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Abstract: The Weibull distribution is widely used in Reliability and life data analysis due to its versatility. We Consider the Constant
Shape Bi-Weibull distribution which has been extensively used in the testing and reliability studies of the strength of materials. Studies
have been done vigorously in the literature to determine the best method in estimating its Failure Rate. In this paper, we examine the
performance of Maximum Likelihood Estimator (MLE) and Bayesian Estimator using Extension of Jeffireys’ Prior Information with

three Loss functions, namely, the Linear Exponential (LINEX) Loss, General Entropy Loss, and Square Error Loss for estimating the
Constant Shape Bi-Weibull Failure time distribution. The results show that Bayesian Estimator using Extension of Jeffreys’ Prior
under Linear Exponential (LINEX) Loss function in most cases gives the smallest Mean Square Error and Absolute Bias for Failure
Rate FR(1) for the given values of Extension of Jeffreys’ Prior. An illustrative example is also provided to explain the concepts.

Keywords: Bayesian method, Constant Shape Bi-Weibull Failure time Distribution, Extension of Jeffreys Prior information, Failure Rate,
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1. Introduction

The Weibull distribution is widely used in Reliability and
life data analysis due to its versatility. Depending on the
values of the parameters, the Weibull distribution can be
used to model a variety of life behaviours. An important
aspect of the Weibull distribution is how the values of the
shape parameter, f, and the scale parameter, o, affect the
characteristics life of the distribution, the shape/slope of the
distribution curve, the Reliability Function, and the Failure
Rate.

The main purpose of this paper is to compare the traditional
Maximum Likelihood Estimation of the Failure Rate of the
Constant Shape Bi-Weibull distribution with its Bayesian
counterpart using Extension of Jeffreys™ Prior Information
obtained from Lindley*s approximation procedure with three
Loss Functions.

It has been found that this distribution is satisfactory in
describing the life expectancy of components that involve
fatigue and for assessing the Reliability of bulbs, ball
bearings, and machine parts according to [15].The primary
advantage of Weibull analysis according to [1] is its ability
to provide accurate Failure Analysis and Failure Forecasts
with extremely small samples. With Weibull, solutions are
possible at the earliest indications of a problem without
having to pursue further. Small samples also allow cost-
effective component testing. Maximum Likelihood
Estimation (MLE) has been the most widely used method
for estimating the parameters of the Constant Shape Bi-
Weibull distribution. Recently, Bayesian Estimation
approach has received great attention by most researchers
among them is [4]. They considered Bayesian Survival
Estimator for Weibull distribution with censored data. While
[2] studied Bayesian Estimation for the extreme value
distribution using progressive censored data and

Asymmetric Loss. Bayes Estimator for Exponential
distribution with Extension of Jeffreys™ Prior Information
was considered by [5]. Others including [3, 6, and 12] did
some comparative studies on the estimation of Weibull
parameters using complete and censored samples and [11]
determined Bayes Estimation of the extreme-value
Reliability function.

In recent, work we developed Functional Relationship
between Brier Score and Area Under the Constant Shape Bi-
Weibull ROC Curve [10], Confidence Intervals Estimation
for ROC Curve, AUC and Brier Score under the Constant
Shape Bi-Weibull Distribution [7], Asymmetric and
Symmetric Properties of Constant Shape Bi-Weibull ROC
Curve Described by Kullback-Leibler Divergences [8], and
Bayesian Estimation of Parameters under the Constant
Shape Bi-Weibull Distribution Using Extension of Jeffreys™
Prior Information with Three Loss Functions[9].

In this paper, the Bayesian Estimation of Failure Rate under
the Constant Shape Bi-Weibull Distribution is studied by
Using Extension of Jeffreys™ Prior Information with Three
Loss Functions. This paper is organized as follows: In
Section 2, estimation of Failure Rate under MLE is obtained.
In Section 3, Extension of Jeffreys™ Prior Information with
Three Loss functions is discussed. Section 4, provides
simulation study for proposed theory. In Section 5, the
proposed theory is validated by using real data. Finally in
Section 6 we provide all the findings.

