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Abstract: We review more than 200 applications of neural networks in image processing and discuss the present and possible future 

role of neural networks, especially feed-forward neural networks, Kohonen feature maps and Hop1eld neural networks. The various 

applications are categorized into a novel two-dimensional taxonomy for image processing al-gorithms. One dimension speci1es the type 

of task performed by the algorithm: preprocessing, data reduction=feature extraction, segmentation, object recognition, image 

understanding and optimization. The other dimension captures the abstraction level of the input data processed by the algorithm: pixel-

level, local feature-level, structure-level, object-level, object-set-level and scene characterization. Each of the six types of tasks poses 

speci1c constraints to a neural-based approach. These speci1c conditions are discussed in detail. A synthesis is made of unresolved 

problems related to the application of pattern recognition techniques in image processing and speci1cally to the application of neural 

networks. Finally, we present an outlook into the future application of neural networks and relate them to novel developments. 
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1. Introduction 
 

Techniques from statistical pattern recognition have, since 

the revival of neural networks, obtained a widespread use in 

digital image processing. Initially, pattern recognition 

problems were often solved by linear and quadratic 

discriminants [1] or the (non-parametric) k-nearest neighbour 

classi1er and the Parzen density estimator [2,3]. In the mid-

eighties, the PDP group [4] together with others, introduced 

the back-propagation learning algorithm for neural networks. 

This algorithm for the 1rst time made it feasible to train a 

non-linear neural network equipped with layers of the so-

called hid-den nodes. Since then, neural networks with one or 

more hidden layers can, in theory, be trained to perform 

virtu-ally any regression or discrimination task. Moreover, no 

assumptions are made as with respect to the type of un-

derlying (parametric) distribution of the input variables, 

which may be nominal, ordinal, real or any combination 

hereof. 

 

In their 1993 review article on image segmentation, Pal and 

Pal predicted that neural networks would become widely 

applied in image processing [5]. This prediction turned out to 

be right. In this review article, we survey applications of 

neural networks developed to solve different problems in 

image processing (for a review of neural networks used for 

1D signal processing, see Ref. [6]). There are two central 

questions which we will try to answer in this review article: 

1) What are major applications of neural networks in image 

processing now and in the nearby future?  

2) Which are the major strengths and weaknesses of neu-ral 

networks for solving image processing tasks?  

 

To facilitate a systematic review of neural networks in image 

processing, we propose a two-dimensional taxonomy for 

image processing techniques in Section 2. This taxonomy 

establishes a framework in which the advantages and 

unresolved problems can be structured in rela-tion to the 

application of neural networks in image pro-cessing (Section  

Section 4 discusses some real-world applications of neural 

networks in image processing. In Section 5, identi1ed 

problems are considered and Section 6 presents an overview 

of future research issues which need to be resolved or 

investigated further as to expedite the application of neural 

networks in image processing. A number of future trends are 

also brieGy sketched. 

 

In the paper, we will not consider the basic theory of neural 

networks. The reader is referred to standard text books, e.g., 

Ref. [7].  

 

2. Taxonomy for image processing algorithms 
 

Traditional techniques from statistical pattern recognition 

like the Bayesian discriminant and the Parzen windows were 

popular until the beginning of the 1990s. Since then, neural 

networks (ANNs) have increasingly been used as an 

alternative to classic pattern classi1ers and clustering 

techniques. Non-parametric feed-forward ANNs quickly 

turned out to be attractive trainable machines for feature-

based segmentation and object recognition. When no gold 

standard is available, the self-organising feature map (SOM) 

is an interest-ing alternative to supervised techniques. It may 

learn to discriminate, e.g., diIerent textures when provided 

with powerful features. The current use of ANNs in image 

processing exceeds the aforementioned traditional 

applications. The role of feed-forward ANNs and SOMs has 

been extended to encompass also low-level image processing 

tasks such as noise suppression and image enhancement. 

Hop1eld ANNs were introduced as a tool for 1nding 

satisfactory solutions to complex (NP-complete) optimisation 

problems. This makes them an interesting alternative to 
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traditional optimisation algorithms for image processing 

tasks that can be formulated as optimisation problems. 

The diIerent problems addressed in the 1eld of digi-tal image 

processing can be organised into what we have chosen to call 

the image processing chain. We make the following 

distinction between steps in the image process-ing chain (see 

Fig. 1): 

 

1) Preprocessing=1ltering. Operations that give as a result a 

modi1ed image with the same dimensions as the original 

image (e.g., contrast enhancement and noise reduction). 

2) Data reduction=feature extraction. Any operation that 

extracts signi1cant components from an image (win-dow). 

The number of extracted features is generally smaller than 

the number of pixels in the input window.  

3) Segmentation. Any operation that partitions an image into 

regions that are coherent with respect to some criterion. 

One example is the segregation of diIerent textures.  

4) Object detection and recognition. Determining the 

position and, possibly, also the orientation and scale of 

speci1c objects in an image, and classifying these objects.  

5) Image understanding. Obtaining high level (semantic) 

knowledge of what an image shows.  

6) Optimisation. Minimisation of a criterion function which 

may be used for, e.g., graph matching or object 

delineation.  

 

Optimisation techniques are not seen as a separate step in the 

image processing chain but as a set of auxiliary techniques, 

which support the other steps. 

 

Besides the actual task performed by an algorithm, its 

processing capabilities are partly determined by the ab-

straction level of the input data. We distinguish between the 

following abstraction levels: 

a) Pixel level. The intensities of individual pixels are 

provided as input to the algorithm.  

b) Local feature level. A set of derived, pixel-based fea-tures 

constitutes the input.  

c) Structure (edge) level. The relative location of one or 

more perceptual features (e.g., edges, corners, junc-tions, 

surfaces, etc.).  

d) Object level. Properties of individual objects.  

e) Object set level. The mutual order and relative location of 

detected objects.  

f) Scene characterisation. A complete description of the 

scene possibly including lighting conditions, context, etc.  

 

Table 1 contains the taxonomy of image processing 

algorithms that results from combining the steps of the image 

processing chain with the abstraction level of the input data. 

3. Neural networks in image processing 
 

In this section, we will review neural networks trained to 

perform one of the six tasks in the image processing chain 

(3.1–3.6). 

 

3.1. Preprocessing The 1rst step in the image processing 

chain consists of preprocessing. Loosely de1ned, by 

preprocessing we understand with following diagram. 

 

 
Figure 1:  The image processing chain containing the 1ve 

deferent tasks: preprocessing, data reduction, segmentation, 

object recognition and image understanding. Optimization 

techniques are used as a set of auxiliary tools that are 

available in all steps of the image processing chain. 

 

3.1 Tables 

 

The image processing tasks categorized into a two-

dimensional taxonomy mean any operation of which the input 

consists of sensor data, and of which the output is a full 

image. Preprocess-ing operations generally fall into one of 

three categories: image reconstruction (to reconstruct an 

image from a number of sensor measurements), image 

restoration (to remove any aberrations introduced by the 

sensor, including noise) and image enhancement 

(accentuation of certain desired features, which may facilitate 

later processing steps such as segmentation or object 

recognition). categories will be discussed separately below. 

The majority of the ANNs were applied directly to pixel data 

(level A); only four networks were applied to more high-level 

data (features, level B). 

