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Abstract: This paper is concerned with the analysis of a single server batch arrival retrial queue with general retrial times. The server 

provides two phases of service – essential and optional. A customer after receiving essential service may leave the system or rejoin the 

orbit and begin requesting service again. The model for the system is derived and the joint distribution of the server state and the orbit 

length in steady state is obtained. Numerical examples are presented to illustrate the effect of the parameters on several performance 

measures. 
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1. Introduction 
 

Retrial queueing system are characterized by the feature that 

the arrivals who find a free server enters into service 

immediately; otherwise the customer enters into an orbit. An 

orbiting customer competes for service by sending out 

signals at random times until a free server is captured. 

Retrial queues are widely used in mathematical models of 

several computer and telecommunication systems. 

  

There have been several contributions considering queueing 

systems of M/G/1 type in which the server may provide a 

second phase of service. Medhi [9] has studied an M/G/1 

queue where the server provides the first essential service to 

all the arriving customers, whereas only some of them 

receive a second option service. Choudhury [4] has obtained 

the waiting time distribution for the queueing model 

discussed by Medhi [10]. Krishna Kumar et al. [8, 9] have 

analyzed an M/G/1 retrial queue with two phase services, 

preemptive priority and single server feedback retrial queue 

respectively. 

  

Feedback queues relate to those queues in which a customer 

served once, when his service becomes unsuccessful and is 

served again and again till his service becomes successful. 

Many authors Takacs [11], Folely et al. [6] and Workman et 

al. [12] have analyzed queueing model with feedback. These 

models are motivated mainly by application in data 

transmission, manufacturing processes where quality control 

inspections are performed and so on. In this paper an 

M
X
/G/1 queue with additional optional service and 

customers feedback is analyzed for its performance 

measures. 

 

2. Model Description 
 

Consider a single server retrial queue where optional service 

is provided after the essential service. The server provides 

essential service to all the arriving customers. Customers 

arrive in groups according to a Poisson process with rate  . 

The batch size Y is a random variable and  P(Y=k) = Ck , k = 

1,2,3,…  with 
k

kC = 1.  

Denote by C(z) = 
k

z
k

C  the generating function of the 

batch size distribution with first two moments  1 and  2. If 

the server is free then the essential service commences for 

one of the arriving customers and the others join the orbit. 

While at the essential service, the server may push out (with 

probability) the customer under going service to the orbit 

and start serving an arriving customer or continue the 

ongoing service (with probability 1- ) so that all the 

arriving customers join the orbit. Successive inter retrial 

times of any customer are governed by an arbitrary 

probability distribution function A (.) with corresponding 

density function a (.) and Laplace Stieltjes transform A*(.). 

  

The server provides the essential service to all arriving 

customers. Let B (.) and b (.) be respectively the cumulative 

distribution and the probability density function of the 

essential service time with Laplace Stieltjes transform B*(.). 

After the completion of phase 1 service, the customer may 

leave the system with probability  or go for optional service 

with probability  or return back to the orbit with probability 

 (= 1). The optional service times of customers are 

independent random variables with common distribution 

function B1 (.), probability density function b1 (.), Laplace 

Stieltjes transform B1*(.) and first two moments h1 and h2.  

  

The stochastic behaviour of this retrial queueing system can 

be described by the Markov process                              {N 

(t), t  0} = {(C (t), X (t), 0(t), 1(t), 2(t), t  0} where C (t) 

denotes the server state 0, 1 or 2 according as the server 

being idle, busy with essential service, busy with optional 

service and X (t) corresponds to the number of customers in 

the orbit at time t. If C (t) = 0 and X (t) > 0, then 0(t) 

represents the elapsed retrial time. If C (t) = 1 and X (t)  0, 

then 1(t) corresponds to the elapsed time of the customer 

being provided phase 1 service. If C (t) = 2 and X (t)  0, 

then 2(t) represents the elapsed time of the customer being 

provided optional service. The functions (x), (x) and 

1(x) are the conditional completion rates for repeated 

attempts, essential service and for optional service 

respectively.  Then (x) = a(x) / [1 – A(x)];  

 (x) = b (x) / [1 – B(x)] and 1(x) = b1(x) / [1–B1(x)]. 
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3. Theorem 
 

Let  Xn, n  1 be the orbit length at the time of the n
th

 

customers departure . Then {Xn, n  1} is ergodic if and only 

if  1 [1  B*()] / (B*()) +  + 1h1 + 1 [1  A*()] 

< 1. 

 

The theorem can be proved along similar lines as in Gomez-

Corral [7]. 

  

As the arrival stream is a Poisson process with mean batch 

size  1, it can be shown from Burke’s theorem [5] that the 

steady state probabilities of {C (t), X (t), t  0} exist and 

they are positive if and only if  

1 [1  B*()] / (B*()) +  + 1h1 + 1 [1  A*()] 

 < 1. 