2. Maximum Likelihood Estimation of the
Failure Rate for Constant Shape Bi-Weibull
Distribution

Lett; t,  t,be a random sample of size n with respect to the
Constant Shape Bi-Weibull distribution, with ¢ and B as the
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parameters, where ¢ is the scale parameter and P is the shape
parameter. The probability density function (pdf),
cumulative distribution function (cdf) and Failure Rate are
given, respectively, as

¢B
f(t;a.ﬂ)=§fﬁ_1e -l €))
The Cumulative distribution function (CDF) is
B
F(t;o,f)=1—¢ H (2)
The Failure rate is
FR(t) = Etﬁ_l . 3)
o
The likelihood function of the pdf is
ST
Leop) = [Sarre T )
i=1

The log-likelihood function is
m n
1
InL = ninB + (B — 1) [Z lnti] — nino — ;Z th. (5)
i=1 i=1

By differentiating the equation (5) with respect to ¢ and p
and equating to zero, we get

olnL _ n ¥, tf
60’ ; + 0_2 = 0 . (6)
dlnl. n

_=__|_

ZIntl——z Int;, =0. %)
From equation (6), we get

6=%Ztiﬁ . ®)

i=1

First we shall find B and so that @ can be determined. So
that we propose to find B by using Newton-Raphson method
as given below. Let f(B) be the same as equation (6) and
taking the first differential of f(B), we have

n

F®=-(g) -y @y . ©

i=1

By substituting equation (8) into equation (7), we call f(B)

as

:L 1t Int;
6 =7 Z Int, (10)

t.B

l=l 14
Substituting equation (8) into equation (9), we obtain
, n Y. tf (Int; )?
£ ) =- —2+‘11— : (11)
B - ‘ﬂ tﬁ
n

Therefore, B is obtained from the equation below by
carefully choosing an initial value f as B; and iterating the
process till it converges:

t;? Int;
B+ [0y tne] - L G
n ?1t'ﬁ
Biv1=Pi — (12)
3 £+Z’?_ t;? (Int; )?
BZ 1 n tﬁ
n

The estimate of the Failure Rate of the Constant Shape Bi-
Weibull distribution under MLE is

FR(t) ==tF71 . (13)

Q)l =

3. Bayesian Estimation of the Failure Rate for
Constant Shape Bi-Weibull Distribution

Bayesian Estimation approach has received a lot of attention
in recent times for analyzing Failure time data, which has
mostly been proposed as an alternative to that of the
traditional methods.

Bayesian Estimation approach makes use of once prior
knowledge about the parameters as well as the available
data. When once prior knowledge about the parameter is not
available, it is possible to make use of the noninformative
prior in Bayesian analysis.

Since we have no knowledge on the parameters, we seek to
use the Extension of Jeffreys™ Prior Information, where
Jeffreys™ Prior is the square root of the determinant of the
Fisher information.

According to [5], the Extension of Jeffreys™ prior is obtained
by taking u(0) o« [I1(0)]¢, ceR*, so that

wsllf
Thus,

u(o,B) « [%]ZC

Given a sample t= (t; t, _ t,) from the likelihood function

of the pdf (1) is
n fiﬂ
L(t;|o,p) = Hgtiﬁ_le [g ]
i=1

ey

With Bayes theorem, the joint posterior distribution of the
parameters ¢ and B is

(o, BIt) o L(t| o, B)u(o, p)

oo [ oete]
i=1

where k is the normalizing constant that makes m* a proper
pdf.

L(ti | O-!ﬁ) =

Remark 3.1

Here we consider two Asymmetric Loss Functions namely
Linear Exponential Loss Function (LINEX), General
Entropy Loss Function and the one Symmetric Loss
Function is the Squared Error Loss.

