
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

Volume 6 Issue 12, December 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

A Secure Data Management in Distributing Cloud

Computing

T. Arunambika
1
, P. S. Vijayalakshmi

2

1,2Assistant Professor, Department of Computer Science, Rathinam College of Arts and Science, Echanari, Coimbatore

Abstract: Penny uses a distributed reputation management system based on EigenTrust to securely manage data labels without the

introduction of a central authority. The data labels empower requester peers to avoid downloads of low-integrity data, and allow sender

peers to deny low privilege peers to access high confidentiality data. In addition, sender peers may publish and serve their data

anonymously, frustrating attacks that seek to single out and target owners of security-relevant data. We have applied Penny to construct

a secure, fully decentralized, data management system for traditional data les as well as Resource Description Framework (RDF) data.

In this paper, present penny network architecture and their result and analysis.

Keywords: Penny, Distributing Cloud Computing, RFD Data, EigenTrust, P2P.

1. Introduction

We have centralized master nodes in clouds that are trusted

for integrity, in order to reuse the existing cloud

infrastructure. We adopt a structured peer to peer (P2P)

topology that eliminates centralized trust. All of the master

nodes can act as peers and they distribute jobs and data

between them. However in order to obtain that level of

decentralization, we must abandon the existing cloud

structure and develop a whole new protocol. Peer to peer

(P2P) networking is a distributed, load-balancing computing

paradigm de-signed to scalable share workloads between

peers. Unlike traditional client-server models, each peer in a

P2P network is an equally privileged, equipotent participant

in the distributed computation or service. This has the

advantage of avoiding centralized points of failure that,

when successfully attacked, suffice to dismantle the entire

network. P2P was first popularized as a vehicle for music

sharing but has since expanded to general purpose file and

data sharing applications and is increasingly important as a

basis for fault tolerant cloud computing. Since its inception,

it has been tremendously popular and ubiquitous because of

its collective computation power, natural load balancing, and

low cost deploy ability. For example, it has been estimated

that Bit Torrent traffic accounts for roughly 27-55% of all

Internet traffic (depending on geographical location) as of

February 2009.

Penny is overlay and resource sharing protocol as a

preliminary study without any implementation or

experiments. We here extend that theoretical work with

improvements to the architectural design, new formulas for

computing data integrity and confidentiality labels,

empirically determined optimal neighborhood sizes, new

publish and request protocols adapted for RDF data, and

other new empirically tested algorithms necessary for the

system.

2. Penny Network Architecture

Penny is designed using a standard Chord ring, but with an

extended form of reputation tracking: For each peer and data

object, Penny allots k score manager peers and k key holder

peers (respectively) to compute and track the peer or object's

trust label(s). Parameter k is fixed at network start and

controls the degree of replication; greater k means greater

security, since attackers must compromise more peers to

successfully corrupt data. Penny strategically positions

responsibility sharing score managers and key managers at

adjacent ring positions, forming a neighborhood. This

greatly improves lookup efficiency over standard Chord,

since only one overlay message (instead of k) suffices to

contact all k replicas. The result is high replication (and

therefore high security) with low overhead.

To protect data ownership privacy, data lookups in Penny

employ a cryptographically protected extra level of

indirection. Data serving peers first encrypt their requests

with the public key of the data item's key holder, and then

ask an arbitrary score manger to forward the server's key

(not its real identifier) and encrypted information to the key

holder. As a result, the key holder does not know who the

real owner of the data item is, and so when someone later

requests that data item, the key holder forwards the request

back through the score manger(s). Meanwhile, the score

mangers do not know which data items are owned by which

peers, and thus learn no peer object associations as they

forward the requests. As a result, the ownership information

is concealed from all other parties.

2.1 Definitions

Agents: We refer to the peers in a P2P network as agents.

Each agent a is assigned an identifier ida by applying a one

way, deterministic hash function to its IP address and port

number. We assume that identifiers are unique and that

agents cannot influence which identifiers they are assigned.

An agent's identifier determines its position in the network's

ring structure. When agents are arranged in a ring, each

agent has a predecessor pred(a) and a successor succ(a). We

refer to the interval (idpred(a), ida)as the identifier range of

agent a.

Objects and keys: An object o is an atomic item of data

(e.g., a file) shared over a P2P network. Each object also has

a unique identifier ido obtained by applying a one way,

deterministic hash function to its name. Objects can be

owned by multiple agents. A single key is associated with

Paper ID: ART20178543 DOI: 10.21275/ART20178543 263

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

Volume 6 Issue 12, December 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

each object and each agent. The keys for object o and agent

a are defined by keyo = h(ido) and keya = h(ida) respectively,

where h is a one way, deterministic hash function over the

domain of identifiers.

