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Abstract: Penny uses a distributed reputation management system based on EigenTrust to securely manage data labels without the 

introduction of a central authority. The data labels empower requester peers to avoid downloads of low-integrity data, and allow sender 

peers to deny low privilege peers to access high confidentiality data. In addition, sender peers may publish and serve their data 

anonymously, frustrating attacks that seek to single out and target owners of security-relevant data. We have applied Penny to construct 

a secure, fully decentralized, data management system for traditional data les as well as Resource Description Framework (RDF) data. 

In this paper, present penny network architecture and their result and analysis.  
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1. Introduction 
 

We have centralized master nodes in clouds that are trusted 

for integrity, in order to reuse the existing cloud 

infrastructure. We adopt a structured peer to peer (P2P) 

topology that eliminates centralized trust. All of the master 

nodes can act as peers and they distribute jobs and data 

between them. However in order to obtain that level of 

decentralization, we must abandon the existing cloud 

structure and develop a whole new protocol. Peer to peer 

(P2P) networking is a distributed, load-balancing computing 

paradigm de-signed to scalable share workloads between 

peers. Unlike traditional client-server models, each peer in a 

P2P network is an equally privileged, equipotent participant 

in the distributed computation or service. This has the 

advantage of avoiding centralized points of failure that, 

when successfully attacked, suffice to dismantle the entire 

network. P2P was first popularized as a vehicle for music 

sharing but has since expanded to general purpose file and 

data sharing applications and is increasingly important as a 

basis for fault tolerant cloud computing. Since its inception, 

it has been tremendously popular and ubiquitous because of 

its collective computation power, natural load balancing, and 

low cost deploy ability. For example, it has been estimated 

that Bit Torrent traffic accounts for roughly 27-55% of all 

Internet traffic (depending on geographical location) as of 

February 2009. 

 

Penny is overlay and resource sharing protocol as a 

preliminary study without any implementation or 

experiments. We here extend that theoretical work with 

improvements to the architectural design, new formulas for 

computing data integrity and confidentiality labels, 

empirically determined optimal neighborhood sizes, new 

publish and request protocols adapted for RDF data, and 

other new empirically tested algorithms necessary for the 

system. 

 

2. Penny Network Architecture 
 

Penny is designed using a standard Chord ring, but with an 

extended form of reputation tracking: For each peer and data 

object, Penny allots k score manager peers and k key holder 

peers (respectively) to compute and track the peer or object's 

trust label(s). Parameter k is fixed at network start and 

controls the degree of replication; greater k means greater 

security, since attackers must compromise more peers to 

successfully corrupt data. Penny strategically positions 

responsibility sharing score managers and key managers at 

adjacent ring positions, forming a neighborhood. This 

greatly improves lookup efficiency over standard Chord, 

since only one overlay message (instead of k) suffices to 

contact all k replicas. The result is high replication (and 

therefore high security) with low overhead. 

 

To protect data ownership privacy, data lookups in Penny 

employ a cryptographically protected extra level of 

indirection. Data serving peers first encrypt their requests 

with the public key of the data item's key holder, and then 

ask an arbitrary score manger to forward the server's key 

(not its real identifier) and encrypted information to the key 

holder. As a result, the key holder does not know who the 

real owner of the data item is, and so when someone later 

requests that data item, the key holder forwards the request 

back through the score manger(s). Meanwhile, the score 

mangers do not know which data items are owned by which 

peers, and thus learn no peer object associations as they 

forward the requests. As a result, the ownership information 

is concealed from all other parties. 

 

2.1 Definitions  

 

Agents: We refer to the peers in a P2P network as agents. 

Each agent a is assigned an identifier ida by applying a one 

way, deterministic hash function to its IP address and port 

number. We assume that identifiers are unique and that 

agents cannot influence which identifiers they are assigned. 

An agent's identifier determines its position in the network's 

ring structure. When agents are arranged in a ring, each 

agent has a predecessor pred(a) and a successor succ(a). We 

refer to the interval (idpred(a), ida)as the identifier range of 

agent a. 

 

Objects and keys: An object o is an atomic item of data 

(e.g., a file) shared over a P2P network. Each object also has 

a unique identifier ido obtained by applying a one way, 

deterministic hash function to its name. Objects can be 

owned by multiple agents. A single key is associated with 
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each object and each agent. The keys for object o and agent 

a are defined by keyo = h(ido) and keya = h(ida) respectively, 

where h is a one way, deterministic hash function over the 

domain of identifiers. 