 

 

 

 

  Preprocessing Compression feature extract Segmentation Recognition Image understanding Optimization 

Pixel 26 25 39 51 3 5 

Feature 4 2 19 38 2 3 

Structure     2 6   5 

Object           1 

Object set       2 2   

Scene             
a Each cell contains the number of applications in our survey where neural networks accomplish a speci1c task in the image 

processing chain. 
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3.1.1. Image reconstruction 

Image reconstruction problems often require quite complex 

computations and a unique approach is needed for each 

application. In Ref. [8], an ADALINE network is trained to 

perform an electrical impedance tomography (EIT) 

reconstruction, i.e., a reconstruction of a 2D image 

 

Applications of ANNs in these three preprocessing based on 

1D measurements on the circumference of the image. 

Srinivasan et al. [9] trained a modi1ed Hop1eld network to 

perform the inverse Radon transform (e.g., for reconstruction 

of computerised tomography images). The Hop1eld network 

contained ―summation‖ layers to avoid having to 

interconnect all units. Meyer and Heindl [10] used regression 

feed-forward networks (that learn the mapping E(y|x), with x 

the vector of input variables and y the desired output vector) 

to reconstruct images from electron holograms. Wang and 

Wahl trained a Hop1eld ANN for reconstruction of 2D 

images from pixel data obtained from projections [11]. 

 

3.1.2. Image restoration 

The majority of applications of ANNs in preprocessing can 

be found in image restoration [12–31]. In general, one wants 

to restore an image that is distorted by the (physical) 

measurement system. The system might introduce noise, 

motion blur, out-of-focus blur, distortion caused by low 

resolution, etc. Restoration can employ all information about 

the nature of the distortions introduced by the system, e.g., 

the point spread function. The restoration problem is ill-

posed because conGicting criteria need to be ful1lled: 

resolution versus smoothness. 

 

The neural-network applications we reviewed had var-ious 

designs ranging from relatively straightforward to highly 

complex, modular approaches. In the most basic image 

restoration approach, noise is removed from an image by 

simple 1ltering. Greenhil and Davies [18] used a regression 

feed-forward network in a convolution-like way to suppress 

noise (with a 5 × 5 pixel window as input and one output 

node). De Ridder et al. built a modular feed-forward ANN 

approach that mimics the behaviour of the Kuwahara 1lter, 

an edge-preserving smoothing 1lter [16]. Their experiments 

showed that the mean squared error used in ANN training 

may not be representative of the problem at hand. 

Furthermore, un-constrained feed-forward networks often 

ended up in a linear approximation to the Kuwahara 1lter. 

 

Chua and Yang [14,15] used cellular neural networks 

(CNNs) for image processing. A CNN is a system in which 

nodes are locally connected [23]. Each node con-tains a 

feedback template and a control template, which to a large 

extent determine the functionality of the network. For noise 

suppression, the templates implement an aver-aging function; 

for edge detection, a Laplacian operator. The system operates 

locally, but multiple iterations allow it to distribute global 

information throughout the nodes. Although quite fast in 

application, a disadvantage is that the parameters inGuencing 

the network behaviour (the feedback and control templates) 

have to be set by hand. Others have proposed methods for 

training CNNs, e.g., using gradient descent or genetic 

algorithms (grey-value images, Zamparelli [30]). CNNs were 

also applied for restoration of colour images by Lee and 

Degyvez [21]. 

 

Another interesting ANN architecture is the gener-alised 

adaptive neural 1lter (GANF) [20,31] which has been used 

for noise suppression. A GANF consists of a set of neural 

operators, based on stack 1lters [12] that uses binary 

decompositions of grey-value data. Finally, fuzzy ANNs 

[27,28] and the neurochips described in Ref. [22] have been 

applied to image restoration as well. 

 

Traditional methods for more complex restoration problems 

such as deblurring and diminishing out-of-focus defects, are 

maximum a posteriori estimation (MAP) and regularisation. 

Applying these techniques entails solving high-dimensional 

convex optimisation tasks. The objective functions of MAP 

estimation or the regularisation problem can both be mapped 

onto the energy function of the Hop1eld network 

[13,17,24,29]. Often, mapping the problem turned out to be 

diOcult, so in some cases the network architecture had to be 

modi1ed as well. 

 

Other types of networks have also been applied to im-age 

restoration. Qian et al. [26] developed a hybrid sys-tem 

consisting of order statistic 1lters for noise removal and a 

Hop1eld network for deblurring (by optimising a criterion 

function). The modulation transfer function had to be 

measured in advance. Guan et al. [19] developed a so-called 

network-of-networks for image restoration. Their system 

consists of loosely coupled modules, where each module is a 

separate ANN. Phoha and Oldham [25] proposed a layered, 

competitive network to reconstruct a distorted image. 

 

3.1.3. Image enhancement 

The goal of image enhancement is to amplify speci1c 

(perceptual) features. Among the applications where ANNs 

have been developed for image enhancement [32– 42], one 

would expect most applications to be based on regression 

ANNs [37,38,40,42]. However, several enhancement 

approaches rely on a classi1er, typically resulting in a binary 

output image [32,35,36,39]. 

 

The most well-known enhancement problem is edge 

detection. A straightforward application of regression feed-

forward ANNs, trained to behave like edge detectors, was 

reported by Pugmire et al. [38]. Chandresakaran et al. [32] 

used novel feed-forward architecture to classify an input 

window as containing an edge or not. The weights of the 

network were set manually instead of be-ing obtained from 

training. A number of more complex, modular systems were 

also proposed [37,40]. Formulating edge detection as an 

optimisation problem made it possible for Tsai et al. to train 

a Hop1eld network for enhancement of endocardiac borders 

[41]. 

 

Some enhancement approaches utilise other types of ANNs. 

Shih et al. [39] applied an ART network for binary image 

enhancement. Moh and Shih [36] describe a general 

approach for implementation of morpho-logical image 

operations by a modi1ed feed-forward ANN using shunting 

mechanisms, i.e., neurons acting as switches. Waxman et al. 

[42] consider the applica-tion of a centre-surround shunting 

feed-forward ANN (proposed by Grossberg) for contrast 
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enhancement and colour night vision. 

 

3.1.4. Applicability of neural networks in preprocessing 

There seem to be three types of problems in preprocessing 

(unrelated to the three possible operation types) to which 

ANNs can be applied: 

 Optimisation of an objective function de1ned by a 

traditional preprocessing problem;  

 Approximation of a mathematical transformation used for 

image reconstruction, e.g., by regression;  

 Mapping by an ANN trained to perform a certain task, 

usually based directly on pixel data (neighbourhood input, 

pixel output).  

 

To solve the 1rst type of problems, traditional methods for 

optimisation of some objective function may be replaced by a 

Hop1eld network. For a further discussion of the suitability 

of Hop1eld networks for solving optimisation problems, see 

Section 3.6. 

 

For the approximation task, regression (feed-forward) ANNs 

could be applied. Although some applications such ANNs 

were indeed successful, it would seem that these applications 

call for more traditional mathematical tech-niques, because a 

guaranteed (worst-case) performance is crucial in 

preprocessing. 

 

In several other applications, regression or classi1ca-tion 

(mapping) networks were trained to perform image 

restoration or enhancement directly from pixel data. A 

remarkable 1nding was that non-adaptive ANNs (e.g., CNNs) 

were often used for preprocessing. Secondly, when networks 

were adaptive, their architectures usu-ally diIered much from 

those of the standard ANNs: prior knowledge about the 

problem was used to design the networks that were applied 

for image restoration or enhancement (e.g., by using shunting 

mechanisms to force a feed-forward ANN to make binary 

decisions). The interest in non-adaptive ANNs indicates that 

the fast, parallel operation and the ease with which ANNs can 

be embedded in hardware may be important criteria when 

choosing for a neural implementation of a speci1c 

preprocessing operation. However, the ability to learn from 

data is apparently of less importance in preprocessing. While 

it is relatively easy to construct a linear 1lter with a certain, 

desired behaviour, e.g., by specifying its frequency pro1le, it 

is much harder to obtain a large enough data set to learn the 

optimal function as a high-dimensional regression problem. 