 

From the mean drift j = 1 [1  B*()] / (B*()) 

 +  + 1h1 +1 [1  A*()]  1, for j   1, we have the 

reasonable conclusion that the first two terms represents the 

mean number of customers leaving for orbit due to the 

decision of the server to push out or continue the ongoing 

service or due to feedback of customers. The term 1h1 

represent the batch arrival during service time in the optional 

service leaving for the orbit. The last term  1 [1  A*()]  

1 refers to the contribution to the orbit size due to a batch 

arrival during the retrial time excluding the arbitrary 

customer of the arriving batch whose service commences 

immediately. Thus, the condition j < 0 ensures that the orbit 

size does not grow indefinitely in course of time.  

 

4. Steady State Distribution 
 

In this section the steady state distribution of the system are 

derived. For the process {N(t), t  0}, define the probability 

 

0(t)  =  P{C (t) = 0, X (t) = 0} 

 

and the probability densities 

 

In (x, t) dx   = P{C(t) = 0, X(t) = n, x  0(t) < x + dx}, 

                                                 t  0, x  0 and  n  1 

 

Wn (x, t) dx = P {C(t) = 1, X(t) = n, x  1(t) < x + dx},  

                                                t  0, x  0 and n  0 

 

Sn (x, t) dx  = P {C(t) = 2, X(t) = n, x  2(t) < x + dx}, 

          t  0, x  0 and n  0 

 

By supplementary variable technique, the system of 

equations that governs the model are given by 

dt

)t(I d 0
                  =    I0(t) +  




0

0 dx  (x)   t)(x, W  

                               + 



0

10 dx  (x)   t)(x,S   (1) 



















x
 

t
In(x, t)  =  ( + (x)) In (x, t),  n  1   (2)



















x
 

t
Wn(x, t) =  ( + (x)) Wn (x, t)  

           +  (1  ) (1-0n) 


n

1k
kC Wnk(x, t),  n  0   (3) 



















x
 

t
Sn(x, t) =  ( + 1(x)) Sn (x, t)  

                    +  (1-0n) 


n

1k
kC Snk(x, t),  n  1 (4) 

with boundary conditions 

In(0, t)  =  



0

n dx  (x)   t)(x, W + 



0

1n dx  (x)   t)(x,S +  





0

1-n dx  (x)   t)(x, W ,  n  1   (5) 

W0(0, t) =  C1 I0(t) + 



0

1 dx  (x)   t)(x,I   (6) 

Wn(0, t) =  


0




n

1k
kC In-k+1(x,t) dx + 



 
0

1n dx  (x)   t)(x,I  

  +  Cn+1 I0(t) +   


0




n

1k
kC Wn-k(x, t) dx,  n  1 (7) 

 Sn(0, t) =  


0

Wn(x, t) (x) dx,   n  0  (8) 

The steady state equations corresponding to the equations 

(1) through (8) are given by 

 I0=  


0

W0(x) (x) dx + 


0

S0(x) 1(x) dx         (9) 

dx

)x(I d n
 =  ( + (x)) In(x), n  1  (10) 

dx

)x( Wd n
 =  ( + (x)) Wn(x) 

+  (1  ) (1-0n)  


n

1k
kC Wn-k(x),  n 0 (11) 

dx

)x(S d n
 =  ( + 1(x)) Sn(x)  

+  (1-0n)  


n

1k
kC Snk(x),    n  0 (12) 

With boundary conditions 

In(0) =  


0

Wn(x) (x) dx +  


0

Wn1 (x) dx  

  + 


0

Sn(x) 1(x) dx,  n  1  (13) 

W0(0) =  C1 I0 + 


0

I1(x) (x) dx  (14) 

Wn(0) =  


0




n

k 1
kC Ink+1(x) dx  

  + 


0

In+1(x) (x) dx +  Cn+1 I0 
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            +   


0




n

1k
kC Wnk(x) dx,    n  1 (15) 

Sn(0) =  


0

Wn(x) (x) dx,    n  0 (16) 

Define the probability generating function 

P(., z)  =  
n

pn(.) z
n
 for any probability pn   

The steady state distributions of {N(t), t  0} are given by  

I(x, z) = I(0, z) e
x

 [1  A(x)]  (17) 

W(x, z)= W(0, z) e
 [(1  C(z) +  C(z))] x

 [1  B(x)]         (18) 

S(x, z) = S(0, z) e
  (1  C(z))x

 [1  B1(x)]       (19) 

I(0, z) = [ + z +  B1* ( (1 – C(z)))] B* ( (1 – C(z) + 

 C(z))) W(0, z)   I0 (20) 

S(0, z) =  B*( (1 – C(z) +  C(z))) W(0, z)  (21) 

W(0, z) =  I0 A*() [1 – C(z)] [1 – C(z) +  C(z)] / D(z)

       (22) 

 

Where 

D(z)   =   B*((1–C(z) + C(z)))[ + z + B1* ((1–C(z)))] 

[1–C(z) + C(z)] [C(z) + A*() (1–C(z))] z C(z) 

B*((1C(z) + C(z)))  z [1C(z)]                    (23) 

Define the partial generating function  (z) = 


0

(x, z) dx 

for any generating function  (x, z). Then 

I(z) = 
)z(D

I0  (1 – A*()) {z (1 – C(z) + B*( (1– C(z)  