 

Key holders and Score managers: Each agent a1 is 

assigned a (not necessarily unique) key range, denoted 

kr(a1). Agent a1 is charged with tracking the global integrity 

and confidentiality labels assigned to all objects o that 

satisfy keyo ε kr(a1). In addition, agent a1 tracks the global 

trust values assigned to all agents a2 satisfying keya2 ε kr(a1). 

Whenever keyo ε kr(a1) holds, we refer to agent a1 as a key 

holder for object o, and we refer to object o as a daughter 

object of agent a1. Likewise, whenever keya2 ε kr(a1) holds 

we refer to a1 as a score manager for agent a2, and we refer 

to agent a2 as a daughter agent of agent a1. Every peer in a 

Penny network acts as both a key holder for some objects 

and a score-manager for some peers. 

 

Local confidentiality and integrity labels: Each object o is 

labeled with a measure of its integrity and confidentiality 

levels. We denote the integrity and confidentiality labels 

assigned to object o by agent a as ia(o) and ca(o), 

respectively. Similarly, there are local integrity and 

confidentiality labels for agents with whom other agents had 

transactions. Integrity labels measure data quality; 

confidentiality labels measure that should be permitted to 

own the data. In Penny, confidentiality and integrity labels 

are modeled as real numbers from 0 to 1 inclusive, with 0 

denoting lowest confidentiality and integrity and 1 denoting 

highest confidentiality and integrity. 

 

Local trust values: Trust measures the belief that one agent 

has that another agent or object will behave as expected or 

promised. Each ordered pair of agents (a1, a2) has a local 

trust value denoted ta1 (a2) that measures the degree to which 

agent a1 trusts agent a2. Likewise, each ordered pair of agent 

and object (a, o) has a local trust value denoted ta(o) that 

measures the degree to which agent a trusts object o. Like 

confidentiality and integrity labels, trust values range from 0 

to 1 inclusive. Local integrity and confidentiality labels are 

computed and assigned based on local trust values. 

 

Global labels and trust values: Each object o in the system 

is associated with global integrity and confidentiality labels, 

denoted io and co, respectively, and measured by global trust 

values To. Likewise, each agent a is associated with global 

integrity and confidentiality labels, denoted ia and ca, 

respectively, and measured by global trust values Ta. Key 

holders with a common key-range compute to and score 

managers with a common key range calculate Ta using 

secure EigenTrust. Thus, the global labels and global trust 

values for any object o and for any agent a can be acquired 

by any agent in the network by contacting all key holders akh 

for object o, and all score managers asm for agent a. 

 

2.2 Network Architecture 

 

Identifier Space and Neighborhood 

A Penny ring is like a Chord ring, with Penny's identifier 

ranges being equal to Chord's key ranges. However, a Penny 

agent's key range strictly subsumes its identifier range, and 

agent key ranges are not unique. Key ranges are assigned in 

a Penny ring so that for every agent a, there are between 

min(k, n) and c agents in the ring whose key ranges are 

equal to kr(a), where n is the total number of agents and c is 

a fixed bound on neighborhood size. Bounding 

neighborhood size from below by k limits the influence of 

malicious agents, because each contributes at most 1/k of the 

responses to a secure query. Bounding it from above by c 

ensures that lookup is not too costly, and it bounds the 

storage overhead for finger tables. 

 

Message Routing 

An agent can contact all score managers for a particular 

agent a, or all key-holders for a particular object o, using 

O(log N + k) messages. The first O(log N) messages 

propagate the message using the Chord algorithm to an 

agent whose identifier range includes keya or keyo, who then 

forwards it directly to the other O(k) agents in its 

neighborhood. Penny therefore reduces the overhead of all 

network operations that involve contacting key holders, 

score-managers, and RDF data owners by a factor of k over 

EigenTrust. This permits higher replication rates (e.g., k = 

16) that are often infeasible with past approaches. 

 
Figure 1.1: Penny message propagation 

 

As in Chord, each agent a in a Penny ring maintains a finger 

table that is used to route messages efficiently. For each i ε 

(0, m), agent a's finger table includes the agent whose 

identifier range includes (ida + 2
i
) mod 2

m
 (where 2

m
 is the 

size of the identifier space). In addition, agent a's finger table 

also includes an entry for each agent in its neighborhood. 