Volume 5 Issue 9, September 2016

Licensed Under Creative Commons Attribution CC BY

Paper ID: ART20161704

737



International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064
Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

3.1 Linear Exponential (LINEX) Loss Function

The LINEX Loss Function is under the assumption that the
minimal loss occurs at § = 0 and is expressed as

L(0—0) «exp(a(0—0))—a(d-0)-1,

where © is an estimation of ® and a # 0. The sign and
magnitude of the shape parameter ,a“ represents the
direction and degree of symmetry, respectively. There is
overestimation if a > 0 and underestimation if a < 0 but
when a = 0, the LINEX Loss Function is approximately
the Squared Error Loss Function.

The posterior expectation of the LINEX Loss Function,
according to [10], is

EgL(6 — 0) « exp(ab)E, (exp(—ad))

—a(0-Ey(6)) - 1. (14)

The Bayes Estimator of 8, represented by 8, under LINEX
Loss Function, is the value of ® which minimizes equation
(14) and is given as

~ 1
Op, = —aln Eq (exp(—aB)).

Provided E, (exp(—aB) exists and is finite.

The posterior density function of the Failure Rate under
LINEX loss is given as

FR(t)g, = E{exp (—agtilf—l) |ti}

[ exp (—agtiﬁ_l) n* (o, B) dodp
- [/ (0, f)dodp S

From (15), it can be observed that ratio of integrals which
cannot be solved analytically and for that we employ
Lindley‘s approximation procedure to estimate the Failure
Rate.

Lindley considered an approximation for the ratio of
integrals for evaluating the posterior expectation of an
arbitrary function %(0) as

Flu(@)x] = L@V OILO)]dE

Jv(@)[L(©)]do

According to [13], Lindley*s expansion can be approximated
asymptotically by

~ 1
0=u+ > [u11 811 + Uz 820] + Uy p1 81y + UpP2Bs

(16)

1
+ E[L30U.18211 + L03u26222] )

where L is the log-likelihood function in equation (5),

u = exp (—aétiﬁ_l),

B 5
p= ;tiﬁ L
_Ou_a
u = do - 0_pu1
0%u a\? 2auq
u =gz, =ue (5) — 7
ou 1
Uy = B = —auq (lnti + E),
0%u , | 2Int
Uyy = 925 = —auq [(lnti) + T]

2int; 1

+ (aq)*u [(lnti)2 + 3 + 5

p(o,B) = —In(c**) — In(B*),

_op 1
P1=56 = "o
dp 1
T

811 = (=Ly)™", 820 = (Lgz) ™Y,

n

n 1
Lo, = — ([7> - gz t# (Int; )%,
i=1
n 1
Loy =2(55) =5

o=, i ti’
20 = 3~

LitP (g )3,

a3’
__,n i=1ti
andL30——2;+6 s

3.2 General Entropy Loss Function

Another useful Asymmetric Loss Function is the General
Entropy (GE) Loss which is a generalization of the Entropy
Loss and is given as

L(é—e)«@)k—kln@)—l

The Bayes Estimator 8p¢ of 0 under the General Entropy
Loss is

~ 1
Osc =[Eg(07)] %
provided E,(87F) exists and is finite.

The posterior density function of the Failure Rate under
General Entropy loss is given as

FR(t)ps = E{(é tiﬁ_1>_k |ti}

Volume 5 Issue 9, September 2016

Licensed Under Creative Commons Attribution CC BY

Paper ID: ART20161704

738



International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064
Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

—k
1 () @ prdoup
[T (o, F)dadp

Applying the same Lindley approach here as in (16) with u,
u;; and u,, u,, are the first and second derivatives for ¢ and
P, respectively, and are given as

—k
u = (Etlﬂ_l) )
o
r = tiﬂ_l,
_ou_k
R
%u  ku
Upy =%=p[k—1],
_Ou X (lntl— N lnti)
U, = aﬁ = u . ﬁ )
0% k)2 2, 2k%nte; | (k)2 | k
and uy; =50 =u [(;) (Int))* + ==+ (E) +ﬁ]'

3.3 Symmetric Loss Function

The Symmetric Loss Function is the Squared Error Loss is
given by

L(0—0) o« (6 —0)".