Key holders and Score managers: Each agent a1 is

assigned a (not necessarily unique) key range, denoted

kr(a1). Agent a1 is charged with tracking the global integrity

and confidentiality labels assigned to all objects o that

satisfy keyo ε kr(a1). In addition, agent a1 tracks the global

trust values assigned to all agents a2 satisfying keya2 ε kr(a1).

Whenever keyo ε kr(a1) holds, we refer to agent a1 as a key

holder for object o, and we refer to object o as a daughter

object of agent a1. Likewise, whenever keya2 ε kr(a1) holds

we refer to a1 as a score manager for agent a2, and we refer

to agent a2 as a daughter agent of agent a1. Every peer in a

Penny network acts as both a key holder for some objects

and a score-manager for some peers.

Local confidentiality and integrity labels: Each object o is

labeled with a measure of its integrity and confidentiality

levels. We denote the integrity and confidentiality labels

assigned to object o by agent a as ia(o) and ca(o),

respectively. Similarly, there are local integrity and

confidentiality labels for agents with whom other agents had

transactions. Integrity labels measure data quality;

confidentiality labels measure that should be permitted to

own the data. In Penny, confidentiality and integrity labels

are modeled as real numbers from 0 to 1 inclusive, with 0

denoting lowest confidentiality and integrity and 1 denoting

highest confidentiality and integrity.

Local trust values: Trust measures the belief that one agent

has that another agent or object will behave as expected or

promised. Each ordered pair of agents (a1, a2) has a local

trust value denoted ta1 (a2) that measures the degree to which

agent a1 trusts agent a2. Likewise, each ordered pair of agent

and object (a, o) has a local trust value denoted ta(o) that

measures the degree to which agent a trusts object o. Like

confidentiality and integrity labels, trust values range from 0

to 1 inclusive. Local integrity and confidentiality labels are

computed and assigned based on local trust values.

Global labels and trust values: Each object o in the system

is associated with global integrity and confidentiality labels,

denoted io and co, respectively, and measured by global trust

values To. Likewise, each agent a is associated with global

integrity and confidentiality labels, denoted ia and ca,

respectively, and measured by global trust values Ta. Key

holders with a common key-range compute to and score

managers with a common key range calculate Ta using

secure EigenTrust. Thus, the global labels and global trust

values for any object o and for any agent a can be acquired

by any agent in the network by contacting all key holders akh

for object o, and all score managers asm for agent a.

2.2 Network Architecture

Identifier Space and Neighborhood

A Penny ring is like a Chord ring, with Penny's identifier

ranges being equal to Chord's key ranges. However, a Penny

agent's key range strictly subsumes its identifier range, and

agent key ranges are not unique. Key ranges are assigned in

a Penny ring so that for every agent a, there are between

min(k, n) and c agents in the ring whose key ranges are

equal to kr(a), where n is the total number of agents and c is

a fixed bound on neighborhood size. Bounding

neighborhood size from below by k limits the influence of

malicious agents, because each contributes at most 1/k of the

responses to a secure query. Bounding it from above by c

ensures that lookup is not too costly, and it bounds the

storage overhead for finger tables.

Message Routing

An agent can contact all score managers for a particular

agent a, or all key-holders for a particular object o, using

O(log N + k) messages. The first O(log N) messages

propagate the message using the Chord algorithm to an

agent whose identifier range includes keya or keyo, who then

forwards it directly to the other O(k) agents in its

neighborhood. Penny therefore reduces the overhead of all

network operations that involve contacting key holders,

score-managers, and RDF data owners by a factor of k over

EigenTrust. This permits higher replication rates (e.g., k =

16) that are often infeasible with past approaches.

Figure 1.1: Penny message propagation

As in Chord, each agent a in a Penny ring maintains a finger

table that is used to route messages efficiently. For each i ε

(0, m), agent a's finger table includes the agent whose

identifier range includes (ida + 2
i
) mod 2

m
 (where 2

m
 is the

size of the identifier space). In addition, agent a's finger table

also includes an entry for each agent in its neighborhood.

The size of each finger table is therefore O(m + k), where k

is a constant dictating the number of redundant key holders

assigned to each key.

Figure 1.1 shows an example of the propagation of a Penny

message through the resulting ring. In this example, m = 6.

