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1. Introduction 
 
The introduction of fuzzy sets by Zadeh led way to the 
fuzzification of Algebraic structures. Fuzzy groups and 
groupoids are defined by Rosenfield[9]. The concept of 
fuzzy G modules was introduced by the Sherry Fernandez 

[10]. Semi simplicity of fuzzy G modules and its relations 
with complete reducibility and injectivity were studied by 
the author [8],. 
 
In this paper the concept of minimal and maximal sub 
modules is defined on fuzzy G–modules. The descending 
and ascending chain conditions for fuzzy G-modules are 
defined and some properties of these chains of fuzzy G sub 
modules are established. 
 
2. Preliminaries 
 
A vector space M over a field K is said to be a G-Module if 
for every gG and mM there exists a product ‘gm’ called 
action of G on M satisfying 
(i)  1𝐺𝑚 = 𝑚,∀𝑚 ∈ 𝑀 
(ii)   𝑔ℎ  𝑚 = 𝑔 ℎ 𝑚 , ∀𝑔, ℎ ∈ 𝐺,𝑚 ∈ 𝑀 
(iii)𝑔 𝑘1𝑚1 + 𝑘2𝑚2 = 𝑘1 𝑔𝑚1 + 𝑘2 𝑔𝑚2 , ∀𝑔 ∈
𝐺,   𝑚1,𝑚2∈𝑀, 𝑘1,𝑘2∈𝐾  

 
As an example, for 𝐺 =  1,−1, 𝑖, −𝑖 , 𝑀 =  𝐶𝑛  over 𝐶 is a 
G-Module under usual addition and multiplication. 
 
A subspace of M, which itself is a G-Module with the same 
action is called G sub module. A non-zero G  Module M is 
irreducible if the only G  sub modules of M are M and 
{0}.otherwise it is reducible. A non-zero G module M is 
completely reducible if for every G sub module N of M 
there exists a G sub module 𝑁∗ of M such that M=𝑁⊕𝑁∗.  
A G  Module M is semi simple if there exists a family of 
irreducible G sub modules 𝑀𝑖  such that 𝑀 = ⊕ 𝑖=1

𝑛 𝑀𝑖   
 
A fuzzy G module over a G Module M is a fuzzy set 𝜇 on M 
such that 
 i  𝜇 𝑎𝑥 + 𝑏𝑦 ≥ min 𝜇 𝑥 , 𝜇 𝑦  , ∀𝑎, 𝑏 ∈ 𝐾 𝑎𝑛𝑑 𝑥, 𝑦 ∈

𝑀                                                               
(ii)  𝜇 𝑔𝑚 ≥ 𝜇 𝑚 , ∀ 𝑚 ∈ 𝑀 𝑎𝑛𝑑 𝑔 ∈ 𝐺. 
 
For example,  For {1, 1} and 2 over G M Q Q    , 
The fuzzy set  𝜇  on M  defined as  
𝜇(𝑎 + 𝑏 2) = 1 if a = 0,b = 0 

         = .8 if a  0,b = 0 
         = .2 if b 0    is a fuzzy G module over M. 
 
The standard fuzzy intersection of finite no of fuzzy G 
Modules is again a fuzzy G module. The collection of all 
elements in the universal set with membership value greater 
than a given 𝛼, 𝛼 ∈ [0,1] is called an 𝜶 cut of the fuzzy G 
Module 𝜇, denoted by 𝜇𝛼+.  The 0 cut,  𝜇0+ consisting of all 
elements with a non zero membership is called the support 

of 𝝁,  denoted by 𝑆𝑢𝑝𝑝 𝜇. 
 
3. Minimal and Maximal Fuzzy G sub modules 

 

3.1 Definition 

 
A fuzzy G sub module 𝜗 of a fuzzy G module µ on a G 
module M is called a minimal fuzzy G sub module if 
𝜗 ≠ 𝜒{0}and 𝑆𝑢𝑝𝑝 𝜗 ⊆

𝑆𝑢𝑝𝑝 𝜃 for all fuzzy G sub modules 𝜃 of µ. 
 
