Synthesis, Characterization and Evaluation the Biological Activity of New Payrazolo{3,4 d} Pyrimidine Derivatives

Sameaa J. Khammas¹, Ahlam J. Hamood²

Department of Chemistry, College of Science for Women, University of Baghdad, Baghdad- Iraq

Abstract: Allopurinol derivative were prepared by reacting the allopurinol with chloroacetyl chloride in the presence triethylamine as an catalyst and diethylether as a solvent gave the (1-chloroacetyl)-2-Hydropyrazolo{3,4-d}pyrimidine-4-one which reaction with substituted 2-amino benzothiazole under certain conditions to give new compounds(A- A_{10}) and reaction of 5-substituted-2-amino-1,3,4-oxadiazolein in the presence of potassium carbonate anhydrous to give new compounds (A21-A30) respectively. The chemical structure synthesis compound were identified by spectral methods their (FT-IR and¹H- NMR) and measurement some of its physical properties. The synthesized compoundS were screened for antibacterial activity.

Keywords: Allopurinol, 2-aminobenzothiazole, 5-substituted-2-amino-1,3,4-oxadiazole, antimicrobial.

1. Introduction

Allopurinol, 1H-pyrazolo [3,4-d]pyrimidin-4(2H)-one is a drug used primarily to treat hyperuricemia and its complications, including chronic gout. It is administered orally and is an inhibitor of the enzyme xanthine oxidase which is responsible for the successive oxidation of hypoxanthine and xanthine, resulting in the production of uric acid, the product of human purine metabolism ⁽¹⁾. It is a very weak acid therefore essentially unionized at all physiological pH values. Allopurinol is a polar compound with strong intermolecular hydrogen bonding and limited solubility in both polar and non polarmedia⁽²⁾.

2. Material and Methods

Chemicals used in this work are supplied from Merck, BDH, Sigma Aldirch, Fluka, GCC companies and are used without further purification. Melting points were recorded using digital stuart scientific SMP3 Melting points apparatus and are uncorrected. SHIMAZU FT-IR-8400 Fourier transform Infrared spectrophotometer using KBr discs in the (4000 -6000) cm-1 spectral range. 1H-NMR spectra were recorded on using DMSO-d6 as solvent and TMS as internal reference.

3. Experimental

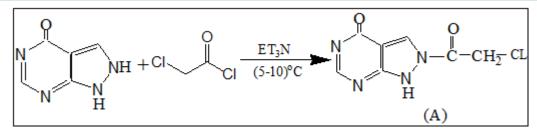
Synthesis of 2-Chloroacetyl Allopurinol⁽³⁾(compound A)

To a mixture of Allopurinol (0.01 mol) in Diethyl ether (15ml), triethylamine (0.025 mol), was added chloroacetylchloride(0.025 mol) drop-wise at (5-10) C°.The reaction mixture was then stirred for (6) hrs. And left at room temperature for 24 hours then poured into crushed ice. The solid separated was dried and recrystallized from

ethanol and water. Melting points, yield% data are listed in Table (1).

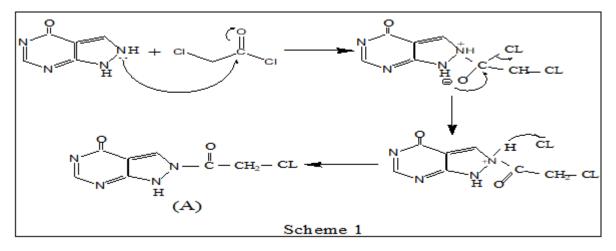
Synthesis of N-(2-aminoacetyl substituted benzothiazole-2-yl)Allopurinol⁽⁴⁾ (A-A10)

A mixture of compound (A) (0.008 mol.) in absolute ethanol (25 ml.) and potassium carbonate anhydrous (0.008 mol.) was refluxed and added dropwise to a solution of (0.008 mol.) of substituted-2-aminobenzothiazole dissolved in (30 ml.) of absolute ethanol, the reaction mixture was refluxed for (8-10) hrs. after cooling the separated precipitate was filtered and recrystalized from a suitable solvent. Physical properties are listed in Tables (1).