This Loss Function is symmetric in nature, that is, it gives
equal weightage to both over and under estimation. In real
life, we encounter many situations where overestimation
may be more serious than underestimation or vice versa.

The most common loss function used for Bayesian
estimation is the squared error (SE), also called quadratic
loss. The square error loss denotes the punishment in using
to O estimate  and is given as

Ey(t10) = (B() - 0)",
where the expectation is taken over the joint distribution of 6
and (2).

The posterior density function of the Failure Rate under the
Symmetric loss function are given as

B

g

) Ao
l l [ m*(o, p)dodp

FR(t)ps = E{

Applying the same Lindley approach here as in (16) with u;,
u;; and u,, u,, are the first and second derivatives for ¢ and
P, respectively, and are given as

u Zétiﬁ_l,d = lntl )
o
au_—u

Uy = — =
179 o’

0%u  2u

i =57 = 57
_au_ (d+1)
uz—aﬁ—u g)

a2 2d
and uy, = ﬁ = u[(d)2 + 2|

4. Simulation Study

Since it is difficult to compare the performance of the
estimators theoretically and also to validate the data
employed in this paper, we have performed extensive
simulations to compare the estimators through Mean
Squared Errors and Absolute Biases by employing different
sample sizes with different parameter values.

The Mean Squared Error and Absolute Bias given as

_ (e -o)’
MSE=="3-17
_ X - o]
and Abs = ?

In our Simulation study, we chose a sample size of n= 25,
50, and 100 to represent small, medium, and large dataset.
The Failure Rate is estimated for Constant Shape Bi-Weibull
distribution with Maximum Likelihood and Bayesian using
Extension of Jeffreys™ Prior methods.

The values of the parameters chosen are ¢ = 0.5and 1.5,
B =0.8and 1.2. The values of Jeffreys Extension are
¢ = 0.4 and 1.4. The values for the Loss parameters (a, k)
area =k and . These were iterated (R) 5000
times and the Failure Rate for each method was calculated.

The results are presented below for the estimated Failure
Rate and their corresponding Mean Squared Error and
Absolute Bias values.

In Table 4.1 we present the Mean Square Error estimated
values for the Failure Rate FR(t) for both the MLE and
Bayesian Estimation using extension of Jeffrey's prior
information with the three loss functions.
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Table 4.1: MSE Estimated Failure Rate

n o ¢ B | F®Owm | F()ps [FR(®)p; [FR(®) g6 |FR() gy [FR(O)56|FR()p; [FR(O)pg | FR()g; | FR(8)5g
a=k=0.6 a=k=-0.6 a=k=1.6 a=k=-1.6

