Chain Conditions on Fuzzy G-Modules

Souriar Sebastian¹, Prathish Abraham¹

^{1, 2}Department of Mathematics, St. Albert's College, Ernakulam, Kochi-682018, Kerala (India)

Abstract: The concept of fuzzy G- Modules and its properties including complete reducibility, semi simplicity etc. are already defined. In this paper, the concept of minimal and maximal sub modules is defined on fuzzy G-modules. The chain conditions for fuzzy G-modules are also defined and some properties of both ascending and descending chains of sub modules are established.

Keywords: Fuzzy-G-Modules, Proper fuzzy G sub modules, minimal and maximal sub modules of a fuzzy G module, chain conditions for fuzzy G modules

1. Introduction

The introduction of fuzzy sets by Zadeh led way to the fuzzification of Algebraic structures. Fuzzy groups and groupoids are defined by Rosenfield^[9]. The concept of fuzzy G modules was introduced by the Sherry Fernandez ^[10]. Semi simplicity of fuzzy G modules and its relations with complete reducibility and injectivity were studied by the author^[8].

In this paper the concept of minimal and maximal sub modules is defined on fuzzy G-modules. The descending and ascending chain conditions for fuzzy G-modules are defined and some properties of these chains of fuzzy G sub modules are established.

2. Preliminaries

A vector space M over a field K is said to be a **G-Module** if for every $g \in G$ and $m \in M$ there exists a product 'gm' called action of G on M satisfying

(i) $1_G m = m, \forall m \in M$

(ii) $(gh)m = g(hm), \forall g, h \in G, m \in M$ (iii) $g(k_1m_1 + k_2m_2) = k_1(gm_1) + k_2(gm_2), \forall g \in G, m1, m2 \in M, k1, k2 \in K$

As an example, for $G = \{1, -1, i, -i\}, M = C^n$ over C is a G-Module under usual addition and multiplication.

A subspace of M, which itself is a G-Module with the same action is called **G sub module**. A non-zero G Module M is **irreducible** if the only G sub modules of M are M and $\{0\}$.otherwise it is **reducible**. A non-zero G module M is **completely reducible** if for every G sub module N of M there exists a G sub module N^* of M such that $M=N \bigoplus N^*$. A G Module M is **semi simple** if there exists a family of irreducible G sub modules M_i such that $M = \underset{i=1}{i} \bigoplus M_i$

A fuzzy G module over a G Module M is a fuzzy set μ on M such that

(i) $\mu(ax + by) \ge \min(\mu(x), \mu(y)), \forall a, b \in K \text{ and } x, y \in M$ (ii) $\mu(gm) \ge \mu(m), \forall m \in M \text{ and } g \in G.$

For example, For $G = \{1, -1\}$ and $M = Q\sqrt{2}$ over Q, The fuzzy set μ on M defined as $\mu(a + b\sqrt{2}) = 1$ if a = 0, b = 0 = .8 if $a \neq 0, b = 0$ = .2 if $b \neq 0$ is a fuzzy G module over M.

The standard fuzzy intersection of finite no of fuzzy G Modules is again a fuzzy G module. The collection of all elements in the universal set with membership value greater than a given α , $\alpha \in [0,1]$ is called an α cut of the fuzzy G Module μ , denoted by $\mu^{\alpha+}$. The 0 cut, μ^{0+} consisting of all elements with a non zero membership is called the **support** of μ , denoted by $Supp \mu$.

3. Minimal and Maximal Fuzzy G sub modules

3.1 Definition

A fuzzy G sub module ϑ of a fuzzy G module μ on a G module M is called a minimal fuzzy G sub module if $\vartheta \neq \chi_{\{0\}}$ and $Supp \vartheta \subseteq$

Supp θ for all fuzzy G sub modules θ of μ .

3.2 Definition

A fuzzy G sub module ϑ of a fuzzy G module μ on a G module M is called a maximal fuzzy G sub module if $\vartheta \neq \mu$ and $Supp \vartheta \supseteq$

Supp θ for all fuzzy G sub modules θ of μ .