The size of each finger table is therefore O(m + k), where k 

is a constant dictating the number of redundant key holders 

assigned to each key. 

 

Figure 1.1 shows an example of the propagation of a Penny 

message through the resulting ring. In this example, m = 6. 

Agent 0 wishes to send a message to all agents whose key 

range includes identifier 28. First, the message is propagated 

along the ring according to the Chord algorithm to the agent 

whose identifier range includes 28 (agent 42). This involves 

first sending the message to the agent whose identifier range 

includes 0 + 2
4
 = 16 (owner is agent 16), and next to the 

agent whose identifier range includes 16 + 2
3
 = 24 (owner is 

agent 42). Once the message reaches an agent whose key 

range includes 28, that agent forwards the message directly 

to all other agents in its neighborhood. These are all agents 

in the ring whose key-ranges include 28. 

 

Network Dynamics 

To maintain the invariant that the number of score managers 

for each key range stays between k and c, a Penny network 
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must occasionally split or merge neighborhoods as agents 

join and leave the network. If a peer join causes a 

neighborhood's population to rise above c, it splits into two 

smaller neighborhoods. Dually, if peer leave reduces a 

neighborhood's population below k, some or all peers from 

an adjacent neighborhood migrate in. When an agent anew 

joins a Penny ring, it is by default assigned a key range 

identical to its successor's. Its successor informs all agents in 

its neighborhood that they should update their finger tables 

to include anew. However, if this would result in a 

neighborhood size b that is greater than c, a split occurs. The 

first (b/2) agents and the last b-(b/2) agents in the 

neighborhood each become their own neighborhoods. The 

key ranges of the new neighborhoods are the unions of the 

identifier ranges of the agents within each. Figure 1.2 

illustrates a join operation with a split. Identifiers are labeled 

next to each agent outside the ring, and agent key ranges are 

labeled inside the ring. In this example, k = 2, c = 4, and m = 

6, so when the agent with identifier 8 joins, key range [5, 42] 

has more than c agents and must be split. 

 
Figure 1.2: Agent joins operation 

 

When an agent aold leaves a Penny ring, it informs its 

successor asucc and the other agents in aold's neighborhood. If 

asucc is in a different (adjacent) neighborhood, asucc informs 

the other agents in that neighborhood that the 

neighborhood‟s key range has grown to include identifiers 

up to and including idpred + 1 (where apred is aold‟s 

predecessor). Likewise, agents in aold 's neighborhood must 

shrink their key ranges so that they end with idpred. If the 

departure of aold causes aold „s neighborhood to have fewer 

than k members, two adjacent neighborhoods must be 

merged. Let Hold be aold „s neighborhood and Hpred be the 

preceding neighborhood. If oldH k  then the agent in Hold 

whose predecessor is in Hpred sends a merge request to its 

predecessor. That merge request is then forwarded to all 

agents in Hpred.  If predH k 1   then both neighborhoods 

merged to form a single neighborhood. Otherwise, the 

rightmost pred oldH H / 2  agents of neighborhood Hpred 

join neighborhood Hold. The key ranges of the new 

neighborhoods are the unions of the identifier ranges of the 

agents in the new neighborhoods. 

 

 
Figure 1.3: Agent leaves operation 

 

Figure 1.3 illustrates an agent leave operation that requires a 

key range merge. Here, the departure of agent 15 from the 

ring leaves fewer than k = 2 agents in its neighborhood. 

Agent 16 therefore merges with its predecessor 

neighborhood; agents in both neighborhoods extend their 

key ranges to include the identifier ranges of all agents in the 

new neighborhood. Whenever an agent's key range shrinks 

due to any of the above operations, it must transfer any state 

associated with keys not in its new range to the appropriate 

key holders. Similarly, whenever its key-range grows, it 

receives state associated with new keys from the agents who 

previously occupied that range. An average net population 

change of 1/2 (c - k) agents per neighborhood is required 

before that neighborhood will need to be split or merged. 

Thus, by initializing c to be large relative to k, the frequency 

of these state transfer operations can be reduced. 