Agent 0 wishes to send a message to all agents whose key

range includes identifier 28. First, the message is propagated

along the ring according to the Chord algorithm to the agent

whose identifier range includes 28 (agent 42). This involves

first sending the message to the agent whose identifier range

includes 0 + 2
4
 = 16 (owner is agent 16), and next to the

agent whose identifier range includes 16 + 2
3
 = 24 (owner is

agent 42). Once the message reaches an agent whose key

range includes 28, that agent forwards the message directly

to all other agents in its neighborhood. These are all agents

in the ring whose key-ranges include 28.

Network Dynamics

To maintain the invariant that the number of score managers

for each key range stays between k and c, a Penny network

Paper ID: ART20178543 DOI: 10.21275/ART20178543 264

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

Volume 6 Issue 12, December 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

must occasionally split or merge neighborhoods as agents

join and leave the network. If a peer join causes a

neighborhood's population to rise above c, it splits into two

smaller neighborhoods. Dually, if peer leave reduces a

neighborhood's population below k, some or all peers from

an adjacent neighborhood migrate in. When an agent anew

joins a Penny ring, it is by default assigned a key range

identical to its successor's. Its successor informs all agents in

its neighborhood that they should update their finger tables

to include anew. However, if this would result in a

neighborhood size b that is greater than c, a split occurs. The

first (b/2) agents and the last b-(b/2) agents in the

neighborhood each become their own neighborhoods. The

key ranges of the new neighborhoods are the unions of the

identifier ranges of the agents within each. Figure 1.2

illustrates a join operation with a split. Identifiers are labeled

next to each agent outside the ring, and agent key ranges are

labeled inside the ring. In this example, k = 2, c = 4, and m =

6, so when the agent with identifier 8 joins, key range [5, 42]

has more than c agents and must be split.

Figure 1.2: Agent joins operation

When an agent aold leaves a Penny ring, it informs its

successor asucc and the other agents in aold's neighborhood. If

asucc is in a different (adjacent) neighborhood, asucc informs

the other agents in that neighborhood that the

neighborhood‟s key range has grown to include identifiers

up to and including idpred + 1 (where apred is aold‟s

predecessor). Likewise, agents in aold 's neighborhood must

shrink their key ranges so that they end with idpred. If the

departure of aold causes aold „s neighborhood to have fewer

than k members, two adjacent neighborhoods must be

merged. Let Hold be aold „s neighborhood and Hpred be the

preceding neighborhood. If oldH k then the agent in Hold

whose predecessor is in Hpred sends a merge request to its

predecessor. That merge request is then forwarded to all

agents in Hpred. If predH k 1 then both neighborhoods

merged to form a single neighborhood. Otherwise, the

rightmost pred oldH H / 2 agents of neighborhood Hpred

join neighborhood Hold. The key ranges of the new

neighborhoods are the unions of the identifier ranges of the

agents in the new neighborhoods.

Figure 1.3: Agent leaves operation

Figure 1.3 illustrates an agent leave operation that requires a

key range merge. Here, the departure of agent 15 from the

ring leaves fewer than k = 2 agents in its neighborhood.

Agent 16 therefore merges with its predecessor

neighborhood; agents in both neighborhoods extend their

key ranges to include the identifier ranges of all agents in the

new neighborhood. Whenever an agent's key range shrinks

due to any of the above operations, it must transfer any state

associated with keys not in its new range to the appropriate

key holders. Similarly, whenever its key-range grows, it

receives state associated with new keys from the agents who

previously occupied that range. An average net population

change of 1/2 (c - k) agents per neighborhood is required

before that neighborhood will need to be split or merged.

Thus, by initializing c to be large relative to k, the frequency

of these state transfer operations can be reduced.

Agent's Local State

In addition to routing messages, each agent a in a Penny

network plays three different roles. It acts as a server when

sharing objects, as a score manager for agents whose keys

fall within its key-range, and as a key holder for objects

whose keys fall within its key range. For each of these roles,

it maintains some internal state:

 To act as server, it maintains a list of the identifiers ido of

each object o that it owns.

 To act as score manager, it maintains a list of daughter

agents ad that satisfy keyad ε kr(a). These are the agents for

whom agent a is a score manager. For each daughter agent

ad, it also maintains a vector of global trust values Tad with

global integrity and confidentiality labels iad and cad

respectively.

 To act as key holder, it maintains a list of daughter objects

od that satisfy keyod ε kr(a). These are the objects for which

agent a is a key holder. For each daughter object od, it

maintains a vector of global trust values Tod with global

integrity and confidentiality labels iod and cod respectively.

 For encrypted communication, it chooses a public key,

private key pair (Ka, Ka).

 It maintains a list of the keys keysvr and public keys Ksvr of

the agents that serve object o. Thus key holders do not

learn the actual identifiers of agents who serve object o,

only their keys.