25 |05 ] 04 |08 |1.2e+82|63.952 | 0.5234 | 0.7623 | 8728.4 | 9.2973 | 0.0579 | 1.5280 | 216369 | 3191.36
05| 04 | 1.2 [1.0e+37 | 6.7003 | 0.8827 | 0.7005 | 5.4806 | 1.8521 | 0.8998 | 2.7323 | 4328.0 | 43.8584
05| 1.4 | 0.8 |2.8¢t94 | 88.072 | 0.4813 | 0.8740 | 85352 | 11.222 | 0.0613 | 1.8849 | 2.0e+13 | 10068.2
05| 1.4 | 1.2 [1.9¢+89 | 313.17 | 15.085 | 28.353 | 1466.7 | 74.310 | 10.339 | 175.68 | 627285 | 1622.32
1.5 | 04 | 0.8 |5.52822 | 1.2129 | 0.1472 | 2.3995 | 1.6475 | 0.5675 | 0.2056 | 77.606 | 113.880 | 1.63443
1.5 04 | 1.2 | 142720 | 1.1039 | 0.1998 [0.9113 [0.5458 | 0.4718 | 0.6805 (13.159 | 11.2061 | 2.33524
1.5 | 1.4 | 0.8 | 985157 |1.5281 | 0.1982 [3.5763 [2.0968 | 0.8470 | 0.2970 | 111.63 | 137.586 | 2.38728
1.5 | 1.4 | 1.2 | 537816 |2.2130 | 0.4978 | 7.4095 [0.8755 | 1.2176 | 3.1650 | 517.86 | 16.4905 | 3.89148
50 | 05| 04 |08 [4.et142 | 71.561 |0.6524 [1.1738 | 9043.2 | 10.884 |0.0827 | 2.2894 | 2756106 | 1556.70
05| 04 | 1.2 [4.1et95 | 7.7536 | 1.3157 [0.6745 [6.9430 | 1.9743 |1.6610 | 2.4988 | 6847.24 | 44.7894
05| 1.4 | 0.8 |3.etl51 | 66.066 [0.7285 | 1.2189 | 4810.3 | 10.314 | 0.0919 | 2.2433 | 2908489 [1055.21
05| 1.4 | 1.2 |l.et172 | 15.729 [3.4073 [2.3162 | 22.240 | 3.8102 | 7.2042 | 15.841 | 18757.7 | 63.9147
1.5 | 0.4 | 0.8 |2.1et26 | 3.3482 | 0.3807 | 5.4146 |4.7239 | 1.5286 | 0.5278 | 146.75 [409.003 | 5.26739
1.5 ] 04 | 1.2 [33.1864 | 2.3936 | 0.5006 | 2.3669 [1.1966 | 1.0863 | 1.8681 | 37.871 | 23.8561 | 4.83172
1.5 ] 1.4 | 0.8 [2.2e+15 | 4.7178 | 0.4817 | 5.2441 [7.8232 | 1.7973 | 0.5945 | 132.66 | 1169.90 | 8.54443
1.5 1.4 | 1.2 [57.5080 | 1.9741 | 0.4068 | 1.7615 [0.9162 | 0.8784 | 1.4526 | 25.286 | 14.8790 | 4.02218
100 | 0.5 | 0.4 | 0.8 |1.et213 |114.46 (1.2803 | 2.5970 |4618.2 | 19.254 | 0.1622 | 4.7920 | 4004063 | 1126.63
05| 04 | 1.2 |1l.et113 | 29.440 |6.6789 | 3.4804 [16.983 | 6.7853 | 17.906 | 31.256 | 11183.0 | 141.765
05| 1.4 | 0.8 [0.et312 | 418.70 | 1.7447 | 2.9458 | 590378 | 45.327 | 0.1988 | 4.8621 | 4.7¢+20 | 25821.2
05| 1.4 | 1.2 |1.e+258 |28.507 | 6.2988 | 2.7501 | 23.452 | 6.5210 | 13.801 |14.633 19213.2 | 135.293
1.5 | 04 | 0.8 [2.5¢+38 | 5.7759 | 0.6330 | 9.0292 | 7.8450 |2.7303 | 0.8209 | 216.73 | 583.030 | 9.04485
1.5 ] 04 | 1.2 [63.3259 | 49776 | 1.0989 | 4.8070 | 2.6086 |2.2283 | 4.0082 | 78.432 | 46.1261 | 9.74658
1.5 ] 1.4 | 0.8 [6.2e+42 | 10.637 | 1.0995 | 11.657 | 16.431 |4.3427 | 1.3881 | 266.77 | 1962.18 | 20.4616
1.5 1.4 | 1.2 |1.2e+26 | 4.9257 | 1.1539 | 5.7377 | 2.5014 |2.3034 | 4.7023 | 104.78 | 45.2562 | 9.17522
ML: Maximum Likelihood, BS: Squared Error Loss function, BL: LINEX Loss function, BG: General Entropy Loss function.

