𝑡)𝑀𝐿 𝐹 (𝑡)𝐵𝑆 𝐹𝑅 (𝑡)𝐵𝐿 𝐹𝑅 (𝑡)𝐵𝐺 𝐹𝑅 (𝑡)𝐵𝐿 𝐹𝑅 (𝑡)𝐵𝐺 𝐹𝑅 (𝑡)𝐵𝐿 𝐹𝑅 (𝑡)𝐵𝐺 𝐹𝑅 (𝑡)𝐵𝐿 𝐹𝑅 (𝑡)𝐵𝐺
a = k = 0.6 a= k = -0.6 a =k =1.6 a = k = -1.6
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1.5
1.5
1.5
1.5

0.4
0.4
1.4
1.4
0.4
0.4
1.4
1.4

0.8
1.2
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1.2
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1.2
0.8
1.2

1.2e+82
1.0e+37
2.8e+94
1.9e+89
5.52822
142720
985157
537816

63.952
6.7003
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313.17
1.2129
1.1039

1.5281
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0.5234
0.8827
0.4813
15.085
0.1472
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0.4978

0.7623
0.7005
0.8740
28.353
2.3995
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3.5763
7.4095

8728.4
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85352
1466.7
1.6475

0.5458
2.0968
0.8755

9.2973
1.8521
11.222
74.310
0.5675
0.4718
0.8470
1.2176

0.0579
0.8998
0.0613
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0.2056
0.6805
0.2970
3.1650
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2.7323
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14.8790

1556.70
44.7894

1055.21
63.9147
5.26739
4.83172
8.54443
4.02218
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ML: Maximum Likelihood, BS: Squared Error Loss function, BL: LINEX Loss function, BG: General Entropy Loss function.
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ML: Maximum Likelihood, BS: Squared Error Loss function, BL: LINEX Loss function, BG: General Entropy Loss function.
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As the sample size increases Absolute values of the MLE 
and Bayes estimation under all loss functions increases. 

5. Illustration 

The real data set is about a clinical Trial in the Treatment of 
Carcinoma of the Oropharynx (PHARYNX) Data extracted 
from [16].  

The data file gives the data for a part of a large clinical trial 
carried out by the Radiation Therapy Oncology Group in the 
United States.  

This data consists of a total of 195 respondents of which 53 
are alive and 142 are dead. Here we considered age in years 
at time of diagnosis is the most factors. Table 5.1 depicts the 
Standard Error values for Estimated Failure Rate 𝐹𝑅(𝑡)
using PHARYNX Data. 

Table 5.1: Standard Error values for Estimated Failure Rate 
𝐹𝑅(𝑡) Using PHARYNX Data 

Estimates MLE BL BG BS
FR(t) 3.286e-05 1.652e-05 0.00093 0.00332

Here ML: Maximum Likelihood,  
BS: Squared Error Loss function,  
BL: LINEX Loss function, and 
BG: General Entropy Loss function. 

From Table 5.1, we observe that, Bayesian estimator under 
LINEX loss function has the smallest value 1.652e-05 for 
Failure Rate 𝐹𝑅(𝑡).

So that the Bayes estimators of Failure Rate 𝐹𝑅 𝑡  under 
LINEX loss function is best estimation method for Constant 
Shape Bi-Weibull Distribution using PHARYNX Data.

6. Conclusion 

In this paper, we have addressed the problem of Bayesian 
estimation of Failure Rate for the Constant Shape Bi-
Weibull distribution, under three Loss functions, namely, 
the Linear Exponential (LINEX) Loss, General Entropy 
Loss, and Square Error Loss functions and that of Maximum 
Likelihood Estimation.  

Bayes estimators were obtained using Lindley 
approximation while MLE were obtained using Newton-
Raphson method.  

A Simulation study was conducted to examine and compare 
the performance of the estimates for different sample sizes 
with different values for the extension of Jeffreys‟ prior and 
the loss functions.  

From the results, we observe that in most cases, Bayesian 
estimator under LINEX loss function has the smallest Mean 
Squared Error values and minimum Bias for Failure Rate 
𝐹𝑅(𝑡) in most cases especially when the loss parameter 
values are (0.6, 1.6), for both values of the extension of 
Jeffreys‟ prior information. 

As the sample size increases the Mean Squared Error and 
the Absolute Bias for Maximum Likelihood Estimator and 
Bayes estimator under all the loss functions increases 
correspondingly. 
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