 It maintains local trust values ta(a1) and ta(o) for agents a1

and objects o with whom it had experience. These local

trust values give rise to local integrity and confidentiality

labels that agent a associates with a1 and o.

Paper ID: ART20178543 DOI: 10.21275/ART20178543 265

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

Volume 6 Issue 12, December 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Publishing and Downloading Protocols for Traditional

File Objects

Once a Penny network has been initialized, agents interact

according to the protocols detailed below. The protocol

diagrams that follow use solid arrows to denote messages

that are sent directly from agent to agent without using the

P2P overlay, and dashed arrows for messages that use the

P2P overlay to find the message target based on its ring

identifier. Dashed arrows therefore actually involve sending

O(log N + k) total messages. Arrows with double heads may

optionally be sent via anonymizing tunnels for privacy.

Notation Ka denotes agent a's public key, and < … >K

denotes a message encrypted with key K.

Figure1.4: Request protocol for traditional file object

When an agent asvr wishes to share an object o, it must first

publish that object according to the protocol depicted. Agent

asvr first obtains (possibly anonymously) the public keys of

all key holders akh for object o. Agent asvr next encrypts the

object identifier and its own public key with each of the key

holders public keys. It asks one of its score-managers asm to

forward the encrypted messages to the key holder‟s akh.

Agent asm conceals agent asvr‟s identity by sending only its

key (which later can be used to get the global trust values

and labels from the server's score-manger) to the key holder

rather than its identifier, along with the encrypted message.

To request an object shown in Figure 1.4, requester areq first

sends the requested object‟s identifier to all key holders akh

for the object. Each key-holder responds with the object‟s

global integrity and confidentiality labels, and a list of the

keys and public keys of servers who offer the object. Agent

areq can then obtain the object from any server asvr by

sending a request to all score-managers for agent asvr. Score

mangers reply to areq with the server‟s global trust labels.

Based on a selection procedure areq then sends a download

request message. In the message, the requested object‟s

identifier is encrypted with the server‟s public key to avoid

disclosing it to the selected server's score manager. The

score managers forward the request to the server. The server

can then anonymously send the data directly to the requester.

Publishing and Downloading Protocols for RDF Datasets

Besides traditional file lookup, Penny also supports RDF

dataset queries. RDF triples are stored within file objects,

but it would be prohibitively inefficient and insecure to store

all triples within a single file owned by a single peer. Triples

are therefore distributed over many smaller files distributed

across many peers, with a protocol for locating each triple's

containing file. Neighborhoods therefore collaborate to

manage a subset of triples. Instead of keys for files, we

associate triples with identifiers directly, and all

neighborhood agents reply with list of servers who own the

identified triples. This publishing procedure is detailed in

Publish protocol for RDF data Algorithm. To distribute the

load of serving particularly popular triples, each agent

maintains a usage count for each triple it serves. When this

count exceeds an agent imposed popularity threshold, it

defers storage of future instances of that triple component to

its successors in the ring. This implements a form of

coalesced chaining in the distributed hash table.

RDF queries have syntax (? s, ? p, ? o), where s is a

subject, p is a predicate, and o is an object, and where each

optional ? indicates an unknown in the query. For example,

query (s,p,?o) requests all RDF triples satisfying subject s

and predicate p. For downloading or querying RDF datasets

over Penny network, agents implement Download protocol

for RDF data Algorithm.

Reputation based Trust Management

Penny incorporates a reputation based trust management

system based on EigenTrust. EigenTrust is a secure,

distributed trust management system that maintains a

globalized trust value for each agent. These globalized trust

values are obtained by an iterative computation that

approximates the left eigenvector v of the matrix T of all

local trust values in the network. That is, if we define

element Tij to be the degree to which agent ai trusts agent aj,

then the left eigenvector v of matrix T measures each agent

a‟s global trust based on how much each agent trusts a, how

much each agent trusts the agents who trust a, etc. If an

agent ai downloads a file or RDF data from an agent aj, it

rates the transaction as positive or negative based on the

experience. We may define local trust value s(ai, aj) as the

sum of these ratings of agent aj by agent ai. Then, in order to

aggregate the local trust values, they are normalized. We

may define normalized local trust value, c(ai, aj), as follows:

Equation 1.1

This ensures that all values are between 0 and 1. These

normalized local trust values are then aggregated. To keep

the algorithm scalable and robust, eigenvector v is computed

in a distributed and redundant fashion, where k different

agents (score managers) are responsible for computing each

element of v. This conforms to Secure EigenTrust except

with global trust labels extended to objects as well as agents,

and score manager replicas grouped into Penny

neighborhoods for better performance rather than disbursed

throughout the ring.