4. Descending and Ascending Chain Conditions on Fuzzy G sub modules

4.1 Definition

A fuzzy G module μ of a G Module M is said to satisfy the **descending chain condition (d.c.c)** if for any descending chain $\{\mu_i\}$ of fuzzy G sub modules of μ , the corresponding chain of supports, $\{Supp\mu_i\}$ satisfies the descending chain condition for G modules. There exists, an integer r satisfying $Supp \mu_r = Supp \mu_{r+1} = Supp \mu_{r+2} = ...$

A fuzzy G module μ of a G Module M is said to satisfy the **ascending chain condition (a.c.c)** if for any ascending chain $\{\mu_i\}$ of fuzzy G sub modules of μ , the corresponding chain of supports $\{Supp\mu_i\}$ satisfies the ascending chain condition for G modules. Hence $Supp\mu_r = Supp\mu_{r+1}=Supp\mu_{r+2}=...$ for some integer r

Volume 6 Issue 2, February 2017

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY

4.2 Proposition

The following statements are equivalent for a fuzzy G module μ of a G Module M

- 1) The descending chain condition holds for μ
- 2) Any non empty family of fuzzy G sub modules of µ has a minimal sub module

Proof: **1**) ⇒ **2**) Assume that descending chain condition holds for μ . Consider a chain { μ_i } of fuzzy G sub modules of μ . Take any fuzzy G sub module μ_i form the chain. If μ_i is the minimal then the proof is complete. Otherwise, there is fuzzy G sub module μ_j with $Supp\mu_j \subseteq Supp\mu_i$. If μ_j is the minimal one, the proof is complete. If not, we continue the process and if we cannot find a minimal element in finite steps, we get chain of fuzzy G sub modules whose corresponding chain of supports is non stationary. This contradicts our assumption and proves the existence of a minimal fuzzy G sub module for μ .

1) \Rightarrow 2) Assume that, every non empty family of fuzzy G sub modules of μ has a minimal element. Hence there is a fuzzy G sub module

 μ_i , such that for any fuzzy G sub module μ_i in the family,

 $Supp\mu_i \subseteq Supp\mu_j$. Consider any chain of fuzzy G sub modules of μ . Then it must have a minimal element μ_r satisfying $Supp\mu_r \subseteq Supp\mu_j$ for all $j \ge r$. But as the chain is a descending chain we can conclude that $Supp \mu_r =$ $Supp \mu_j$ for all $j \ge r$. Hence μ satisfies the descending chain condition.

4.3 Proposition

If a fuzzy G module μ on a G module M satisfies descending chain condition then all its fuzzy G sub modules and quotient fuzzy G sub modules satisfy the d.c.c.

Proof:

Assume ϑ is a fuzzy G sub module of μ . Then any descending chain $\{\vartheta_i\}$ of fuzzy G sub modules of ϑ is a descending chain of fuzzy G sub modules of μ . Hence $\{supp \vartheta_i\}$ satisfies the d.c.c and thereby proves that the fuzzy G sub module ϑ of μ satisfies d.c.c.

Let $\mu_{\left(\frac{M}{N}\right)}$ is the quotient fuzzy G sub module of μ on $\frac{M}{N}$. Then any descending chain $\{\mu_{i\left(\frac{M}{N}\right)}\}$ of fuzzy G sub modules of $\mu_{\left(\frac{M}{N}\right)}$ corresponds to a descending chain of fuzzy G sub modules $\{\mu_i\}$ of μ with $supp\mu_{i\left(\frac{M}{N}\right)} = supp \ \mu_i$. As μ satisfies d.c.c, $\{supp \ \mu_i\}$ satisfies d.c.c of G modules. This proves that $\mu_{\left(\frac{M}{N}\right)}$ satisfies d.c.c.

4.4 Proposition

Let μ is a fuzzy G module on a G module M and ϑ is a fuzzy G sub module of μ defined on a G sub module N of M. If ϑ and $\mu_{(\frac{M}{2})}$ satisfies d.c.c then μ also satisfies d.c.c.

Proof: Consider a descending chain $\{\mu_i\}$ of fuzzy G sub modules of μ . Then $\{\mu_i \cap \vartheta\}$ is descending chain of fuzzy G sub modules of ϑ . As ϑ satisfies d.c.c, there is an integer r such that $supp(\mu_r \cap \vartheta) = supp(\mu_{r+1} \cap \vartheta) = supp(\mu_{r+2} \cap \vartheta) = \cdots$ Also $\{\mu_i + \vartheta\}_{\{\underbrace{supp \ (\mu_i + \vartheta)}{N}\}}$ is descending chain of fuzzy G sub modules of $\mu_{(\frac{M}{N})}$. As $\mu_{(\frac{M}{N})}$ satisfies d.c.c there is an integer s such that $\frac{supp \ (\mu_s + \vartheta)}{N} = \frac{supp \ (\mu_{s+1} + \vartheta)}{N} = \frac{supp \ (\mu_{s+2} + \vartheta)}{N} = \cdots$ Hence we have 1. $\mu_n \ge \mu_{n+1}$ for all n, 2. $supp(\mu_n \cap \vartheta) = supp(\mu_{n+1} \cap \vartheta)$ for all $n \ge r$, 3. $\frac{supp \ (\mu_n + \vartheta)}{N} = \frac{supp \ (\mu_{n+1} + \vartheta)}{Supp \ (\mu_n \cap \vartheta)}$ for all $n \ge s$, 4. $supp(\mu_n + \vartheta) \cong \frac{supp \ (\mu_n \cap \vartheta)}{Supp \ (\mu_n \cap \vartheta)}$