This holds especially when the desired network behaviour is 

only critical for a small subset of all possible input patterns 

(e.g., in edge detection). Moreover, it is not at all triv-ial to 

choose a suitable error measure for supervised training, as 

simply minimising the mean squared error might give 

undesirable results in an image processing setting. 

 

An important caveat is that the network parameters are likely 

to become tuned to one type of image (e.g., a speci1c sensor, 

scene setting, scale, etc.), which limits the applicability of the 

trained ANN. When the underlying conditional probability 

distributions, p(x|!j ) or p(y|x), change, the classi1cation or 

regres-sion network—like all statistical models—needs to be 

retrained. 

3.2. Data reduction and feature extraction 

 

Two of the most important applications of data reduction are 

image compression and feature extraction. In general, an 

image compression algorithm, used for storing and 

transmitting images, contains two steps: encoding and 

decoding. For both these steps, ANNs have been used. 

Feature extraction is used for subsequent segmentation or 

object recognition. The kind of features one wants to extract 

often correspond to particular geometric or perceptual 

characteristics in an image (edges, corners and junctions), or 

application dependent ones, e.g., facial features. 

 

3.2.1. Image compression applications 

Two diIerent types of image compression approaches can be 

identi1ed: direct pixel-based encoding=decoding by one 

ANN [43–51] and pixel-based encoding=decoding based on 

a modular approach [52–58]. DiIerent types of ANNs have 

been trained to perform image compression: feed-forward 

networks [44,49 –54,56 –58], SOMs [43,46– 48], adaptive 

fuzzy leader clustering (a fuzzy ART-like approach) [55], a 

learning vector quanti1er [49,58] and a radial basis function 

network [50]. For a more extensive overview, see [45]. 

 

Auto-associator networks have been applied to image 

compression where the input signal was obtained from a 

convolution window [50,56,58]. These networks contain at 

least one hidden layer, with less units than the input and 

output layers. The network is then trained to recreate the 

input data. Its bottle-neck architecture forces the net-work to 

project the original data onto a lower dimensional (possibly 

non-linear) manifold from which the original data should be 

predicted. 

 

Other approaches rely on a SOM, which after train-ing acts 

as a code book [43,46]. The most advanced ap-proaches are 

based on specialised compression modules. These 

approaches either combine diIerent ANNs to ob-tain the best 

possible image compression rate or they combine more 

traditional statistical methods with one or more ANNs. Dony 

and Haykin have developed an ap-proach based on diIerent, 

specialised modules [53]. In their approach, a ―supervisor‖ 

ANN can choose which processing module is best suited for 

the compression task at hand. Wang et al. also present a 

modular coding approach based on specialised ANNs [57]. 

 

ANN approaches have to compete with well-established 

compression techniques such as JPEG, which should serve as 

a reference. The major advantage of ANNs is that their 

parameters are adaptable, which may give better compression 

rates when trained on spe-ci1c image material. However, 

such a specialisation becomes a drawback when novel types 

of images have to be compressed. For a discussion of how to 

evaluate image compression algorithms see, e.g., Ref. [52]. 

 

3.2.2. Feature extraction applications 

Feature extraction can be seen as a special kind of data 

reduction of which the goal is to 1nd a subset of informative 

variables based on image data. Since image data are by 

nature very high dimensional, feature extrac-tion is often a 

necessary step for segmentation or object recognition to be 

successful. Besides lowering the com-putational cost, feature 
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extraction is also a means for controlling the so-called curse 

of dimensionality. 
1
 When used as input for a subsequent 

segmentation algorithm, one wants to extract those features 

that preserve the class separability well [2,3]. 

 

There is a wide class of ANNs that can be trained to perform 

mappings to a lower-dimensional space, for an extensive 

overview see Ref. [60]. A well-known feature-extraction 

ANN is Oja’s neural implementation of a one-dimensional 

principal component analy-sis (PCA) [61], later extended to 

multiple dimensions [62]. In Ref. [63], Baldi and Hornik 

proved that training three-layer auto-associator networks 

corresponds to applying PCA to the input data. Later [64,65], 

auto-associator networks with 1ve layers were shown to be 

able to perform non-linear dimensionality reduction (i.e., 

1nding principal surfaces [66]). It is also possible to use a 

mixture of linear subspaces to approximate a non-linear 

subspace (see, e.g., Ref. [67]). Another approach to feature 

extraction is 1rst to cluster the high-dimensional data, e.g., by 

a SOM, and then use the cluster centres as prototypes for the 

entire cluster. 

 

Among the ANNs that have been trained to per-form feature 

extraction [68–77], feed-forward ANNs have been used in 

most of the reviewed applications [70,74,75,77]. SOMs [71–

73] and Hop1eld ANNs [76] have also been trained to 

perform feature extraction. Most of the ANNs trained for 

feature extraction obtain pixel data as input. 

 

Neural-network feature extraction was performed for 

• Subsequent automatic target recognition in remote sensing 

(accounting for orientation) [72] and character recognition 

[75,76];  

• Subsequent segmentation of food images [74] and of 

magnetic resonance (mr) images [71];  

• 1nding the orientation of objects (coping with rotation) 

[49,70];  

• 1nding control points of deformable models [77];  

• Clustering low-level features found by the gabor 1lters in 

face recognition and wood defect detection [73];  

• Subsequent stereo matching [69];  

• Clustering the local content of an image before it is 

encoded [68].  

 

In most applications, the extracted features were used for 

segmentation, image matching or object recognition. For 

(anisotropic) objects occurring at the same scale, rotation 

causes the largest amount of intra-class variation. 
1
 The curse 

of dimensionality is a property of a classi1cation or 

regression problem. It expresses that a higher dimensionality 

of the feature space leads to an increased number of 

parameters, which need to be estimated. The risk of 

over1tting the model will increase with the number of 

parameters, which will often lead to peaking (i.e., the best 

generalisation performance is obtained when using a subset 

of the available features) [59].  

 

Some feature extraction approaches were designed to cope 

explicitly with (changes in) orientation of objects. 

 

It is important to make a distinction between application of 

supervised and unsupervised ANNs for feature extraction. 

For a supervised auto-associator ANN, the in-formation loss 

implied by the data reduction can be measured directly on the 

predicted output variables, which is not the case for 

unsupervised feature extraction by the SOM. Both supervised 

and unsupervised ANN feature extraction methods have 

advantages compared to tradi-tional techniques such as PCA. 

Feed-forward ANNs with several hidden layers can be 

trained to perform non-linear feature extraction, but lack a 

formal, statistical basis (see Section 5.3). 

 

3.3. Image segmentation 

 

Segmentation is the partitioning of an image into parts that 

are coherent according to some criterion. When considered 

as a classi1cation task, the purpose of segmentation is to 

assign labels to individual pixels or voxels. Some neural-

based approaches perform segmentation directly on the pixel 

data, obtained either from a convolution window 

(occasionally from more bands as present in, e.g., remote 

sensing and MR images), or the information is provided to a 

neural classi1er in the form of local features. 