+ C(z))) C(z) [z – (1 – C(z) +  C(z)) ( +  z +  B1* ( 

(1 – C(z)))]}                      (24) 

W(z)=
)z(D

I0
 A*()(1–C(z))[1–B*((1–C(z)+C(z)))]    (25) 

S(z) = 
)z(D

I0
A* ()  [1 – C(z) +  C(z)] 

 B* ( (1 – C(z) +  C(z))) [1 – B1*( (1 – C(z)))] (26) 

Using the normalizing condition, I0 is obtained as 

I0  = {B* () [(1 – ) 1 +  (1 A*() + 1 –   1h1)] – 

1} / { (1  ) A*() B*()}   (27) 

 

The probability generating function K(z) for the number of 

customers in the system is 

K(z) = I0 + I(z) + z W(z) + z S(z) 

 = I0 A*() B* ( (1–C(z) + C(z)) (1–z)  

 [1–C(z) + C(z)] [ + B1*( (1–C(z)))] / D(z) (28) 

 

 The probability generating function H(z) for the 

number of customers in the orbit is 

H(z) = I0 + I(z) + W(z) + S(z) 

 = I0 A*() (1 – z) {B* ( (1 – C(z) + C(z))) 

  [ C(z) (1  )  (1 – C(z)) ] +  (1–C(z))} / D(z) 

 

5. Performance Measures 
 

In this section some performance measures for the system 

under steady state are derived. 

 

The probability that the server is idle during the retrial time 

is given by 

I(1) = [1 – A*()] [1 [1-B*() (1 -h1)] 

  -(1)B*()] / [(1)A*() B*()] 

 

The probability that the server is busy for providing essential 

service is given by 

W(1) = 1 [1 – B*()] / [ (1  ) B* ()] 

 

The probability that the server is busy for providing optional 

service is given by 

S(1) = 1   h1 / (1  ) 

 

Take 

D1 = 1 [B*() [1   (1- A*() + h1)] - 1]  

 +  (1  ) B*() 

D2 =  1 (1  ) B*() [ ( + 1h1) 

  1  (1  )     1 A*()]  

 + 1+ B*() [1 (1A*()) [ + 1h1]  

  1
2
  (1) (1A*())  1  1 (1) ( + 1h1)] 

  + (B*() [2 (1  A*())  2  

  + 2h1 + 
2
1

2
h2] + 2 ) / 2 

N1 = 1 [ (1  ) B*() (1  )  

 + B* () (h1  (1  ) (1  ))] 

N2 = 1 [ (1  ) (1  ) B*()  

 + B* () (  + (1  )) – 1] 

 

 The mean number of customers in the system is 

Ls = K(1) 

 = N1 / [ (1  ) B*()] + D2 / D1 

 

 The mean number of customer in the orbit is  

Lq = H(1) 

 = N2 / [ (1  ) B*()] + D2 / D1. 

 

6. Numerical Results 
 

Table 1 presents the values of expected system size Ls, 

expected queue size Lq, the probability that the server is idle 

during retrial time I (1), the probability that the server is 

busy for providing essential service W (1) and the 

probability that the server is busy for providing optional 

service S (1)for fixed values of C1=0.5, C2=0.5, =0.2, 

=0.1, =1 and various values of , , 1 and 2. 

The following results are observed from the table 1. 

 System size Ls directly proportional to the feedback 

probability, service rates of essential and optional  

 The same trend is observed with respect to the orbit size  

Lq 

 The probability to have the server idle during retrial time 

increases with increase of feedback and decreases with 

increase in , 1,2. 

  W (1), the probability that the server is busy for providing 

essential service increases for increase in , decreases for 

increase in 1 and constant for the variation in 2 and .  

 The influence of the two parameters  and 1 are not felt 

in   S (1). 

 

Table 1: Parameters influence on performance measures 
 Ls Lq I (1) W (1) S (1) 

      

0.2 0.4910 0.3973 0.1938 0.0750 0.0188 

0.4 1.0226 0.8976 0.3250 0.1000 0.0214 

0.6 4.3620 4.1745 0.5875 0.1500 0.0375 
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4 14.9077 14.7202 0.7344 0.1500 0.0375 

8 1.5868 1.3993 0.3672 0.1500 0.0375 

12 0.9758 0.7883 0.2448 0.1500 0.0375 

1      

12 41.1370 40.7870 0.6200 0.3125 0.0375 

16 8.9910 8.7192 0.6044 0.2344 0.0375 

20 5.7764 5.5514 0.5950 0.1875 0.0375 

24 4.5571 4.3633 0.5888 0.1563 0.0375 

28 3.9153 3.7438 0.5863 0.1442 0.0375 

2      

4 6.7466 6.5028 0.5988 0.1500 0.0938 

8 4.6474 4.4506 0.5894 0.1500 0.0469 

12 4.1885 4.0073 0.5863 0.1500 0.0313 

16 3.9885 3.8151 0.5847 0.1500 0.0234 

20 3.8766 3.7079 0.5838 0.1500 0.0188 
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