Data Selection Procedure
Every object request (whether a traditional file downloads or

RDF query) delivers to requesting agent areq a set S of agents

who can supply the object. If some respondents are

malicious, some of these responses may differ. Agent areq

must choose among them based on their reputations. To do

so, it partitions S by response. Let R denote the resulting

equivalence relation, so that quotient set S/R is the set of

Paper ID: ART20178543 DOI: 10.21275/ART20178543 266

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

Volume 6 Issue 12, December 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

agent groups, each of which returned a common response.

For each partition P ε S/R we compute the following

evaluation function.

Equation 1.2

Publish Protocol for RDF Data Algorithm
Step-1: For each RDF triple r do

Step-2: For each part (subject/predicate/object) rp of r do

Step-3: attempt 0

Step-4: while true do

Step-5: id succ(h(rp + attempt))

Step-6: ask aid to store the triple r

Step-7: if aid already at popularity threshold then

 aid refuses to store r

 attempt attempt + 1

 else

 aid stores r

 break

end if

end while

end for

end for

(Algorithm-1)

Download Protocol for RDF Data Algorithm

Step-1: For each sub query q in query Q do

Step-2: For each part (subject/predicate/object) qp in q do

Step-3: attempt 0

Step-4: while true do

Step-5: id succ(h(qp + attempt))

Step-6: Request triples D from aid satisfying qp

Step-7: if D < agent aid‟s popularity threshold then

 break

 else

 attempt attempt + 1

 end if

 end while

 end for

 end for

(Algorithm-2)

where w1 and w2 are weights in [0, 1] that prioritize each

partition‟s relative size and reputation, respectively, in the

evaluation.

Data Server Selection Procedure Algorithm

Step-1: if all members of S have trust 0 then

 Select one server from S randomly

 else

 if transaction is a police transaction then

 w1 0

 w2 0

Step-2: For each partition P ε S/R do

 choose partition P with probability f(P)

 end for

 else

Step-3: w1 0.2

 w2 0.8

Step-4: B f (P) p S/R arg max

Step-5: BB P p arg max

Step-6: choose a partition randomly from set B

 end if

(Algorithm-3)

Equation 1.2 is used by Data Server Selection

Procedure Algorithm to resolve the selection choice. In the

algorithm, police transactions are non-user transactions

submitted by the security system during idle times in order

to improve convergence.

3. Results and Analysis

We focus on four classes of attacks:

 A malicious agent or collective might spread corrupt or

incorrect data. For example, the malicious agent or

collective might spread malicious code or circulate false

facts.

 A malicious agent or collective might attach incorrect

security labels to data. In particular, low integrity data

might be ascribed a high integrity label, or high

confidentiality data might be described a low

confidentiality label.

 A malicious agent or collective might attempt to learn

which agents own certain data, perhaps as a prelude to

staging additional attacks against those agents.

 A malicious agent or collective might attempt to generate

a list of all data served by a particular agent, violating that

agent‟s privacy.

We do not consider attacks upon the network overlay itself,

such as message misrouting, message tampering, or denial of

service attacks. These attacks are beyond the scope of this

work, but could be addressed with various techniques, such

as digital signatures, delivery receipts, and non-deterministic

routing. Data Server Selection Procedure Algorithm makes

the natural choice of preferring high over low reputation

agents for user submitted requests. We discovered that this

tends to cause Eigen Trust (and other reputation based trust

management systems) to converge slowly because low

reputation agents are so rarely exercised. We introduced a

new form of transaction, called a police transaction that is

designed to harmlessly exercise the system during idle

periods rather than yield a correct result. Such transactions

utilize low reputation agents, providing higher reputation

agents additional opportunities to evaluate their answers. We

used 50% police transactions.

For non-police transactions, we placed greatest weight on

reputations (w2 = 0.8) and the remaining weight on

consensus size (w1 = 0.2). We consider each 20 downloads

as one frame and thus show the frame position over time

with 1000 downloads. After each frame, we run the

EigenTrust algorithm and compute global trust values

accordingly. We run it 5 times and take the average success

rate and we pessimistically assume that all malicious agents

know the identities of all the pre-trusted agents, and that

they must display high trust for those agents in order to

Paper ID: ART20178543 DOI: 10.21275/ART20178543 267

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

Volume 6 Issue 12, December 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

avoid lowering their own reputations. Thus, malicious

agents trust only other malicious agents and pre-trusted

agents. In our negative feedback, malicious agents always

serve malicious files, and non-malicious agents who

download the files always submit negative feedback for the

transaction. Figure 1.5 shows that under these conditions,

malicious agents fail to accrue high trust. Figure 1.5 (a) is

for a static network with no leaves or joins, and Figure

1.5(b) is for a dynamic network undergoing constant churn.