 

3.3.1. Image segmentation based on pixel data 

Many ANN approaches have been presented that segment 

images directly from pixel or voxel data [78–113]. Several 

diIerent types of ANNs have been trained to perform pixel-

based segmentation: feed-forward ANNs [90, 94, 102, 105, 

106], SOMs [78,82,84,87,91,92,94,98, 102,109], Hop1eld 

networks [83,85,96,103,110], probabilistic ANNs [94,112], 

radial basis function networks [94], CNNs [108], constraint 

satisfaction ANNs [79] and RAM-networks [104]. A self-

organising architecture with fuzziness measures was used in 

Ref. [86]. Also, biologically inspired neural-network 

approaches have been proposed: the perception model 

developed by Grossberg [88,89], which is able to segment 

images from surfaces and their shading, and the brain-like 

networks proposed by Opara and Worgotter [99]. 

 

Hierarchical segmentation approaches have been de-signed to 

combine ANNs on diIerent abstraction lev-els [105,110]. The 

guiding principles behind hierarchical approaches are 

specialisation and bottom–up process-ing: one or more 

ANNs are dedicated to low level fea-ture 

extraction=segmentation, and their results are com-bined at a 

higher abstraction level where another (neural) classi1er 

performs the 1nal image segmentation. Red-dick et al. 

developed a pixel-based two-stage approach where a SOM is 

trained to segment multispectral MR images [102]. The 

segments are subsequently classi1ed into white matter, grey 

matter, etc., by a feed-forward ANN. Non-hierarchical, 

modular approaches have also been developed [78,105,107]. 

 

In general, pixel-based (often supervised) ANNs have been 

trained to classify the image content based on 

 Texture [78,82,87,94,100,101,104,107,113];  

 A combination of texture and local shape [81,90,95, 

105,112].  

 

ANNs have also been developed for pre- and postpro-cessing 

steps in relation to segmentation, e.g., for 

 Delineation of contours [80,108];  

Paper ID: ART20178929 DOI: 10.21275/ART20178929 1111 

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/


International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391 

Volume 6 Issue 12, December 2017 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

 Connecting edge pixels [103];  

 Identi1cation of surfaces [88,89];  

 Deciding whether a pixel occurs inside or outside a 

segment [110];  

 Defuzzifying the segmented image [86];  

 

and for 

 Clustering of pixels [98,109];  

 Motion segmentation [97].  

 

In most applications, ANNs were trained as supervised 

classi1ers to perform the desired segmentation. One feature 

that most pixel-based segmentation approaches lack is a 

structured way of coping with variations in rotation and 

scale. This shortcoming may deteriorate the segmentation 

result. 

 

3.3.2. Image segmentation based on features 

Several feature-based approaches apply ANNs for 

segmentation of images [32,71,92,114 –129]. DiIerent types 

of ANNs have been trained to perform feature-based image 

segmentation: feed-forward ANNs [71,114,118, 119,125], 

recursive networks [127], SOMs [71,92,119 –121,129], 

variants of radial basis function networks [117] and CNNs 

[116], Hop1eld ANNs [126], principal component networks 

[129] and a dynamic ANN [32]. 

 

Hierarchical network architectures have been developed for 

optical character recognition [122] and for segmentation of 

range images [92]. 

 

Feature-based ANNs have been trained to segment images 

based on the diIerences in 

 Texture [119,122–124,126 –128];  

 A combination of texture and local shape [118,121,125].  

Besides direct classi1cation, ANNs have also been used for 

 Estimation of ranges [92];  

 Automatic image thresholding by annealing [115] or by 

mapping the histogram [114];  

 Estimation of the optical gow [117]; 

 Connecting edges and lines [116];  

 Region growing [120].  

 A segmentation task that is most frequently performed by 

feature-based anns is texture segregation, which is 

typically based on 

 Co-occurrence matrices [118,119,128];  

 Wavelet features [123];  

 Multiresolution features extracted from the gabor 

wavelets [126];  

 Spatial derivatives computed in the linear scale-space 

[121].  

 

The Gabor and wavelet-based features, and features extracted 

from the linear scale-space provide information at several 

scales to the classi1er, which, however, needs to cope 

explicitly with variations in scale. As with respect to 

orientation, the Gabor and wavelet-based approaches are, in 

general, sensitive to horizontal, vertical and diagonal 

features. These three directions can be combined into a local 

orientation measure such that rotation invariance is obtained. 

The scale-space features can be reduced to a few invariants 

that are indeed rotation invariant [130]. The generalised co-

occurrence matrices cope with variations in orientation by 

averaging over four orthogonal orientations. Scale can also 

be taken into account by varying the distance parameter used 

to compute the co-occurrence matrix. 

 

3.3.3. Open issues in segmentation by ANNs 

Three central problems in image segmentation by ANNs are: 

how to incorporate context information, the inclusion of 

(global) prior knowledge, and the evaluation of segmentation 

approaches. In the approaches we reviewed, context 

information was obtained from, e.g., multiscale wavelet 

features or from features derived from the linear scale space 

(computed at a coarse scale). How context information can 

best be incorporated, is an interesting issue for further 

research. The general problem of how to include a priori 

knowledge in a segmentation approach is considered in 

Section 5.2. 

 

A caveat is how to obtain a gold standard for the (in most 

cases supervised) segmentation algorithms. In gen-eral, the 

true class membership of the pixels=voxels in the training set 

is known with varying degrees of con-1dence. In Ref. [119], 

this problem is addressed by let-ting an expert demarcate the 

inner parts of areas with a similar (coherent) texture but 

leaving the transition areas unclassi1ed. Certainly, intra- and 

inter-observer variabil-ity needs to be assessed thoroughly 

(e.g., by the kappa statistic [131]) before suitable training and 

test images can be compiled. 

 

Even when a reliable gold standard is available, ob-jective 

performance assessment entails more than simply computing 

error rates on novel test images. There is not yet a single 

measure capable of unequivocally quantify-ing segmentation 

quality. Besides statistical performance aspects such as 

coverage, bias and dispersion [131], desirable properties 

such as within-region homogeneity and between-region 

heterogeneity [132] are also impor-tant (for an overview of 

segmentation quality measures see Ref. [133]). 

 

3.4. Object Recognition 

 

Object recognition consists of locating the positions and 

possibly orientations and scales of instances of ob-jects in an 

image. The purpose may also be to assign a class label to a 

detected object. Our survey of the lit-erature on object 

recognition using ANNs indicates that in most applications, 

ANNs have been trained to locate individual objects based 

directly on pixel data. Another less frequently used approach 

is to map the contents of a window onto a feature space that 

is provided as input to a neural classi1er. 

 

3.4.1. Object recognition based on pixel data 

Among the ANN approaches developed for pixel-based 

object recognition [39,42,67,70,72,134 –179], several types 

of ANNs can be distinguished: feed-forward-like ANNs 

[70,147–149,152,164,165,171,172], variants us-ing weight 

sharing [144,159,160], recurrent networks [179], the ART 

networks introduced by Grossberg [39,139], mixtures-of-

experts [173], (evolutionary) fuzzy ANNs [155], bi-

directional auto-associative memories [157], the 

Neocognitron introduced by Fukushima [150,162] and 
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variants hereof [137,161], piecewise-linear neural classi1ers 

[168], higher-order ANNs [169,170] and Hop1eld ANNs 

[135,175,176]. Besides, interesting hardware ANNs have 

been built for object recognition: the RAM network 

[143,145] and optical implementations [154,167]. Finally, 

SOMs are occasionally used for feature extraction from pixel 

data [171,177]; the output of the map is then propagated to a 

(neural) classi1er. 