Hence $\frac{\sup \mu_n}{\sup \{\mu_n \cap \vartheta\}} = \frac{\sup p(\mu_n + \vartheta)}{N} = \frac{\sup p(\mu_{n+1} + \vartheta)}{N} = \frac{\sup p(\mu_{n+1} - \vartheta)}{\sup \{\mu_{n+1} \cap \vartheta\}}$ and by using 2 we prove that $supp(\mu_n) = supp(\mu_{n+1})$ for all $n > \max(r, s)$. Hence satisfies d.c.c.

4.5 Proposition

The direct sum of finitely many fuzzy G sub modules on a G module M satisfying d.c.c satisfies d.c.c

Proof: Let $\mu_{1,\mu_{2},\dots,\mu_{n}}$ be a finite family of fuzzy G sub modules on a G module M satisfying d.c.c. We use Mathematical Induction to show that the direct sum $\mu = \bigoplus_{i=1}^{n} \mu_{i}$ of these n fuzzy G sub modules also satisfy d.c.c. Let N = $\bigoplus_{i=1}^{n} supp \mu_{i}$. For n = 1, the proof is trivial. For $n \ge 2$ we assume that $\bigoplus_{i=1}^{n-1} \mu_{i}$ satisfies d.c.c. Then, $N_{i} = \bigoplus_{i=1}^{n-1} supp \mu_{i}$ satisfies d.c.c.

We have, $\frac{N}{supp \mu_n} = \frac{N + supp \mu_n}{supp \mu_n} = \frac{N}{N \cdot Osupp \mu_n}$. As N' satisfy d.c.c, $\frac{N'}{N \cdot Osupp \mu_n}$ satisfies d.c.c. Hence $\frac{N}{supp \mu_n}$ satisfies d.c.c. Since $supp \mu_n$ and $\frac{N}{supp \mu_n}$ satisfies d.c.c. Nalso satisfies d.c.c. Since $supp \bigoplus_{i=1}^{n} \mu_i = \bigoplus_{i=1}^{n} supp \mu_i = N$, the proof is complete by mathematical induction.

4.6 Proposition

The following statements are equivalent for a fuzzy G module $\!\mu$ of a G Module M

- 1) The ascending chain condition holds for μ
- Any non empty family of fuzzy G sub modules of µ has a maximal sub module

Proof: **1**) \Rightarrow **2**) Assume that ascending chain condition holds for μ . Consider a family { μ_i } of fuzzy G sub modules of μ . Take any fuzzy G sub module μ_i form the family. If μ_i is the maximal then the proof is complete. Otherwise there is fuzzy G sub module μ_j with $Supp\mu_j \supseteq Supp\mu_i$. If μ_j is the maximal, the proof is complete. If not, we continue the process and if we cannot find a maximal element in finite steps, we get an ascending chain of fuzzy G sub modules whose corresponding chain of supports is non stationary.

Volume 6 Issue 2, February 2017 <u>www.ijsr.net</u> Licensed Under Creative Commons Attribution CC BY This contradicts our assumption and proves the existence of a maximal fuzzy G sub module for μ .

1) \Rightarrow 2) Assume that every non empty family of fuzzy G sub modules of μ has a maximal element. Hence there is a fuzzy G sub module μ_i such that, for any fuzzy G sub modules μ_j in the family $Supp\mu_i \supseteq Supp\mu_j$. Consider a chain of fuzzy G sub modules of μ and they must have a maximal element μ_r satisfying $Supp\mu_r \supseteq Supp\mu_j$ for all $j \ge r$. But as the chain is a ascending chain we can conclude that $Supp\mu_r = Supp\mu_j$ for all $j \ge r$. Hence μ satisfies the ascending chain condition.

4.7 Proposition

If a fuzzy G sub module μ on a G module M satisfies ascending chain condition then all its fuzzy G sub modules and quotient fuzzy G sub modules satisfy the a.c.c.