As expected, convergence is slower in the presence of

dynamic activity; the static network converges at about

frame 10, whereas the dynamic doesn't until about frame 20.

For both, we get a very high average success rate 95.58% for

the static network and 92.22% for the dynamic one, even

with 20% malicious agents. Figure 1.6 records the results of

our half correct behavior in which malicious agents provide

correct les 50% of the time. Non-malicious agents always

provide positive feedback for correct les and negative

feedback for corrupt ones. Both static and dynamic networks

converge quickly at approximately frames 14 and 24,

respectively. Average success rates were also still very high

96.72% for the static network and 94.50% for the dynamic

one. We further observe that the success rates are higher

than each corresponding negative feedback since malicious

agents provide correct les 50% of the time. On the other

hand, convergence is slower because non-malicious agents

take longer to identify the malicious agents.

Figure 1.5(a): Static network

Figure 1.5(b): Dynamic network.

Figure 1.5: Negative feedback success rate.

Figure 1.6 (a): Static network

Figure 1.6(b): Dynamic network

Figure 1.6: Half correct behavior of success rates

Figure 1.6 records the results of our half correct behavior in

which malicious agents provide correct files 50% of the

time. Non-malicious agents always provide positive

feedback for correct files and negative feedback for corrupt

ones. Both static and dynamic networks converge quickly at

approximately frames 14 and 24, respectively. Average

success rates were also still very high: 96.72% for the static

network and 94.50% for the dynamic one. We further

observe that the success rates are higher than each

corresponding negative feedback, since malicious agents

provide correct files 50% of the time. On the other hand,

convergence is slower because non-malicious agents take

longer to identify the malicious agents.

Our malware propagation considers the pervasive problem

of botnet malware infections of P2P file sharing networks.

Non-malicious down loaders of malicious files have a 20%

chance of becoming infected and exhibiting malicious

behavior thereafter. Malicious agents behave the same as in

the half-correct behavior experiment. In both static shown in

Figure 1.7 (a) and dynamic shown in Figure 1.7(b) networks,

success rates initially drop as previously high reputation

agents suddenly attack the system. However, the reputation

system adapts and around frame 16 the non-malicious agents

manage to largely isolate the infection. The count of

malicious agents continues to grow monotonically, as seen

in Figures 1.8(a) and 1.8(b), because it includes no facility

for disinfection. But the growth slows, and any new

malicious agents are identified relatively quickly by the non-

malicious majority. The average success rates were 93.04%

for static networks and 90.44% for dynamic ones.

Paper ID: ART20178543 DOI: 10.21275/ART20178543 268

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

Volume 6 Issue 12, December 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 1.7 (a): Static network success rate

Figure 1.7 (b): Dynamic network, success rate

Figure 1.7: Malware propagation success rates

Figure 1.8(a): Static network propagation rate

Figure 1.8 (b): Dynamic network propagation rates.

Figure 1.8: Malware propagation rates.

3.1 Results for RDF Datasets

We present the algorithmic results for RDF dataset

download in the presence of malicious agents, and show the

robustness of Penny networks. We publish protocol

Algorithm-1 and download protocol Algorithm-2. We use

the LUBM100 dataset for our algorithm which is broadly

used by researchers for similar evaluations. The LUBM data

generator yields datasets in RDF/XML format, which we

converted to N-triples format. For download or query

purposes, we use atomic triple queries and conjunctive multi

predicate queries. We conduct the same three sets of

algorithmic method for RDF datasets. For the negative

feedback results shown in Figure 1.9 we see average success

rates of 95.12% for static networks and 87.26% for dynamic

ones. These are slightly lower than the corresponding rates

for non-RDF file downloads because of the additional

number of transactions required to successfully answer RDF

queries. If any sub query fails, the entire query fails. In

addition, the coalesced chaining implemented by Algorithm-

2 requires additional transactions to retrieve popular triples.

Convergence rates are slightly lower for the same reason.

Despite this, both success rates and convergence rates

remain quite high for a network with so much malicious

population. The half-correct behavior experiment exhibits

even faster convergence, as seen in Figure 1.10. The static

network converges at about frame 15 and the dynamic at 25.

Average success rates were similarly high at 96.46% and

92.78%, respectively. While malware is not possible in RDF

data to our knowledge, for the sake of completeness we

replicated the malware propagation experiment for the RDF

publish and download protocol. Results are reported in

Figures 1.11-1.12. Both static and dynamic networks

exhibited fast convergence; about frame 19 for the static

network and 29 for the dynamic one. Success rates were

similarly promising, being 92.90% and 88.98% on average

for the static and dynamic cases, respectively. Again, these

are slightly lower than for file downloads because of the

higher complexity of the RDF protocol. As before, both

networks exhibit an initial drop in success but manage to

adapt and recover fairly smoothly.