 

Agent's Local State 

In addition to routing messages, each agent a in a Penny 

network plays three different roles. It acts as a server when 

sharing objects, as a score manager for agents whose keys 

fall within its key-range, and as a key holder for objects 

whose keys fall within its key range. For each of these roles, 

it maintains some internal state: 

 To act as server, it maintains a list of the identifiers ido of 

each object o that it owns.  

 To act as score manager, it maintains a list of daughter 

agents ad that satisfy keyad ε kr(a). These are the agents for 

whom agent a is a score manager. For each daughter agent 

ad, it also maintains a vector of global trust values Tad with 

global integrity and confidentiality labels iad and cad 

respectively.  

 To act as key holder, it maintains a list of daughter objects 

od that satisfy keyod ε kr(a). These are the objects for which 

agent a is a key holder. For each daughter object od, it 

maintains a vector of global trust values Tod with global 

integrity and confidentiality labels iod and cod respectively. 

 For encrypted communication, it chooses a public key, 

private key pair (Ka, Ka). 

 It maintains a list of the keys keysvr and public keys Ksvr of 

the agents that serve object o. Thus key holders do not 

learn the actual identifiers of agents who serve object o, 

only their keys.  

 It maintains local trust values ta(a1) and ta(o) for agents a1 

and objects o with whom it had experience. These local 

trust values give rise to local integrity and confidentiality 

labels that agent a associates with a1 and o.  
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Publishing and Downloading Protocols for Traditional 

File Objects 

Once a Penny network has been initialized, agents interact 

according to the protocols detailed below. The protocol 

diagrams that follow use solid arrows to denote messages 

that are sent directly from agent to agent without using the 

P2P overlay, and dashed arrows for messages that use the 

P2P overlay to find the message target based on its ring 

identifier. Dashed arrows therefore actually involve sending 

O(log N + k) total messages. Arrows with double heads may 

optionally be sent via anonymizing tunnels for privacy. 

Notation Ka denotes agent a's public key, and < … >K 

denotes a message encrypted with key K. 

 

 
Figure1.4: Request protocol for traditional file object 

 

When an agent asvr wishes to share an object o, it must first 

publish that object according to the protocol depicted. Agent 

asvr first obtains (possibly anonymously) the public keys of 

all key holders akh for object o. Agent asvr next encrypts the 

object identifier and its own public key with each of the key 

holders public keys. It asks one of its score-managers asm to 

forward the encrypted messages to the key holder‟s akh. 

Agent asm conceals agent asvr‟s identity by sending only its 

key (which later can be used to get the global trust values 

and labels from the server's score-manger) to the key holder 

rather than its identifier, along with the encrypted message. 

 

To request an object shown in Figure 1.4, requester areq first 

sends the requested object‟s identifier to all key holders akh 

for the object. Each key-holder responds with the object‟s 

global integrity and confidentiality labels, and a list of the 

keys and public keys of servers who offer the object. Agent 

areq can then obtain the object from any server asvr by 

sending a request to all score-managers for agent asvr. Score 

mangers reply to areq with the server‟s global trust labels. 

Based on a selection procedure areq then sends a download 

request message. In the message, the requested object‟s 

identifier is encrypted with the server‟s public key to avoid 

disclosing it to the selected server's score manager. The 

score managers forward the request to the server. The server 

can then anonymously send the data directly to the requester. 

 

Publishing and Downloading Protocols for RDF Datasets 

Besides traditional file lookup, Penny also supports RDF 

dataset queries. RDF triples are stored within file objects, 

but it would be prohibitively inefficient and insecure to store 

all triples within a single file owned by a single peer. Triples 

are therefore distributed over many smaller files distributed 

across many peers, with a protocol for locating each triple's 

containing file. Neighborhoods therefore collaborate to 

manage a subset of triples. Instead of keys for files, we 

associate triples with identifiers directly, and all 

neighborhood agents reply with list of servers who own the 

identified triples. This publishing procedure is detailed in 

Publish protocol for RDF data Algorithm. To distribute the 

load of serving particularly popular triples, each agent 

maintains a usage count for each triple it serves. When this 

count exceeds an agent imposed popularity threshold, it 

defers storage of future instances of that triple component to 

its successors in the ring. This implements a form of 

coalesced chaining in the distributed hash table. 

 

RDF queries have syntax ( ? s, ? p, ? o), where s is a 

subject, p is a predicate, and o is an object, and where each 

optional ? indicates an unknown in the query. For example, 

query (s,p,?o) requests all RDF triples satisfying subject s 

and predicate p. For downloading or querying RDF datasets 

over Penny network, agents implement Download protocol 

for RDF data Algorithm. 