Proof:

Assume ϑ is a fuzzy G sub module of μ . Then any ascending chain $\{\vartheta_i\}$ of fuzzy G sub modules of ϑ is a ascending chain of fuzzy G sub modules of μ . Hence $\{supp \, \vartheta_i\}$ satisfies the a.c.c and thereby proves that the fuzzy G sub module ϑ of μ satisfies a.c.c. Let $\mu_{(\frac{M}{N})}$ is the quotient fuzzy G sub module of μ on M/N.

Then any ascending chain $\{\mu_{i(\frac{M}{N})}\}$ of fuzzy G sub modules of $\mu_{(\frac{M}{N})}$ corresponds to an ascending chain of fuzzy G sub modules $\{\mu_i\}$ of μ with $supp \mu_{i(\frac{M}{N})} = supp \mu_i$. As μ satisfies a.c.c, $\{supp\mu_i\}$ satisfies a.c.c of G modules. This proves that $\mu_{(\frac{M}{N})}$ satisfies a.c.c.

4.8 Proposition

Let μ is a fuzzy G module on a G module M and ϑ is a fuzzy G sub module of μ defined on a G sub module N of M. If ϑ and $\mu_{(\underline{M})}$ satisfies a.c.c., then μ also satisfies a.c.c.

Proof: Consider an ascending chain $\{\mu_i\}$ of fuzzy G sub modules of μ . Then $\{\mu_i \cap \vartheta\}$ is ascending chain of fuzzy G sub modules of ϑ . As ϑ satisfies a.c.c there is an integer r such that $supp(\mu_r \cap \vartheta) = supp(\mu_{r+1} \cap \vartheta) = supp(\mu_{r+2} \cap \vartheta) = \cdots$

Also $\{\mu_{i} + \vartheta\}_{\{\frac{supp\ (\mu_{i} + \vartheta)}{N}\}}$ is an ascending chain of fuzzy G sub modules of $\mu_{(\frac{M}{N})}$. As $\mu_{(\frac{M}{N})}$ satisfies a.c.c there is an integer s such that $\frac{supp\ (\mu_{s} + \vartheta)}{N} = \frac{supp\ (\mu_{s+1} + \vartheta)}{N} = \frac{supp\ (\mu_{s+2} + \vartheta)}{N} = \cdots$

Hence we have

1. $\mu_{n} \leq \mu_{n+1}$ for all n, 2. $supp(\mu_{n} \cap \vartheta) = supp(\mu_{n+1} \cap \vartheta)$ for all $n \geq r$, 3. $\frac{supp(\mu_{n}+\vartheta)}{N} = \frac{supp(\mu_{n+1}+\vartheta)}{N}$ for all $n \geq s$, 4. $supp(\mu_{n}+\vartheta) \cong \frac{supp(\mu_{n}-\eta)}{supp\{\mu_{n}\cap\vartheta\}}$ Hence $\frac{\sup \mu_n}{\sup \{\mu_n \cap \vartheta\}} - \frac{\sup p(\mu_n + \vartheta)}{N} = \frac{\sup p(\mu_{n+1} + \vartheta)}{N} = \frac{\sup p(\mu_{n+1} - \vartheta)}{\sup \{\mu_{n+1} \cap \vartheta\}}$ and by using 2 we prove that $supp(\mu_n) = supp(\mu_{n+1})$ for all $n > \max(r, s)$. Hence satisfies a.c.c.

References

- Charles W Curtis, Irving Reiner; Representation Theory of Finite Groups and Associative Algebras, Wiley Eastern, 1962
- [2] Claus Michel Ringel and Jan Schroer: Representation Theory of Algebras I: Modules, 2007
- [3] George J Klir and Bo Yuan; Fuzzy sets and Fuzzy Logic: Theory and Applications, Prentice Hall, India, 1995
- [4] Hiram Paley and Paul M. Weichsel; A First Cousre in Abstract Algebra, Halt, renehart, Winstion Inc. 1996
- [5] Lambek, Joachim, *Lectures on Rings and Modules*, Blaisdell Publishing Company,1966
- [6] Musli C: *Representation of Finite Groups*, Hindustan Book Agency, India, 1993
- [7] Musli C; Introduction to Rings and Modules, Narosa Publishing House, India ,1992
- [8] Prathish Abraham, Souriar Sebastian: Semi simple Fuzzy G- Modules, Journal of Computer and Mathematics Sciences, Vol.3 (4), 458-463 (2012)
- [9] Rosenfield A; Fuzzy Groups, J Math Anal. Appl., 1971
- [10] Sherry Fernandez: A Study of Fuzzy G- Modules, PhD Thesis, MG University, Kerala, 2004

Volume 6 Issue 2, February 2017

www.ijsr.net