 

Several novel network architectures have been developed 

speci1cally to cope with concomitant object variations in 

position, (in-plane or out-of-plane) rotation and scale (in one 

case, an approach has been developed that is invariant to 

changes in illumination [167]). It is clear that a distinction 

needs to be made between invariant recognition in 2D 

(projection or perspective) images and in 3D volume images. 

An interesting approach that performs object recognition, 

which is invariant to 2D translations, in-plane rotation and 

scale, is the neurally inspired what-and-where 1l-ter [139]. It 

combines a multiscale oriented 1lter bank (what) with an 

invariant matching module (where). Other approaches rely on 

learning the variations explicitly by training 

[141,147,148,164]. Egmont-Petersen and Arts built a 

statistical intensity model of the object that should be 

detected [147,148]. The convolution ANN was trained using 

synthetic images of the (modelled) object with randomly 

chosen orientations. Penedo et al. developed a two-stage 

ANN approach for recognition of nodules in chest 

radiographs [164]. These ANNs were trained partly with 

synthetic subimages of nodules. Others have developed 

approaches that are invariant to both translation and 2D 

rotation [144,178], or systems that through their architectures 

perform processing in a translation-invariant way and=or at 

diIerent scales (e.g., the Neocognitron [150] and the shared 

weight networks [158,159]). Fukumi et al. developed a 

hierarchical approach for rotation-invariant object 

recognition [70]. This approach, like its predecessor [149], 

maps the image to a polar space in which rotation-invariant 

recognition takes place. 

 

Clearly, when object recognition is performed by teaching a 

classi1er to recognise the whole object from a spatial pattern 

of pixel intensities, the complexity of the classi1er grows 

exponentially with the size of the object and with the number 

of dimensions (2D versus 3D). An interesting approach that 

circumvents this problem is iterative search through the 

image for the object centre [143]. The output of the ANN is 

the estimated displacement vector to the object centre. 

Depending on the contents of the scene, even context 

information may be required before the objects of interest 

can be recognised with con1dence. The incorporation of con-

text information may again lead to a large number of extra 

parameters and thereby a more complex classi1er. To cope 

with this problem the so-called multiresolution approaches 

have been developed [171,175,176], which combine the 

intensities from pixels located on diIerent levels of a pyramid 

[180] but centred around the same location. This provides the 

classi1er with context in-formation, but a combinatorial 

explosion in the number of parameters is circumvented. Still, 

variations in scale have to be learned explicitly by the 

classi1er. A disad-vantage of ANN pyramid approaches is 

that they sample the scale space coarsely as the resolution is 

reduced with a factor two at each level in the pyramid (in, 

e.g., the linear scale space [181], scale is a continuous 

variable). A special type of ANN that incorporates the scale 

in-formation directly in a pyramidal form is the so-called 

higher-order ANN [169,170]. This network builds up an 

internal scale-space-like representation by what is called 

coarse coding. However, higher-order ANNs need to learn 

variations in scale explicitly too. They should be used with 

caution because the coarse coding scheme may lead to 

aliasing, as the high-resolution images are not blurred before 

computing the coarser image at the next level. 

 

Rare conditions such as object occlusion or the occurrence of 

multiple objects within the (sub) image that is processed by 

the classi1er have hardly been considered explicitly. An 

experimental architecture developed by McQuiod is capable 

of recognizing multiple objects simultaneously within an 

image [161] (see also Section 3.6). 

 

Recurrent ANNs (with feed-back loops [182]) can be used to 

develop special approaches for object recognition [179]. The 

added value of a recurrent network architecture lies in its 

memory: the current state contains information about the 

past, which may constitute valuable context information. The 

recurrent network developed by Ziemke [179] performs a 

convolution with an image in order to detect oil spills. The 

recurrence principle introduces averaging, which can give a 

more robust performance. 

 

Several of the approaches for object detection and clas-

si1cation operate on binary images [137,139,143–145]. 

Although binarisation simpli1es the recognition problem 

considerably, it generally decreases the recognition 

performance of an ANN. 

 

3.4.2. Object recognition based on features 

Several neural-network approaches have been developed for 

feature-based object recognition [152,164,171, 177,183–209] 

including: feed-forward ANNs [152,171, 177,184 –

187,190,193–197,200,205,207–209], Hop1eld ANNs [201], 

a fuzzy ANN [186] and RAM ANNs [192,202]. SOMs are 

occasionally used to perform feature extraction prior to 

object recognition [177,197], although SOMs have also been 

trained to perform object classi1cation [206]. 

 

The smaller variety of neural architectures devel-oped for 

feature-based object recognition compared to the pixel-based 

approaches discussed in the previous section, reGects the fact 

that most eIort is focused on developing and choosing the 

best features for the recognition task. Common for many 

feature-based approaches is that variations in rotation and 

scale are coped with by the features, e.g., statistical moments. 

A certain amount of noise will in Guence the computed 

features and deteriorate the recognition performance [203]. 

So the major task of the subsequent classi1er is to 1lter out 

noise and distortions propagated by the features. Moreover, 

when the object to be detected is large and needs to be sam-

pled densely, feature extraction is inevitable. Otherwise, a 

neural classi1er will contain so many parameters that a good 

generalisation will be impeded. 

 

In general, the types of features that are used for object 
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recognition diIer from the features used by the neural-based 

segmentation approaches already reviewed. For object 

recognition, the features typically capture local geometric 

properties: 

 Points with a high curvature on the detected object 

contours [164,208];  

 (gabor) 1lter banks [201,207] including wavelets [191];  

 

 Dedicated features: stellate features [194] and ocr features 

[190];  

 Projection of the (sub)image onto the x- and y-axis [184];  

 Principal components obtained from the image [204,205] 

(feature extraction);  

 (distances to) feature space trajectories [210], which 

describe objects in all rotations, translations or scales 

[187];  

 The fourier descriptors derived from the image [209];  

 The zernike moments [195] and the moments of hu [203].  

 

The Fourier descriptors, the Zernike moments and the 

moments of Hu are invariant to changes in object posi-tion, 

orientation and scale [203,211]. For a discussion of moments 

and invariance to grey-level transformations, see Ref. [211]. 

 

Multiresolution approaches have also been developed for 

object recognition based on features from 

 

 The linear scale-space [185,193];  

 The gauss pyramid [171];  

 The laplace pyramid [205].  

 

Also, the positions of detected edges (input level C) may 

serve as features for a classi1er [171]. Finally, a set of 

features has been developed that is invariant to changes in 

colour [192]. 

 

Which set of features is best suited for a particular 

recognition task, depends on the variations among the objects 

(and of the background) with respect to position, (in-plane) 

orientation and scale. Knowledge of the de-grees of freedom 

the approach has to cope with is needed for choosing a suited 

set of features (feature selection is discussed in Section 5.1). 

 

3.4.3. Using pixels or features as input? 

Most ANNs that have been trained to perform image 

segmentation or object recognition obtain as input either 

pixel=voxel data (input level A) or a vector consisting of 

local, derived features (input level B). For pixel- and voxel-

based approaches, all information (within a win-dow) is 

provided directly to the classi1er. The perfect (minimal error-

rate) classi1er should, when based directly on pixel data, be 

able to produce the best result if the size of the window is 

comparable to that of the texture elements (texels) or the 

window encompasses the object and the (discriminative) 

surrounding background. When, on the other hand, the input 

to the classi1er consists of a feature vector, the image content 

is always compressed. Whether suOcient discriminative 

information is retained in the feature vector, can only be 

resolved experimentally. 