Figure 1.9 (a): Static Network

Figure 1.9 (b): Dynamic network

Figure 1.9: RDF negative feedback success rates

Paper ID: ART20178543 DOI: 10.21275/ART20178543 269

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

Volume 6 Issue 12, December 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 1.10(a): Static network

Figure 1.10(b): Dynamic network

Figure 1.10: RDF half correct behavior success rates

Figure 1.11(a): Static network, success rate

Figure 1.11(b): Dynamic network, success rate

Figure 1.11: RDF malware propagation success rates

Figure 1.12(a): Static network, propagation rate

Figure 1.12(b) Dynamic network, propagation rate

Figure 1.12: RDF malware propagation rates

3.2 Analysis

The high success rates and strong convergence properties

algorithmically observed and can be traced largely to

Penny's support for exceptionally high data replication via

its neighborhood topology. Label retrieval is efficient in

Penny, requiring approximately the same number of

messages as object lookup in a Chord network, but with k

independent replicas of each label. An agent can retrieve any

object's global integrity label by sending a single request

message, which gets forwarded at most O(logN + k) times

throughout the network. The request solicits O(k) response

messages, from which one response is selected via

Algorithm-3. Penny inhibits the spread of low-integrity data

(e.g., malware) by maintaining a global integrity label for

each object shared over the network. Agents wishing to

avoid such data can therefore consult each object's global

integrity label before downloading it. Thus, the problem of

restraining the spread of malware over a Penny network

reduces to the problem of efficiently maintaining and

reporting accurate integrity labels. In addition to global

integrity labels, Penny also maintains global confidentiality

labels for objects. Agents can use these labels as a basis for

selectively serving data to other agents possibly based on the

requester's trust level, global confidentiality label, or other

credentials.

An object's global security labels are determined by the

votes of other agents in the network via EigenTrust. Votes

Paper ID: ART20178543 DOI: 10.21275/ART20178543 270

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

Volume 6 Issue 12, December 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

are weighted by the reputation of each voter so that the votes

of agents who are widely regarded as trustworthy are more

influential than the votes of those who are not. This makes it

difficult for a malicious agent to attach a high integrity label

to low integrity data. In order for such an attack to succeed,

malicious agents must collectively have such good

reputations that they outweigh the votes of all other voters.

Penny uses EigenTrust to track agent reputations and to

prevent malicious agents from accruing good reputations.

Secure hashing and replication are both employed to protect

against malicious key holders and score-managers who

might falsify an object's global integrity labels or an agent's

global trust value. Use of a secure hash function for

identifier assignment ensures that agents cannot dictate the

set of objects and agents for which they serve as key holders

and score managers. By ensuring that there exist at least k

key holders and score managers for every key range, Penny

prevents any one agent from subverting the reputation of any

object or agent. At least [b/2] agents in a neighborhood must

be malicious in order to subvert a reputation, where b >= k is

the neighborhood size. Malicious peers cannot elevate their

own reputations by switching IP addresses or creating false

network accounts because all agent and object reputations

start at zero in Penny. An agent or object acquires a positive

reputation only by participating in positive transactions with

other agents. Agents with established reputations then report

positive feedback for those transactions, elevating the new

agent's reputation. Unlike Penny, Chord requires each key-

holder to maintain a list of the agents who own the key-

holder's daughter objects. These lists are reported to any

agent who requests the object, divulging the identities of all

agents who own a particular object To address this privacy

vulnerability, Penny conceals information associating agents

with the objects they own by splitting that information

amongst key holders and score managers. A malicious key

holder and a malicious score manager must therefore

collaborate to learn that a particular server owns a particular

object. Opportunities for such collaboration are limited

because key holders and score-managers cannot choose their

key ranges. It is therefore unlikely that a malicious collective

will occupy both a key range that includes a particular

victim object's key and a key range that includes a particular

victim agent's key (assuming the collective is small relative

to the size of the network). Thus, Penny enforces a notion of

object ownership privacy.