 

Reputation based Trust Management 

Penny incorporates a reputation based trust management 

system based on EigenTrust. EigenTrust is a secure, 

distributed trust management system that maintains a 

globalized trust value for each agent. These globalized trust 

values are obtained by an iterative computation that 

approximates the left eigenvector v of the matrix T of all 

local trust values in the network. That is, if we define 

element Tij to be the degree to which agent ai trusts agent aj, 

then the left eigenvector v of matrix T measures each agent 

a‟s global trust based on how much each agent trusts a, how 

much each agent trusts the agents who trust a, etc. If an 

agent ai downloads a file or RDF data from an agent aj, it 

rates the transaction as positive or negative based on the 

experience. We may define local trust value s(ai, aj) as the 

sum of these ratings of agent aj by agent ai. Then, in order to 

aggregate the local trust values, they are normalized. We 

may define normalized local trust value, c(ai, aj), as follows: 

Equation 1.1 

 
This ensures that all values are between 0 and 1. These 

normalized local trust values are then aggregated. To keep 

the algorithm scalable and robust, eigenvector v is computed 

in a distributed and redundant fashion, where k different 

agents (score managers) are responsible for computing each 

element of v. This conforms to Secure EigenTrust except 

with global trust labels extended to objects as well as agents, 

and score manager replicas grouped into Penny 

neighborhoods for better performance rather than disbursed 

throughout the ring. 

 

Data Selection Procedure 
Every object request (whether a traditional file downloads or 

RDF query) delivers to requesting agent areq a set S of agents 

who can supply the object. If some respondents are 

malicious, some of these responses may differ. Agent areq 

must choose among them based on their reputations. To do 

so, it partitions S by response. Let R denote the resulting 

equivalence relation, so that quotient set S/R is the set of 

Paper ID: ART20178543 DOI: 10.21275/ART20178543 266 

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/


International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391 

Volume 6 Issue 12, December 2017 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

agent groups, each of which returned a common response. 

For each partition P ε S/R we compute the following 

evaluation function. 

Equation 1.2 

 
 

Publish Protocol for RDF Data Algorithm 
Step-1: For each RDF triple r do  

Step-2: For each part (subject/predicate/object) rp of r do  

Step-3: attempt     0 

Step-4: while true do  

Step-5: id   succ(h(rp + attempt)) 

Step-6: ask aid to store the triple r  

Step-7: if aid already at popularity threshold then  

 aid refuses to store r  

 attempt     attempt + 1 

 else  

 aid stores r  

 break  

end if  

end while  

end for  

end for  

 

(Algorithm-1) 

 

Download Protocol for RDF Data Algorithm 

Step-1: For each sub query q in query Q do 

Step-2: For each part (subject/predicate/object) qp in q do 

Step-3: attempt   0 

Step-4:  while true do 

Step-5: id   succ(h(qp + attempt)) 

Step-6: Request triples D from aid satisfying qp 

Step-7: if D < agent aid‟s popularity threshold then 

 break  

   else 

 attempt   attempt + 1 

 end if  

 end while 

             end for  

             end for  

 

(Algorithm-2) 

where w1  and w2  are weights in [0, 1] that prioritize each 

partition‟s relative size and reputation, respectively, in the 

evaluation.   

 

Data Server Selection Procedure Algorithm 

Step-1: if all members of S have trust 0 then 

   Select one server from S randomly 

   else  

   if transaction is a police transaction then 

   w1   0 

   w2   0 

Step-2:  For each partition P ε S/R do 

      choose partition P with probability f(P ) 

   end for 

   else 

Step-3:  w1   0.2 

   w2 0.8 

Step-4:  B f (P) p S/R arg max  

Step-5:   BB P p arg max  

Step-6:   choose a partition randomly from set B 

     end if 

 

(Algorithm-3) 

Equation 1.2 is used by Data Server Selection 

Procedure Algorithm to resolve the selection choice. In the 

algorithm, police transactions are non-user transactions 

submitted by the security system during idle times in order 

to improve convergence. 

 

3. Results and Analysis 
 

We focus on four classes of attacks: 

 A malicious agent or collective might spread corrupt or 

incorrect data. For example, the malicious agent or 

collective might spread malicious code or circulate false 

facts.  