 

Two-dimensional image modalities such as radiography, 2D 

ultrasound and remote sensing often exhibit concomitant 

variations in rotation and scale. If such in-variances are not 

built into a pixel-based ANN, careful calibration (estimation 

of the physical size of a pixel) and subsequent rescaling of 

the image to a standard resolution are required steps to 

ensure a con1dent result. When only rotations occur, features 

obtained from a polar map-ping of the window may ensure a 

good segmentation or detection result [70,149]. 

 

In many applications, however, calibration is unfea-sible and 

2D=3D rotation and scale invariance needs to be 

incorporated into the ANN. For pixel-based ap-proaches, 

invariance can be either built directly into the neural classi1er 

(e.g., using weight sharing [159] or by taking symmetries into 

account [212]), or the classi1er has to be trained explicitly to 

cope with the variation by including training images in all 

relevant orientations and scales. A major disadvantage of 

these approaches is that object variations in rotation and 

scale have to be learned explicitly by the classi1er 

(translation can usually be coped with by convolution). This 

again calls for a very large, complete training set and a 

classi1er that can generalise well. Model-based approaches 

have been presented that can generate such a complete 

training set [147,148,164,185], see the discussion above. 

How to de-sign robust pixel-based algorithms for 

segmentation and object recognition that can cope with the 

three basic aOne transforms, is a challenging subject for 

future research. 

 

In situations where many concomitant degrees of freedom 

occur (2D or 3D rotation, scale, a One grey-level 

transformations, changes in colour, etc.), only feature-based 

approaches may guarantee that the re-quired invariance is 

fully obtained. It is clear that when variations in orientation 

and scale occur and reliable calibration is unfeasible, an 

ANN based on invariant fea-tures should be preferred above 

a pixel-based approach. Another advantage of feature-based 

approaches is that variations in rotation and scale may remain 

unnoticed by the user, who may then end up with a poor 

result. When there is no limited set of images on which an 

algorithm has to work (e.g., image database retrieval), the 

more Gexible pixel-based methods can prove useful. 

 

The recommendation to prefer feature-based over 

pixel=voxel-based image processing (when signi1cant 

variations in rotation and scale actually occur in the image 

material), puts emphasis on the art of develop-ing and 

choosing features which, in concert, contain much 

discriminative power in relation to the particular image 

processing task. Prior knowledge regarding the image 

processing task (e.g., invariance) should guide the 

development and selection of discriminative fea-tures. 

Feature-based classi1ers will, in general, be easier to train 

when the chosen features cope adequately with the degrees of 

freedom intrinsic to the image material at hand. The removal 

of superGuous features is often necessary to avoid the 

peaking phenomenon [59] and guarantee a good 

generalisation ability of the classi1er. This issue, which is a 

general problem in statistical pattern recognition, is discussed 

in Section 5.1. 
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3.5. Image understanding 

 

Image understanding is a complicated area in image 

processing. It couples techniques from segmentation or 

object recognition with knowledge of the expected image 

content. In two applications, ANNs were used in com-

bination with background knowledge to classify objects such 

as chromosomes from extracted structures (input level C) 

[213] and to classify ships, which were recog-nised from 

pixel data (input level A) by an advanced modular approach 

[214]. In another application, ANNs were used to analyse 

camera images for robot control from local features (input 

level B) [215]. Neural (decision) trees [216], semantic 

models based on extracted structures (input level C) [217] or 

neural belief networks [218] can be used to represent 

knowledge about the expected image content. This 

knowledge is then used to restrict the number of possible 

interpretations of single objects as well as to recognise 

diIerent con1gurations of image objects. Especially, the 

approaches by Reinus et al. [217] and Stassopoulou et al. 

[218] perform genuine image interpretation. Reinus trains an 

ANN to diagnose bone tumours. The recognition approach of 

Stassopoulou et al. predicts the degree of deserti1cation of an 

area from a set of detected objects=segments, such as rocks, 

eroded areas, etc., in remote sensing images (input level E). 

 

A major problem when applying ANNs for high level image 

understanding is their black-box character. It is virtually 

impossible to explain why a particular image interpretation is 

the most likely one. As a remedy, Stas-sopoulou et al. 

mapped the trained ANN onto a Bayesian belief network 

after training had been performed. An alternative approach to 

coping with the black-box problem is to use the generic 

explanation facility developed for ANNs [219] or to use rule 

extraction [220]. Another problem in image understanding 

relates to the level of the input data. When, e.g., seldom 

occurring features (input level C) or object positions (input 

level E) are provided as input to a neural classi1er, a large 

number of images are required to establish statistically 

representative train-ing and test sets. We feel that image 

understanding is the most dubious application of ANNs in the 

image process-ing chain. 

 

3.6. Optimisation 

 

Some image processing (sub) tasks such as graph-and stereo-

matching can best be formulated as optimisation problems, 

which may be solved by Hop1eld ANNs [11,76,103,221–

230]. In some applications, the Hop1eld network obtained 

pixel-based input (input level A) [11,76,103,226,230], in 

other applications the input consisted of local features (input 

level B) [224,228] or detected structures (typically edges, 

input level C) [222,223,225,227,229]. 

 

Hop1eld ANNs have been applied to the following 

optimisation problems: 

 Segmentation of an image with an intensity gradient by 

connecting edge pixels [103,226] (input level A);  

 Thresholding images by relaxation [230] (input level A);  

 Two-dimensional [76,227,229] and three-dimensional 

object recognition by (partial) graph matching [222,228] 

(input level C);  

 Establishing correspondence between stereo images based 

on features (landmarks) [224] and stereo correspondence 

between line cameras from detected edges [225];  

 Approximation of a polygon from detected edge points 

[223];  

 Controlling Voronoi pyramids [221].  

 

Hop1eld ANNs have mainly been applied to segmentation 

and recognition tasks that are too diOcult to realise with 

conventional neural classi1ers because the solutions entail 

partial graph matching or recognition of three-dimensional 

objects. Matching and recognition are both solved by letting 

the network converge to a stable state while minimising the 

energy function. It was also shown that iterating the Hop1eld 

network can be interpreted as a form of probabilistic 

relaxation [231]. 

 

In most of the applications reviewed, casting the ac-tual 

problem to the architecture of the Hop1eld network turned 

out to be diOcult. Occasionally, the original problem had to 

be modi1ed before it could be solved by the Hop1eld 

architecture. Also, convergence to a global optimum cannot 

be guaranteed. Finally, for Hop1eld networks training and 

use both require complex computation, but this also holds for 

other more traditional algorithms for non-linear programming 

[232]. It should be kept in mind that some (constrained) non-

linear programming problems can be solved optimally by 

traditional algorithmic approaches. The Hop1eld network is 

really only an interesting approach for problems that lie 

beyond this subclass of solvable optimisation problems. 