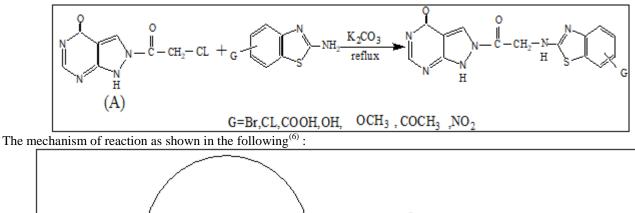


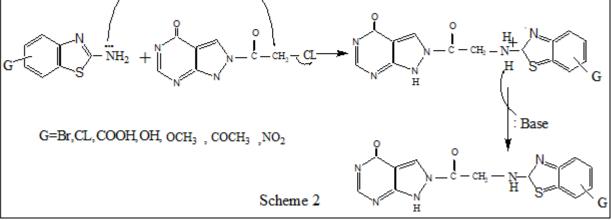
A mixture of compound (A) (0.004 mol.) in absolute ethanol (10 ml.) and potassium carbonate anhydrous (0.004 mol.) was refluxed and added dropwise to a solution of (0.004 mol.) of 2-amino-5-substituted-1,3,4-oxadiazole dissolved in (10 ml.) abs. ethanol, the mixture was refluxed for (6-8) hrs. The resulted mixture was cooled to room temperature before pouring into crushed ice. The obtained precipitate was filtered, washed thorough by with water and dried then was purified by recrystallization from a suitable solvent. Melting points, yield% data are listed in Table (1).

4. Result and Discussion


Allopurinol was converted to 2-Chloroacetyl Allopurinol by the reaction with Chloroacetyl chloride at (5-10) °C in the presence of triethylamine and Diethylether as asolvent, as shown in the following equation:

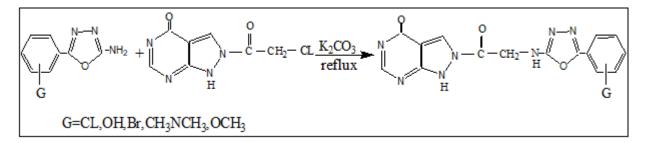
Licensed Under Creative Commons Attribution CC BY


The mechanism for these reaction involves nucleophilic attack of amino group in Allopurinol on reaction with

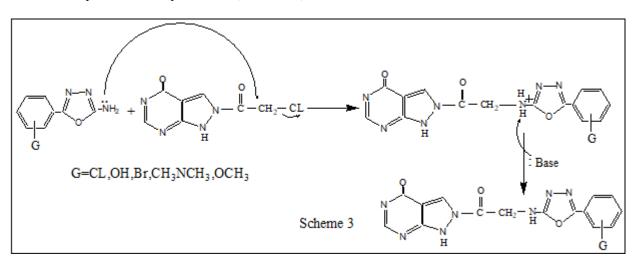

carbonyl group in chloroacetylchloride give the final product(A), as shown in the following⁽⁵⁾:

FT-IR spectra show the absence at (3167) cm⁻¹ for imide (NH) in the starting material and appearance of the (C=O) group band at (1716) cm⁻¹ and(C-CL) at (1037) cm⁻¹ which is agood indication of successful condensation listed in table (3). In the ¹H-NMR spectrum of compound (A) showed the signal at (1.0-1.4)(s,1H,CH-N), (3.0)(s,1H,CH-N), (4.2)(s,1H,CH2C=O), (8.0-8.1)(d,2H,NH) these

spectrum and other are shown in table (5). The reaction compound (A) with 2-amino benzothiazole derivatives in the presence of potassium carbonate anhydrous and Diethylether as asolvent, as shown in the following equation:



Volume 6 Issue 10, October 2017


<u>www.ijsr.net</u> Licensed Under Creative Commons Attribution CC BY

The FTIR of Compounds (A_1-A_{10}) have absorption bands at (3263-3468) cm⁻¹ for (N-H), (3074-3099) cm⁻¹ (C-H) aromatic, (1631-1716) cm⁻¹ (C=O) and (1415-1597) cm⁻¹ (C=N) listed at table (3). In the ¹H-NMR spectrum of compound (A₃) showed the signal (1.5),(s,1H,CH-N), (1.5-1.6)(t,2H,CH2-C=O), (7.1)(s,2H, aromatic), (8.1)(s,1H,

NH), (8.1-8.8)(s,1H,NH) these spectrum and other are shown in table (5). The reaction compound(A) with 5-substituted-2-amino-1,3,4-oxadiazole in the presence of potassium carbonate anhydrous and Diethylether as asolvent, as shown in the following equation:

The mechanism of reaction involves The amine N functions as the nucleophile and attacks the electrophilic C of the alkyl halide displacing the chloride and creating the new C-N bond. The base deprotonates the positive N (ammonium) center creating the alkylation product, here a secondary $\operatorname{amine}^{(6)}$.

The FTIR of compounds $(A_{21}-A_{30})$ have absorption band at (3205-3475) cm⁻¹ for (N-H), (1666-1724) cm⁻¹ (C=O), (1419-1481) cm⁻¹ (C=N) and (1134-1172) cm⁻¹ (C-O-C) listed at table (4).


In the 1H-NMR spectrum of compound (A₂₇) showed the signal $\delta(1.2\ 1.6)\ (d,1H,NH)$, (4.5) (s,1H,NH), $\delta(4.54)\ (s,2H,CH_2-C=O),\ (6.6-7.6)\ (d,4H,\ aromatic),\ (7.8-8.2)\ (d,1H,\ NH),\ these$ spectrum and other are shown in table (5).

Biological study⁽⁷⁾

The cup plate method using nutrient agar medium was employed in studying the antibacterial activity of some of the prepared compounds (A,A_6,A_{26}) against two types of bacteria, staphylococcus aureous (Gram positive) and Escherichia Coli (Gram negative) respectively and DMSO was used as sample solution .Using asterilizedcork borer cups were scooped out of agar medium contained in a Petri dish which was previously inoculated with the microorganisms. The test compound solution (0.1 mL) was added in the cups and the Petri dishes were subsequently incubated at (37 0C) for 48 hrs. Zones of inhibition produced by each compound was measured in mm and the results are listed in Table (6).

5. Conclusions

The biological activity of compounds were determined by measuring the diameter of the empty region around the well (In hibition zone) . From the data obtained, it is found clearly that compounds (A,A_6,A_{26}) have the highest activity against staphylococcus aurens and Escherichia coli in concentration (100g/ml).The compound (A) have agood biological activity whenecomparation with Allopurinol drug

Volume 6 Issue 10, October 2017

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

A ₁	$ \begin{array}{c} 0 \\ N \\$	80	Brown	>300
A ₂	$ \begin{array}{c} N & H \\ \hline \\ N & H \\ \hline \\ N & N \\ H \\ \end{array} \\ \begin{array}{c} CL \\ CL \\ \hline \\ CL \\ CL \\ \end{array} $	95	Brown	210-212
A ₃	NO_{2}	85	Brown	106-108
A_4	N N N C - CH ₂ N O OCH ₃	98	Brown	>300
A ₅	N N N C - CH ₂ N NO ₂	80	Brown	>300
A ₆	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	98	Dark brown	Oily
A ₇	$N = \frac{1}{N} = $	85	Orange	102-104
A ₈	$N = C - CH_2 - N - $	80	Grey	266-268
A ₉	N = 0	85	Brown	184-186
A ₁₀	N N C C C H ₂ N O O O O O O O O O O O O O O O O O O	90	Brown	>300

Table 2: Physical properties of compound(A₂₁-A₃₀) :