From Table 4.1 it is observed that Bayes estimation with In Table 4.2 we present the Absolute Bias estimated values
LINEX loss function provides the smallest MSE values in for the Failure Rate FR(t) for both the Maximum
most cases especially when the loss parameter values are 0.6 Likelihood Estimation and Bayesian Estimation using
and 1.6. Also sample size increases MLE and Bayes extension of Jeffreys™ prior information with the three loss
estimation under all loss functions have increases in MSE functions.

values.

Table 4.2: Absolute Bias Estimated Failure Rate

n | o | ¢ | B |FR®)u [FR(®)ps |[FR()p, |F‘P(t)BG FR(t)p, |ﬁ3(f)36 FR(t)g, |ﬁ3(f)3(; FR(t)p, IFR(f)BG
a=k=0.6 a=k=-0.6 a=k=1.6 a=k=-1.6

25 {05 | 04 |08 [1.let4]l |26.281 | 2.6640 | 3.3840 |226.04 | 10.3654 | 0.9064 |4.9076 |242299.4 | 129.697
05 ] 04 | 1.2 |32et+18 | 10.541 | 3.6603 | 3.1271 |9.3734 |5.57900 |3.3612 |5.4761 |270.3620 |26.7775
05 | 1.4 |0.8 | 1.6e+47 |25.668 | 2.5538 | 3.7212 | 458.36 | 10.4216 | 0.9752 | 5.5539 | 6263878 | 157.151
05 | 1.4 |12 |43e+44 | 87.762 | 18.517 | 24.687 | 182.99 |42.8530 | 11.606 | 46.796 |3535.722 | 194.600
1.5 ] 04 |0.8 (969623 |3.7197 | 1.3377 | 6.0348 | 4.2632 |2.68147 | 1.4948 | 34.886 |31.97229 |4.04182
1.5 1 04 |12 |7734.58 | 4.0614 | 1.6072 | 3.2992 |2.9231 |2.56395 |2.6745 | 11.651 |13.52524 | 6.03844
1.5 ] 1.4 |0.8 | 109920 |4.8660 | 1.7579 | 7.7213 |5.7159 |3.59762 |2.1373 | 42.354 | 44.9636 |5.57046
1.5 | 1.4 [ 1.2 | 735570 | 5.7236 | 2.5545 | 7.6941 |3.6471 |4.02288 | 5.5168 | 48.034 | 14.9602 | 7.85227
50 [ 0.5 | 04 |0.8 |2.0et71 |39.851 |4.1845 | 6.0704 |276.82 | 163766 | 1.4530 | 8.4473 |250738.8 | 135.417
05 ] 04 |12 |63e+47 | 15.658 | 6.2065 | 4.3346 | 15.821 | 7.9881 |6.0480 | 7.2957 |472.0624 |37.6948
05 | 1.4 |0.8 |6.2et+75 [39.6262 | 44709 | 6.1585 |256.78 | 16.3923 | 1.6418 | 8.4781 | 1125170 |132.043
05|14 |12 |1.3e+86 | 22.84 | 10.022 | 7.7003 | 31.140 | 11.3396 | 12.633 | 16.440 | 783.7711 | 47.2651
1.5 { 04 |08 |14et13 | 9.2811 | 3.1634 | 3.1634 | 10.822 | 6.54346 | 3.5870 | 68.498 |89.42168 | 10.7531
1.5 | 0.4 |12 399529 | 8.6945 | 3.9492 | 8.3192 | 6.0083 |5.84233 | 7.3531 |31.472 |23.88736 | 12.3097
1.5 | 1.4 |0.8 | 468580 | 9.8109 | 3.2506 | 12.730 | 11.815 | 6.60159 |3.4071 | 65.184 | 109.9035 | 11.6327
1.5 | 14 | 1.2 [50.7945 | 8.0100 | 3.6315 | 7.4523 |5.3680 |5.34833 | 6.7166 |27.414 |[19.63148 | 11.3913
100 | 0.5 | 0.4 | 0.8 |3.et106 | 78.246 | 8.5928 | 12.926 |413.63 |32.9757 |2.9381 | 17.702 |79622.86 |223.5619
05| 04 |12 |8.et+223 |42.260 | 18.551 | 11.903 |28.604 |20.1363 |24.078 |24.790 | 798.6049 | 5.4806