 

4. Real-world applications of neural networks 
 

This review has concentrated on applications of ANNs to 

image processing problems, which were reported in the 

scienti1c literature. However, as the 1eld matured, ANNs 

have gradually found their way into a large range of 

(commercial) applications. Unfortunately, commercial and 

other considerations often impede publication of scienti1c 

and technical aspects of such systems. In some research 

programmes, an overview of commercial applications of 

ANNs has been given, e.g., the SIENA project (ESPRIT 

project 9811) [233], the NeuroNet project [234] and the 

British NCTT project [235]. The project web sites list a 

number of application areas in which ANN-based systems are 

often encountered: 

 industrial inspection: quality and process control, e.g., the 

detection of defect objects in the production of steel, 

textiles, fruit, vegetables, plants or other food products;  

 document processing: computerised reading of machine-

generated and hand-written text used for,  

e.g., automatic processing of forms and mail sorting; 

 Identi1cation and authentication: e.g., license plate 

recognition, 1ngerprint analysis and face 

detection=veri1cation [236]; 

 Medical diagnosis: e.g., screening for cervical cancer [237] 

or breast tumours [238,239];  

 Defence: various navigation and guidance systems, tar-get 

recognition systems, etc. [240,241].  
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More information on the aforementioned applications can be 

found via the internet [233–235]. 

 

5. Discussion 
 

Two major advantages of ANNs is that they are appli-cable 

to a wide variety of problems and are relatively easy to use. 

There are, however, still caveats and fundamental problems 

that need to be investigated in the future. Some of these 

issues are general in the sense that they are not resolved by 

other, competing techniques from the pat-tern recognition 

1eld. Other problems are caused by the strive to solve an 

image processing problem by means of a statistical, data-

oriented technique. Finally, some problems are fundamental 

to the way ANNs approach pattern recognition problems. 

 

5.1. Issues in pattern recognition 

 

When trying to solve a recognition problem, one may be 

faced with several problems that are fundamental to applied 

statistical pattern recognition: avoiding the curse of 

dimensionality, selecting the best features and achiev-ing a 

good transferability. 

 

The 1rst problem, the curse of dimensionality, occurs when 

too many input variables are provided to a classi-1er or 

regression function. The risk of ending up with a classi1er or 

regressor that generalises poorly on novel data, increases 

with the number of dimensions of the input space. The 

problem is caused by the inability of existing classi1ers to 

cope adequately with a large num-ber of (possibly irrelevant) 

parameters, a de1ciency that makes feature extraction and=or 

feature selection neces-sary steps in classi1er development. 

Feature extraction has been discussed in detail in Section 

3.2.2. Feature se-lection is by virtue of its dependence on a 

trained clas-si1er, an ill-posed problem [242–244]. Besides 

oIering a way to control the curse of dimensionality, feature 

selection also provides insight into the properties of a 

classi1er and the underlying classi1cation problem [242]. 

A problem that is especially important in applications such as 

medical image processing, is how to ensure the transferability 

of a classi1er. When trained to classify patterns obtained 

from one setting with a speci1c class distribution, P(!j ), a 

classi1er will have a poorer and possibly unacceptably low 

performance when transferred to a novel setting with another 

class distribution P (!j ). How to cope with varying prior 

class distributions, is a subject for future research. Another 

problem related to transferability is how to account for 

changing underlying feature distributions, p(x|!j ) or p(y|x). 

In general, the parameters of the classi1er or regression 

function need to be reestimated from a data set that is 

representative for the novel distribution. This problem is 

intrinsic to all statistical models as they are based on 

inductive inference. Note that for a classi1er that has been 

trained, e.g., to recognise objects appearing at a certain scale 

directly from pixel data, recognition of similar objects at a 

diIerent scale is equivalent to classifying patterns from a 

novel distribution p (x|!j ). Classi1ers or regression models 

that have not been retrained, should catch patterns occurring 

out-side the space spanned by the training cases and leave 

these patterns unprocessed, thereby avoiding the assign-ment 

of ―wild-guess‖ class labels (see, e.g., Ref. [245]) or 

unreliable prediction of the conditional mean (in re-gression). 

Moreover, the question of how to incorporate costs of 

diIerent misclassi1cations (again, an important topic in, e.g., 

medical image processing) or the computational costs of 

features [246], is not yet fully answered. 

 

5.2. Obstacles for pattern recognition in image processing 

 

Besides fundamental problems within the 1eld of pattern 

recognition, other problems arise because sta-tistical 

techniques are used on image data. First, most pixel-based 

techniques consider each pixel as a separate random variable. 

A related problem is how one should incorporate prior 

knowledge into pattern recognition techniques. Also, the 

evaluation of image processing approaches is not always 

straightforward. 

 

A challenging problem in the application of pattern 

recognition techniques on images is how to incorpo-rate 

context information and prior knowledge about the expected 

image content. This can be knowledge about the typical 

shape of objects one wants to detect, knowl-edge of the 

spatial arrangement of textures or objects, or prior knowledge 

of a good approximate solution to an optimisation problem. 

According to Perlovsky [247], the key to restraining the 

highly Gexible learning algorithms for ANNs, lies in the very 

combination with prior (geometric) knowledge. However, 

most pattern recognition methods do not even use the prior 

information that neighbouring pixel=voxel values are highly 

correlated. This problem can be circumvented by extracting 

features from images 1rst, by using distance or error 

measures on pixel data which do take spatial coherency into 

ac-count (e.g., Refs. [67,248]), or by designing an ANN with 

spatial coherency (e.g., Ref. [159]) or contextual relations 

between objects (e.g., Ref. [249]) in mind. Context 

information can also be obtained from the pyra-mid and scale 

space approaches discussed in Section 3.4.1. In the reviewed 

applications, prior knowledge was mainly used to identify 

local features (input level B) that were used as input to neural 

classi1ers. Fuzzy ANNs may play a special role because they 

can be initialised with (fuzzy) rules elicited from domain 

experts. Using prior knowledge to constrain the highly 

parameterised (neural) classi1ers, is a scienti1c challenge. 

 

There is a clear need for a thorough validation of the 

developed image processing algorithms. In the reviewed 

literature, validation on a large set of test images had only 

occasionally been performed. Validation and com-parison of 

diIerent algorithms are only possible when a reliable gold 

standard exists and meaningful (objective) quality measures 

are available. For, e.g., object recogni-tion, a gold standard is 

in most cases easy to obtain. In other applications, diIerent 

(human) observers may not fully agree about the gold 

standard (e.g., segmentation of medical images). Even with a 

reliable gold standard being available, it is clear that 

performance assessment entails much more than simply 

computing error rates on novel test images. 

 

Finally, in image processing, classi1cation and regression 

problems quickly involve a very large number of input 

dimensions, especially when the algorithms are applied 
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directly to pixel data. This is problematic, due to the curse of 

dimensionality already discussed. However, the most 

interesting future applications promise to de-liver even more 

input. Whereas, in almost all reviewed articles, ANNs were 

applied to two-dimensional images, e.g., (confocal) 

microscopy and CT=MR (medical) imaging are three-

dimensional modalities. One way to cope with this increased 

dimensionality is by feature-based pattern recognition, 

another way would be to develop an architecture that 

inherently down samples the original im-age. As already 

mentioned, the search for the optimal set of features that in 

concert gives the best class separability is a never-ending 

quest. To avoid such a quest for all kinds of features that 

capture certain speci1c aspects in a (sub)image, a general 

mapping (invariant to changes in position, rotation and scale) 

of a (sub)image to a mani-fold subspace should be 

developed. This will change the focus from selection of 

individual features to optimisa-tion of the sampling density in 

the invariant space. 

 

5.3. Neural network issues 

 

A number of unresolved problems exist in the 1eld of ANNs. 

We will in turn consider the lack of a profound theoretical 

basis for ANNs, the problem of choosing the best 

architecture and the black-box problem. 