 A malicious agent or collective might attach incorrect 

security labels to data. In particular, low integrity data 

might be ascribed a high integrity label, or high 

confidentiality data might be described a low 

confidentiality label. 

 A malicious agent or collective might attempt to learn 

which agents own certain data, perhaps as a prelude to 

staging additional attacks against those agents.  

 A malicious agent or collective might attempt to generate 

a list of all data served by a particular agent, violating that 

agent‟s privacy.  

 

We do not consider attacks upon the network overlay itself, 

such as message misrouting, message tampering, or denial of 

service attacks. These attacks are beyond the scope of this 

work, but could be addressed with various techniques, such 

as digital signatures, delivery receipts, and non-deterministic 

routing. Data Server Selection Procedure Algorithm makes 

the natural choice of preferring high over low reputation 

agents for user submitted requests. We discovered that this 

tends to cause Eigen Trust (and other reputation based trust 

management systems) to converge slowly because low 

reputation agents are so rarely exercised. We introduced a 

new form of transaction, called a police transaction that is 

designed to harmlessly exercise the system during idle 

periods rather than yield a correct result. Such transactions 

utilize low reputation agents, providing higher reputation 

agents additional opportunities to evaluate their answers. We 

used 50% police transactions. 

 

For non-police transactions, we placed greatest weight on 

reputations (w2 = 0.8) and the remaining weight on 

consensus size (w1 = 0.2). We consider each 20 downloads 

as one frame and thus show the frame position over time 

with 1000 downloads. After each frame, we run the 

EigenTrust algorithm and compute global trust values 

accordingly. We run it 5 times and take the average success 

rate and we pessimistically assume that all malicious agents 

know the identities of all the pre-trusted agents, and that 

they must display high trust for those agents in order to 
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avoid lowering their own reputations. Thus, malicious 

agents trust only other malicious agents and pre-trusted 

agents. In our negative feedback, malicious agents always 

serve malicious files, and non-malicious agents who 

download the files always submit negative feedback for the 

transaction. Figure 1.5 shows that under these conditions, 

malicious agents fail to accrue high trust. Figure 1.5 (a) is 

for a static network with no leaves or joins, and Figure 

1.5(b) is for a dynamic network undergoing constant churn. 

As expected, convergence is slower in the presence of 

dynamic activity; the static network converges at about 

frame 10, whereas the dynamic doesn't until about frame 20. 

For both, we get a very high average success rate 95.58% for 

the static network and 92.22% for the dynamic one, even 

with 20% malicious agents. Figure 1.6 records the results of 

our half correct behavior in which malicious agents provide 

correct les 50% of the time. Non-malicious agents always 

provide positive feedback for correct les and negative 

feedback for corrupt ones. Both static and dynamic networks 

converge quickly at approximately frames 14 and 24, 

respectively. Average success rates were also still very high 

96.72% for the static network and 94.50% for the dynamic 

one. We further observe that the success rates are higher 

than each corresponding negative feedback since malicious 

agents provide correct les 50% of the time. On the other 

hand, convergence is slower because non-malicious agents 

take longer to identify the malicious agents. 

 
Figure 1.5(a):  Static network 

 
Figure 1.5(b):  Dynamic network. 

Figure 1.5: Negative feedback success rate. 

 
Figure 1.6 (a):  Static network 

 
Figure 1.6(b):  Dynamic network 

Figure 1.6: Half correct behavior of success rates 

 

Figure 1.6 records the results of our half correct behavior in 

which malicious agents provide correct files 50% of the 

time. Non-malicious agents always provide positive 

feedback for correct files and negative feedback for corrupt 

ones. Both static and dynamic networks converge quickly at 

approximately frames 14 and 24, respectively. Average 

success rates were also still very high: 96.72% for the static 

network and 94.50% for the dynamic one. We further 

observe that the success rates are higher than each 

corresponding negative feedback, since malicious agents 

provide correct files 50% of the time. On the other hand, 

convergence is slower because non-malicious agents take 

longer to identify the malicious agents.  

 

Our malware propagation considers the pervasive problem 

of botnet malware infections of P2P file sharing networks. 