Key holders and score managers can, of course, learn

ownership information through guessing attacks, but this is

prohibitively expensive when the space of object and agent

identifiers is large. For example, a malicious agent am can

discover whether a particular object o is served by any agent

for which am serves as score manager by requesting ido and

comparing the key holders' responses against its list of

daughter agents. However, am cannot easily produce a list of

all objects served by any of its daughter agents because to do

so it would have to search the entire space of object

identifiers. Likewise, am can discover whether a particular

server asvr owns any object for which am serves as key

holder. To do so, am computes keysvr and searches for that

key in its list of keys of servers that own am's daughter

objects. However, am cannot easily produce a list of all

servers that own any given object because it would have to

search the entire space of server identifiers. So a large

identifier space provides natural resistance to guessing

attacks.

4. Conclusion

Penny decentralizes trust by distributing clouds master

nodes trust among many peers. It efficiently supports global

trust labels, data integrity labels, and data confidentiality

labels in a fully decentralized, structured, peer to peer

network. Global labeling assures convergence for all

security queries, while decentralization avoids centralized

points of failure typically associated with centralized label

servers. Its reputation management system applies and

extends EigenTrust, distributed hash tabling based on Chord,

and anonymizing tunnels based on Tarzan or Sure Path. The

security labeling scheme preserves the efficiency of network

operations; lookup cost including label retrieval is O(logN +

k), where N is the network size and k is a constant

replication factor. The results illustrate Penny's efficiency

and reliability over realistic network operations, including

high dynamic churn; object publications, lookups, and

downloads; and regular reputation maintenance via the

Secure Eigen Trust algorithm.

References

[1] Kamvar, S., M. Schlosser, and H. Garcia-Molina

(2003). The EigenTrust algorithm for reputation

management in P2P networks. In Proceedings of the

12
th

 International World Wide Web Conference

(WWW), pp. 640-651..

[2] Dingledine, R., N. Mathewson, and P. Syverson

(2004). Tor: The second-generation onion router. In

Proceedings of the 13th USENIX Security

Symposium, pp. 303-320.

[3] Kamvar, S., M. Schlosser, and H. Garcia-Molina

(2003). The EigenTrust algorithm for reputation

management in P2P networks. In Proceedings of the

12th International World Wide Web Conference

(WWW), pp. 640-651.

[4] Manuel, P. D., S. Thamarai Selvi, and M.-E. Barr

(2009). Trust management system for grid and cloud

resources. In Proceedings of the International

Conference on Advanced Computing (ADCONS), pp.

176-181.

[5] Chen, D. and H. Zhao (2012). Data security and

privacy protection issues in cloud computing. In

Proceedings of the International Conference on

Computer Science and Electronics Engineering

(ICCSEE), pp. 647-651.

[6] Chow, R., P. Golle, M. Jakobsson, E. Shi, J. Staddon,

R. Masuoka, and J. Molina (2009). Controlling data in

the cloud: Outsourcing computation without

outsourcing control. In Proceedings of the ACM

Workshop on Cloud Computing Security (CCSW), pp.

85-90.

[7] Necula, G. C. and P. Lee (1998). Safe, untrusted agents

using proof-carrying code. In Proceedings of Mobile

Agents and Security, pp. 61-91.

[8] F. Azzedin and M. Maheswaran, “A Trust Brokering

System and Its Application to Resource Management

Paper ID: ART20178543 DOI: 10.21275/ART20178543 271

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

Volume 6 Issue 12, December 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

in Public Resource Grids”, in Proceedings of IPDPS

2004.

[9] Marcos Dias de Assuncao: Provisioning Techniques

and Policies to Enable Inter-Grid Resource Sharing,

PhD Thesis, Melbourne University, 2009.

[10] Jemal H. Abawajy, Andrzej M. Goscinski: A

Reputation-Based Grid Information Service.

International Conference on Computational Science (4)

2006: 1015-1022.

[11] A. Jøsang, R. Ismail, and C. Boyd. A survey of trust

and reputation systems for online service provision.

Decision Support Systems, 43(2):618–644, March

2007.

[12] C. Catlett, P. Beckman, D. Skow, and I. Foster,

“Creating and operating national-scale

cyberinfrastructure services,” Cyberinfrastructure

Technology Watch Quarterly, vol. 2, no. 2, pp. 2–10,

May 2006.

[13] C. Dellarocas. Immunizing Online Reputation

Reporting Systems Against Unfair Ratings and

Discriminatory Behavior. In ACM Conf

[14] Jemal Abawajy, Determining Service Trustworthiness

in Intercloud Computing Environments, Proceedings

of the 10
th

 International Symposium on Pervasive

Systems, Algorithms, and Networks (ISPAN '09),

pp.784~788, 2009.
[15] B. Yu, M. P. Singh, and K. Sycara, "Developing trust

in large-scale peer-to-peer systems”, 2004, pp. 1-10.4-

260, 1999.

Paper ID: ART20178543 DOI: 10.21275/ART20178543 272

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