Compd. No.	Structure Product	Yield %	Color	M.P.°C
A ₂₁	$ \underbrace{ \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	80	Brown	>300
A ₂₂	N = C + C + C + C + C + C + C + C + C + C	85	Brown	>300
A ₂₃	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	70	Brown	>300
A ₂₄	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	85	Brown	216-218
A ₂₅	N = C + C + C + C + C + C + C + C + C + C	90	Brown	190-192
A ₂₆	$N = \frac{1}{C} = CH_2 = N = \frac{N-N}{H} = CL$	95	Brown	>300

Volume 6 Issue 10, October 2017 www.ijsr.net Licensed Under Creative Commons Attribution CC BY

A ₂₇	N = C + C + C + C + C + C + C + C + C + C	90	Brown	>300
A ₂₈	N = C + C + C + C + C + C + C + C + C + C	70	Brown	>300
A ₂₉	$N = \frac{1}{N} = $	75	Brown	116-118
A ₃₀	$\bigvee_{\mathbf{N}} \bigvee_{\mathbf{H}} \bigvee_{\mathbf{H}} \bigcup_{\mathbf{C} \to \mathbf{CH}_2 - N} \bigvee_{\mathbf{H}} \bigvee_{\mathbf{N}} \bigvee_{\mathbf{C} \to \mathbf{CH}_3} \bigvee_{\mathbf{CH}_3} \bigvee$	98	Brown	>300

Table 3: The FT-IR spectra data cm⁻¹ of the prepared compounds (A-A10)

Compd. No.	Compd. Structure	υ(N-H)	υ(C-H) aromatic	υ(C=O)	υ(C=N)	Others
A	N N N C - CH ₂ - CL	3163	-	1716	1477	υ(C-CL) 806
A ₁	N N N N N N N N N N N N N N N N N N N	3163	3082	1701	1597	υ(C-Br) 1083
A ₂	N N N N N N N N N N N N N N N N N N N	3167	3074	1697	1462	υ(C-CL) 1072
A ₃	$N_{H}^{0} = N_{H}^{0} = N_{S}^{0} = N_{NO_{2}}^{0} = N_$	3236	3070	1631	1415	υ(NO ₂) 1496
A ₄	N C - CH ₂ N OCH ₃	3163	3082	1712	1477	υ(OCH ₃) 1172
A ₅	N H C-CH ₂ N NO ₂	3167	3078	1701	1481	υ(NO2) 1481
A ₆	N H C C C H ₂ H S C C H ₃	3170	3078	1701	1477	-
A ₇	N CL	3178	3099	1631	1450	υ(NO2) 1450 , υ(C-CL) 1080
A ₈	N N C C C H ₂ N N N N N N N N N N N N N N N N N N N	3263	3078	1712	1435	υ(OH) 3390
A ₉	$\bigvee_{H}^{0} \bigvee_{C-CH_{2}}^{0} \bigvee_{H}^{0} \bigvee_{S}^{0} \bigvee_{C-CH_{3}}^{0} \bigvee_{C-CH_$	3178	3082	1666	1481	-
A ₁₀	N C CH2 N S OH	3167	3078	1701	1477	υ(OH) 3480

Volume 6 Issue 10, October 2017 www.ijsr.net Licensed Under Creative Commons Attribution CC BY