Non-malicious down loaders of malicious files have a 20% 

chance of becoming infected and exhibiting malicious 

behavior thereafter. Malicious agents behave the same as in 

the half-correct behavior experiment. In both static shown in 

Figure 1.7 (a) and dynamic shown in Figure 1.7(b) networks, 

success rates initially drop as previously high reputation 

agents suddenly attack the system. However, the reputation 

system adapts and around frame 16 the non-malicious agents 

manage to largely isolate the infection. The count of 

malicious agents continues to grow monotonically, as seen 

in Figures 1.8(a) and 1.8(b), because it includes no facility 

for disinfection. But the growth slows, and any new 

malicious agents are identified relatively quickly by the non-

malicious majority. The average success rates were 93.04% 

for static networks and 90.44% for dynamic ones. 
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Figure 1.7 (a):  Static network success rate 

 
Figure 1.7 (b): Dynamic network, success rate 

Figure 1.7: Malware propagation success rates 

 
Figure 1.8(a):  Static network propagation rate 

 
Figure 1.8 (b): Dynamic network propagation rates. 

Figure 1.8: Malware propagation rates. 

 

3.1 Results for RDF Datasets 
 

We present the algorithmic results for RDF dataset 

download in the presence of malicious agents, and show the 

robustness of Penny networks. We publish protocol 

Algorithm-1 and download protocol Algorithm-2. We use 

the LUBM100 dataset for our algorithm which is broadly 

used by researchers for similar evaluations. The LUBM data 

generator yields datasets in RDF/XML format, which we 

converted to N-triples format. For download or query 

purposes, we use atomic triple queries and conjunctive multi 

predicate queries. We conduct the same three sets of 

algorithmic method for RDF datasets. For the negative 

feedback results shown in Figure 1.9 we see average success 

rates of 95.12% for static networks and 87.26% for dynamic 

ones. These are slightly lower than the corresponding rates 

for non-RDF file downloads because of the additional 

number of transactions required to successfully answer RDF 

queries. If any sub query fails, the entire query fails. In 

addition, the coalesced chaining implemented by Algorithm-

2 requires additional transactions to retrieve popular triples. 

Convergence rates are slightly lower for the same reason. 

Despite this, both success rates and convergence rates 

remain quite high for a network with so much malicious 

population. The half-correct behavior experiment exhibits 

even faster convergence, as seen in  Figure 1.10. The static 

network converges at about frame 15 and the dynamic at 25. 

Average success rates were similarly high at 96.46% and 

92.78%, respectively. While malware is not possible in RDF 

data to our knowledge, for the sake of completeness we 

replicated the malware propagation experiment for the RDF 

publish and download protocol. Results are reported in 

Figures 1.11-1.12. Both static and dynamic networks 

exhibited fast convergence; about frame 19 for the static 

network and 29 for the dynamic one. Success rates were 

similarly promising, being 92.90% and 88.98% on average 

for the static and dynamic cases, respectively. Again, these 

are slightly lower than for file downloads because of the 

higher complexity of the RDF protocol. As before, both 

networks exhibit an initial drop in success but manage to 

adapt and recover fairly smoothly. 

 

 
Figure 1.9 (a): Static Network 

 
Figure 1.9 (b): Dynamic network 

Figure 1.9: RDF negative feedback success rates 
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Figure 1.10(a): Static network 

 
Figure 1.10(b): Dynamic network 

Figure 1.10: RDF half correct behavior success rates 

 
Figure 1.11(a): Static network, success rate 

 
Figure 1.11(b): Dynamic network, success rate 

Figure 1.11: RDF malware propagation success rates 

 
Figure 1.12(a): Static network, propagation rate 

 

 
Figure 1.12(b) Dynamic network, propagation rate 

Figure 1.12: RDF malware propagation rates 

 

3.2 Analysis 

 

The high success rates and strong convergence properties 

algorithmically observed and can be traced largely to 

Penny's support for exceptionally high data replication via 

its neighborhood topology. Label retrieval is efficient in 

Penny, requiring approximately the same number of 

messages as object lookup in a Chord network, but with k 

independent replicas of each label. An agent can retrieve any 

object's global integrity label by sending a single request 

message, which gets forwarded at most O(logN + k) times 

throughout the network. The request solicits O(k) response 

messages, from which one response is selected via 

Algorithm-3. Penny inhibits the spread of low-integrity data 

(e.g., malware) by maintaining a global integrity label for 

each object shared over the network. Agents wishing to 

avoid such data can therefore consult each object's global 

integrity label before downloading it. Thus, the problem of 

restraining the spread of malware over a Penny network 

reduces to the problem of efficiently maintaining and 

reporting accurate integrity labels. In addition to global 

integrity labels, Penny also maintains global confidentiality 

labels for objects. Agents can use these labels as a basis for 

selectively serving data to other agents possibly based on the 

requester's trust level, global confidentiality label, or other 

credentials. 