05| 1.4 |0.8 | 1.et267 | 108.54 | 9.5928 | 13.466 | 11401 |41.4398 |3.2555 | 17.352 |30854204 | 467.214
05|14 [ 1.2 |2.et+188 | 42.829 | 19.535 | 12.190 | 40.132 |20.5038 |24.948 |23.464 | 1089.806 | 93.2288
1.5 04 |08 |1.5e+19 | 17.411 | 5.7708 | 23.864 |20.005 | 12.3722 | 6.1474 | 118.19 | 159.5608 |20.6433
1.5 {04 |12 769857 | 17.999 | 8.3498 | 16.690 | 12.962 | 11.9500 | 15.334 | 61.984 |51.16199 |25.3043
15114 |08 |25¢e+21 |21.631 | 7.0684 | 26.897 |25.609 |14.7635 | 7.4192 | 130.91 |232.0705 |27.0839
1.5 | 14 |12 [1.1et13 | 17.493 | 8.3340 | 17.553 | 12.337 | 11.8239 | 16.040 | 69.217 |47.90307 | 24.0546
ML: Maximum Likelihood, BS: Squared Error Loss function, BL: LINEX Loss function, BG: General Entropy Loss function.

From Table 4.2 it is observed that Bayes estimation with values in most cases especially when the loss parameter
LINEX loss function provides the smallest Absolute Bias values are (0.6, 1.6).
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As the sample size increases Absolute values of the MLE
and Bayes estimation under all loss functions increases.

5. Illustration

The real data set is about a clinical Trial in the Treatment of
Carcinoma of the Oropharynx (PHARYNX) Data extracted
from [16].

The data file gives the data for a part of a large clinical trial
carried out by the Radiation Therapy Oncology Group in the
United States.

This data consists of a total of 195 respondents of which 53
are alive and 142 are dead. Here we considered age in years
at time of diagnosis is the most factors. Table 5.1 depicts the
Standard Error values for Estimated Failure Rate FR(t)
using PHARYNX Data.

Table 5.1: Standard Error values for Estimated Failure Rate
FR(t) Using PHARYNX Data
Estimates MLE BL BG BS
FR(t) 3.286¢-05 1.652e-05 | 0.00093 | 0.00332

Here ML: Maximum Likelihood,
BS: Squared Error Loss function,
BL: LINEX Loss function, and
BG: General Entropy Loss function.

From Table 5.1, we observe that, Bayesian estimator under
LINEX loss function has the smallest value 1.652e-05 for
Failure Rate FR(t).

So that the Bayes estimators of Failure Rate FR(t) under
LINEX loss function is best estimation method for Constant
Shape Bi-Weibull Distribution using PHARYNX Data.

6. Conclusion

In this paper, we have addressed the problem of Bayesian
estimation of Failure Rate for the Constant Shape Bi-
Weibull distribution, under three Loss functions, namely,
the Linear Exponential (LINEX) Loss, General Entropy
Loss, and Square Error Loss functions and that of Maximum
Likelihood Estimation.

Bayes estimators were obtained wusing Lindley
approximation while MLE were obtained using Newton-
Raphson method.

A Simulation study was conducted to examine and compare
the performance of the estimates for different sample sizes
with different values for the extension of Jeffreys® prior and
the loss functions.

From the results, we observe that in most cases, Bayesian
estimator under LINEX loss function has the smallest Mean
Squared Error values and minimum Bias for Failure Rate
FR(t) in most cases especially when the loss parameter
values are (0.6, 1.6), for both values of the extension of
Jeftreys* prior information.

As the sample size increases the Mean Squared Error and
the Absolute Bias for Maximum Likelihood Estimator and
Bayes estimator under all the loss functions increases
correspondingly.
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