Table 4: The FT-IR spectra data cm ⁻¹ of the prepared compounds(A_{21} - A_{30})								
Compd. No.	Compd. Structure	υ(N-H)	υ(C=O)	υ(C=N)	v(C-O-C)	Others		
A ₂₁		3205	1666	1473	1172	υ(OH) 3414		
A ₂₂	N = C + C + C + C + C + C + C + C + C + C	3170	1697	1481	1157	-		
A ₂₃	$ \underbrace{ \begin{pmatrix} 0 \\ N \\ N \\ H \end{pmatrix}}_{H} \underbrace{ \begin{pmatrix} 0 \\ C \\ -CH_2 - N \\ H \\ -CH_2 - N \\ H \\ -CH_2 - N \\ -CH_$	3167	1697	1477	1157	υ(OCH ₃) 1161		
A ₂₄	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	3232	1697	1419	1134	υ(OCH ₃) 1134		
A ₂₅	N = C + C + C + C + C + C + C + C + C + C	3182	1697	1481	1161	υ(OH) 3437		
A ₂₆	$N \xrightarrow{O}_{H} C - CH_2 - N \xrightarrow{N-N}_{H} CL$	3167	1705	1481	1141	υ(C-CL) 1083		
A ₂₇	N = C + C + C + C + C + C + C + C + C + C	3163	1724	1469	1161	υ(C-CL) 1095		
A ₂₈	$ \begin{array}{c} CL \\ C \\ C \\ C \\ C \\ H \\ C \\ C \\ H \\ C \\ C$	3163	1697	1423	1157	υ(C-CL) 1090		
A ₂₉	$ \begin{array}{c} $	3178	1701	1477	1157	υ(C-Br) 1083		
A ₃₀	$N = C - CH_2 - N = N - CH_3 - N - N - CH_3 - N - CH_3 - $	3156	1678	1473	1168	-		

Table 4• The FT-IR spectra data cm⁻¹ of the prepared compounds(A₂₁-A₂₂)

Table 5: 1H-NMR spectral data (⁸ppm) for selected compounds

(Compd.No.	1H-NMR spectral data (⁶ ppm)
	А	δ(1.0-1.4)(s,1H,CH-N),δ(3.0)(s,1H,CH-N),δ(4.2)(s,1H,CH ₂ C=O),δ(8.0-8.1)(d,2H,NH)
	A ₃	δ(1.5),(s,1H,CH-N),δ(1.5-1.6)(t,2H,CH2-C=O), δ(7.1)(s,2H, aromatic), δ(8.1)(s,1H, NH), δ(8.1-8.8)(s,1H,NH)
	A ₂₇	δ(1.2-1.6)(d,1H,NH),δ(4.5)(s,1H,NH),δ(4.54)(s,2H,CH ₂ -C=O), δ(6.6-7.6)(d,4H, aromatic), δ(7.8-8.2)(d,1H, NH),

Table 6: Antibacterial activi	ty data of Allopurinol derivatives
-------------------------------	------------------------------------

Compd.	Compd.Structure	Gram Positive			C	Gram negative		
No.		Staphylococcus aureus		Escherichia coli				
		Conc	c. Of extract	g/ml	Conc. Of extract g/ml			
		25	50	100	25	50	100	
А	$N = C - CH_2 - CL$	20	25	30	17	23	28	
A_6	N N N C - CH ₂ N S C - CH ₃	10	14	18	8	12	15	
A ₂₆	$N = \frac{1}{2} - CH_2 - H_2 - CH_2 - H_2 - CH_2 - CH$	8	8	11	-	9	12	

Volume 6 Issue 10, October 2017

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY

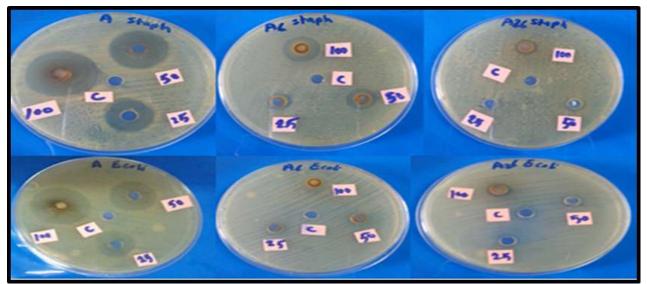


Figure 1: The effect on staphylococcus and E.coli.