 

An object's global security labels are determined by the 

votes of other agents in the network via EigenTrust. Votes 
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are weighted by the reputation of each voter so that the votes 

of agents who are widely regarded as trustworthy are more 

influential than the votes of those who are not. This makes it 

difficult for a malicious agent to attach a high integrity label 

to low integrity data. In order for such an attack to succeed, 

malicious agents must collectively have such good 

reputations that they outweigh the votes of all other voters. 

Penny uses EigenTrust to track agent reputations and to 

prevent malicious agents from accruing good reputations. 

Secure hashing and replication are both employed to protect 

against malicious key holders and score-managers who 

might falsify an object's global integrity labels or an agent's 

global trust value. Use of a secure hash function for 

identifier assignment ensures that agents cannot dictate the 

set of objects and agents for which they serve as key holders 

and score managers. By ensuring that there exist at least k 

key holders and score managers for every key range, Penny 

prevents any one agent from subverting the reputation of any 

object or agent. At least [b/2] agents in a neighborhood must 

be malicious in order to subvert a reputation, where b >= k is 

the neighborhood size. Malicious peers cannot elevate their 

own reputations by switching IP addresses or creating false 

network accounts because all agent and object reputations 

start at zero in Penny. An agent or object acquires a positive 

reputation only by participating in positive transactions with 

other agents. Agents with established reputations then report 

positive feedback for those transactions, elevating the new 

agent's reputation. Unlike Penny, Chord requires each key-

holder to maintain a list of the agents who own the key-

holder's daughter objects. These lists are reported to any 

agent who requests the object, divulging the identities of all 

agents who own a particular object To address this privacy 

vulnerability, Penny conceals information associating agents 

with the objects they own by splitting that information 

amongst key holders and score managers. A malicious key 

holder and a malicious score manager must therefore 

collaborate to learn that a particular server owns a particular 

object. Opportunities for such collaboration are limited 

because key holders and score-managers cannot choose their 

key ranges. It is therefore unlikely that a malicious collective 

will occupy both a key range that includes a particular 

victim object's key and a key range that includes a particular 

victim agent's key (assuming the collective is small relative 

to the size of the network). Thus, Penny enforces a notion of 

object ownership privacy. 

 

Key holders and score managers can, of course, learn 

ownership information through guessing attacks, but this is 

prohibitively expensive when the space of object and agent 

identifiers is large. For example, a malicious agent am can 

discover whether a particular object o is served by any agent 

for which am serves as score manager by requesting ido and 

comparing the key holders' responses against its list of 

daughter agents. However, am cannot easily produce a list of 

all objects served by any of its daughter agents because to do 

so it would have to search the entire space of object 

identifiers. Likewise, am can discover whether a particular 

server asvr owns any object for which am serves as key 

holder. To do so, am computes keysvr and searches for that 

key in its list of keys of servers that own am's daughter 

objects. However, am cannot easily produce a list of all 

servers that own any given object because it would have to 

search the entire space of server identifiers. So a large 

identifier space provides natural resistance to guessing 

attacks. 

 

4. Conclusion 
 

Penny decentralizes trust by distributing clouds master 

nodes trust among many peers. It efficiently supports global 

trust labels, data integrity labels, and data confidentiality 

labels in a fully decentralized, structured, peer to peer 

network. Global labeling assures convergence for all 

security queries, while decentralization avoids centralized 

points of failure typically associated with centralized label 

servers. Its reputation management system applies and 

extends EigenTrust, distributed hash tabling based on Chord, 

and anonymizing tunnels based on Tarzan or Sure Path. The 

security labeling scheme preserves the efficiency of network 

operations; lookup cost including label retrieval is O(logN + 

k), where N is the network size and k is a constant 

replication factor. The results illustrate Penny's efficiency 

and reliability over realistic network operations, including 

high dynamic churn; object publications, lookups, and 

downloads; and regular reputation maintenance via the 

Secure Eigen Trust algorithm. 
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