 

Several theoretical results regarding the approximation 

capabilities of ANNs have been proven. Although feed-

forward ANNs with two hidden layers can ap-proximate any 

(even discontinuous) function to an arbitrary precision, 

theoretical results on, e.g., the rate of convergence are 

lacking. For other (non)parametric classi1ers, the relation 

between the size of the train-ing set and the expected error 

rate has been stud-ied theoretically. One obstacle in 

developing a more profound statistical foundation for trained 

ANNs is that convergence to the global minimum of the risk 

function (squared error) cannot be guaranteed. Furthermore, 

there is always a danger of overtraining an ANN as 

minimising the error measure on a train-ing set does not 

imply 1nding a well-generalizing ANN. Nevertheless, the 

large body of work on application of ANNs presented in the 

last decade pro-vides (novice) users with many rules of 

thumb on how to set the various parameters. Also, methods 

such as regularisation, early stopping and ensemble 

training=bagging can help in avoiding the problem of 

overtraining. 

 

Another problem is how to choose the best ANN 

architecture. Although there is some work on model selection 

[250], no general guidelines exist that guarantee the best 

trade-oI between bias and variance of the classi1er for a 

particular size of the training set. Training uncon-strained 

networks using standard performance measures such as the 

mean squared error might even give very unsatisfying results. 

This, we assume, is the reason why in a number of 

applications, networks were not adaptive at all (e.g., CNNs) 

or heavily constrained by their architecture (e.g., the 

Neocognitron and shared weight networks). Note that this 

does not automatically imply that unconstrained ANNs 

should not be applied to image processing. It does indicate 

that as much prior knowledge as possible should be used in 

both ANN design and training. 

 

ANNs suIer from what is known as the black-box problem: 

given any input a corresponding output is produced, but it 

cannot be elucidated why this decision was reached, how 

reliable it is, etc. In image understanding, this is certainly 

problematic, so the use of ANNs in such applications will 

remain limited. Some fuzzy neural architectures facilitate 

extraction of fuzzy rules after training. We expect that fuzzy 

ANNs will be more applicable in image understanding. In 

some applications, e.g., process monitoring, electronic 

surveillance, bio-metrics, etc., a con1dence measure is highly 

necessary to prevent costly false alarms. In such areas, it 

might even be preferable to use other, less well-performing 

methods that do give statistically profound con1dence 

intervals. 

 

6. Conclusion and future perspectives 
 

We have structured our survey according to the six steps in 

the image processing chain. ANNs have been trained to 

perform these six tasks with various degrees of success: 

 Image preprocessing is a popular application area. Several 

(regression) ANNs were developed for image 

reconstruction, image restoration and image enhancement. 

Often, these networks were not (or only partially) adaptive. 

A general conclusion is that neural solutions are truly 

interesting when existing algorithms fail or when ANNs 

may reduce the amount of computation considerably. The 

largest risk in preprocessing is that training results in 

ANNs being tuned to speci1c image material.  

 Image compression is an interesting application of ANNs. 

A caveat again is tuning to particular images. As there is 

no unique way of evaluating compression algorithms, 

approaches should be compared with competing 

compression algorithms on novel test images. Feature 

extraction is a useful application of, especially, the SOM. 

Also, the possibility of non-linear feature extraction by 

feed-forward ANNs with several hidden layers oIers 

additional functionality.  

 Image segmentation and object detection have largely been 

performed by pixel-based or feature-based (low level) 

approaches. Pixel-based approaches provide the classi1er 

with all relevant information, but usually result in high-

dimensional input spaces. A feature-based approach, 

however, essentially compresses the information obtained 

from a local neighbourhood into a vector of salient 

features. On the one hand, it can-not be guaranteed that the 

chosen features comprise most of the discriminative 

information. On the other hand, a feature-based approach 

may be the only way to guarantee rotation and scale 

invariance. A possi-ble remedy is to develop novel pixel-

based classi1ca-tion approaches in which neighbouring 

pixels are no longer regarded as completely separate 

variables. For object recognition, problems like object 

occlusion and multiple occurrences of objects remain 

unresolved.  

 Image understanding is a dubious application of ANNs 

because of their black-box character and the need for a 

large number of images as training and test sets. As long as 

there is no accepted facility for explaining why a particular 
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class label has been assigned to a pattern, black-box 

classi1ers will not be widely applied in im-age 

understanding. Neural-fuzzy architectures [251] and 

probabilistic networks [218] may lend themselves better 

for image understanding because of their trans-parent 

character and the possibility of initialisation by a priori 

rules or distributions.  

 Optimisation problems have in most cases been 

approached by solutions based on Hop1eld ANNs. 

 

Nevertheless, several issues remain problematic such as 

casting the problem at hand to the Hop1eld architecture and 

bypassing the high dependency of the initial con1guration. 

Hop1eld networks become an interesting alternative to 

conventional optimisation techniques when the latter fail in 

solving the problem, either because of its non-linear 

character or because of the computational complexity An 

overview of ANN architectures used for diIerent image 

processing tasks is given in Table 2. It shows that feed-

forward ANNs, SOMs and Hop1eld ANNs are the most 

frequently applied architectures, although many, more exotic 

designs have been applied to image process-ing problems as 

well. 

 

6.1. Outlook 

 

This article has to a large extent been an overview of what 

can now perhaps be called the ―neural network hype‖ in 

image processing: the approximately 15-year period 

following the exciting publications of Kohonen [252], 

Hop1eld [253] and Rumelhart et al. [4]. Their work led many 

researchers to develop and apply various methods, which 

were originally inspired by the structure of the human brain. 

In some cases, the emphasis was on biological plausibility. 

Other applications focused on the possibility of parallel 

implementation. In most applica-tions, however, the adaptive 

capabilities of feed-forward ANNs were used to build a 

classi1er. 

 

We believe that the last few years have seen a change in 

attitude towards ANNs, so that now ANNs are not anymore 

automatically seen as the best solution to any classi1cation or 

regression problem. The 1eld of ANNs has to a large extent 

been reincorporated in the various disciplines that inspired it: 

pattern recognition, psychol-ogy and neurophysiology. ANNs 

are interesting as tools when there is a real need for an 

adaptive approach or a fast, parallel solution, but one should 

remain open to new interesting developments, such as the 

recently proposed support vector machines [254]. 

 

So what are the challenges left for ANNs in image 

processing? As we have discussed before, the main prob-

lems in many image processing applications still are the 

abundance of features and the diOculty of coping with 

concomitant variations in position, orientation and scale. This 

clearly indicates the need for more intelligent, in-variant 

feature extraction and feature selection mecha-nisms. Prior 

knowledge, e.g., about the aforementioned invariances or the 

expected image content, should play a large role in this, but 

could also be incorporated into the network architecture 

itself. 

 

A true challenge is to use ANNs as building blocks in large, 

adaptive systems consisting of collaborating mod-ules. Such 

an adaptive system should be able to control each module 

and propagate feedback from the highest level (e.g., object 

detection) to the lowest level (e.g., pre-processing). Another 

interesting possibility for ANNs is what might be called on-

the-job training, which makes possible the use of ANNs in 

changing environments. In many application areas, this 

would be a valuable improvement over current systems and 

facilitate transfer-ability between diIerent sites. 

 

The conclusion must be that ANNs can play a role in image 

processing, although it might be a role as a supporting tool 

rather than a major one. ANNs are useful in image processing 

as either non-parametric classi1ers, non-linear regression 

functions, or for (un)supervised feature extraction. If, or 

when, the problems of ANN ap-plication outlined in this 

paper are gradually solved, this role may become 

increasingly larger. 
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