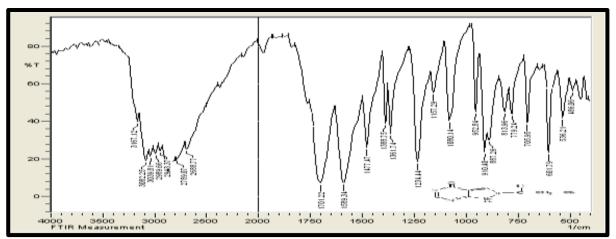


Figure 2: FT-IR Spectral of compound (A)

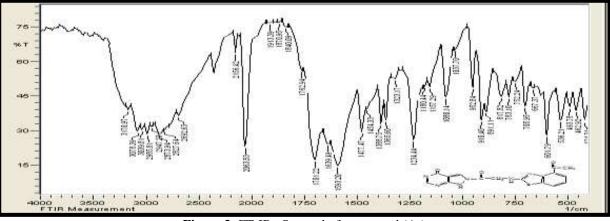


Figure 3: FT-IR Spectral of compound (A₆)

Volume 6 Issue 10, October 2017 <u>www.ijsr.net</u> Licensed Under Creative Commons Attribution CC BY

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

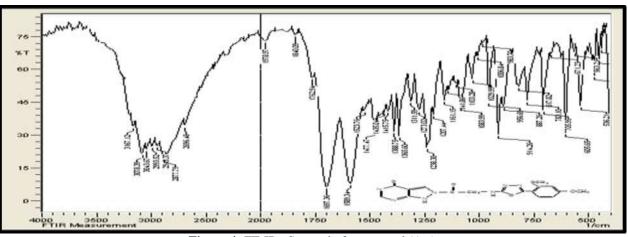
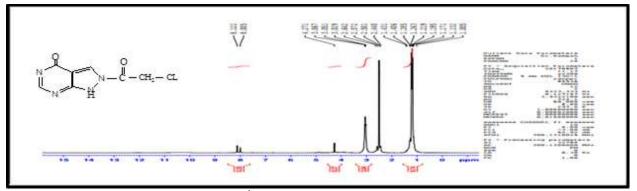
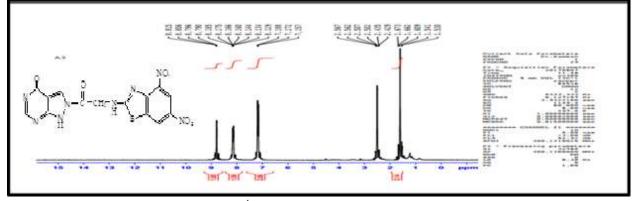





Figure 4: FT-IR Spectral of compound (A₂₃)

Figure 4: ¹H-NMR Spectral of compound (A)

Figure 5: ¹H-NMR Spectral of compound (A₃)

Figure 6: ¹H-NMR Spectral of compound (A₂₇)

References

- [1] S.N. Murthy.2014," UV spectroscopic method development and validation of Allopurinol in bulk and pharmaceutical dosage form". World Journal of Pharmaceutical Research. Vol. 3, PP. 1404-1413.
- [2] A. A. Ammar, A. M. Samy, M. A. Marzouk, M. k. Ahmed.2011, "Formulation characterization and biopharmaceutical evaluation of Allopurinol tablets" International Journal of Biopharmaceutics.Vol. 2(2),PP. 63-71.
- [3] T. A. Mahmood.2015," Synthesis of new N-Substituted -3- chloro -2- azetidinonesDiamin phenyl-1,3,5-triazine". Journal of the Basic Education.Vol.21(88).PP.1-12
- [4] S.M.H.Al-Majidi. 2013,"Synthesis, Characterization and Evaluation of Antimicrobial Activity of Several New N-Substituted Carbazole". Journal of Al-Nahrain University. Vol.16 (4), PP.67-79.
- [5] M.K.Mahmmod.2012,thesis." Synthesis and characterization of heterocyclic derivatives from 2-azo benzothiazole".University of Baghdad
- [6] H.D.Mandal.1996,"Thianthrene cation radical induced reactions of semicarbazones and acylhydrazones".
- [7] S.J.Khammas.2012,"Synthesis and Characterization of(Oxozepine,Diazepine,Teterazole) for Derivatives of Sulfamethoxazole Drug".Tikrit Journal of PurScience.Vol.17(4).PP.84-96.