3.2 Definition 

 
A fuzzy G sub module 𝜗 of a fuzzy G module µ on a G 
module M is called a maximal fuzzy G sub module if 
𝜗 ≠ µ  and 𝑆𝑢𝑝𝑝 𝜗 ⊇
𝑆𝑢𝑝𝑝 𝜃 for all fuzzy G sub modules 𝜃 of µ. 
 
4. Descending and Ascending Chain Conditions 

on Fuzzy G sub modules 
 

4.1 Definition   
 
A fuzzy G module µ of a G Module M is said to satisfy the 
descending chain condition (d.c.c) if for any descending 
chain  𝜇𝑖  of fuzzy G sub modules of µ , the corresponding 
chain of supports,    𝑆𝑢𝑝𝑝𝜇𝑖  satisfies the descending chain 
condition for G modules. There exists, an integer r satisfying  
𝑆𝑢𝑝𝑝 𝜇𝑟 = 𝑆𝑢𝑝𝑝 𝜇𝑟+1 = 𝑆𝑢𝑝𝑝 𝜇𝑟+2 = ...  
 
A fuzzy G module µ of a G Module M is said to satisfy the 
ascending chain condition (a.c.c) if for any ascending 
chain  𝜇𝑖  of fuzzy G sub modules of µ , the corresponding 
chain of supports  𝑆𝑢𝑝𝑝𝜇𝑖  satisfies the ascending chain 
condition for G modules. Hence 
𝑆𝑢𝑝𝑝𝜇𝑟 = 𝑆𝑢𝑝𝑝𝜇𝑟+1=𝑆𝑢𝑝𝑝𝜇𝑟+2=... for some integer r 
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4.2  Proposition 

 

The following statements are equivalent for a fuzzy G 
module µ of a G Module M 
1) The descending chain condition holds for µ 
2) Any non empty family of fuzzy G sub modules ofµ has a 

minimal sub module 
 

Proof: 𝟏) ⇒ 𝟐) Assume that descending chain condition 
holds for µ. Consider a chain {μ

i
} of fuzzy G sub modules of 

µ. Take any fuzzy G sub module μ
i
 form the chain. If  μ

i
 is 

the minimal then the proof is complete. Otherwise, there is 
fuzzy G sub module 𝜇𝑗    with 𝑆𝑢𝑝𝑝𝜇𝑗 ⊆ 𝑆𝑢𝑝𝑝𝜇𝑖 . If 𝜇𝑗  is the 
minimal one, the proof is complete. If not, we continue the 
process and if we cannot find a minimal element in finite 
steps, we get chain of fuzzy G sub modules whose 
corresponding chain of supports is non stationary. This 
contradicts our assumption and proves the existence of a 
minimal fuzzy G sub module for 𝜇. 
 
𝟏) ⇒ 𝟐) Assume that, every non empty family of fuzzy G 
sub modules of µ has a minimal element. Hence there is a 
fuzzy G sub 
module
 𝜇𝑖 , such that for any fuzzy G sub module μjin the family , 
𝑆𝑢𝑝𝑝𝜇𝑖 ⊆ 𝑆𝑢𝑝𝑝𝜇𝑗 . Consider any chain of fuzzy G sub 
modules of µ. Then it must have a minimal element 𝜇𝑟  
satisfying 𝑆𝑢𝑝𝑝𝜇𝑟 ⊆ 𝑆𝑢𝑝𝑝𝜇𝑗  for all 𝑗 ≥ 𝑟. But as the chain 
is a descending chain we can conclude that 𝑆𝑢𝑝𝑝 𝜇𝑟 =
𝑆𝑢𝑝𝑝 𝜇𝑗  for all𝑗 ≥ 𝑟. Hence 𝜇 satisfies the descending chain 
condition. 
 
4.3 Proposition  

 

If a fuzzy G module μ on a G module M satisfies descending 
chain condition then all its fuzzy G sub modules and 
quotient fuzzy G sub modules satisfy the d.c.c. 
 
Proof: 
Assume 𝜗 is a fuzzy G sub module of 𝜇. Then any 
descending chain {𝜗𝑖} of fuzzy G sub modules of 𝜗 is a 
descending chain of fuzzy G sub modules of 𝜇. Hence 
{𝑠𝑢𝑝𝑝 𝜗𝑖} satisfies the d.c.c and thereby proves that the 
fuzzy G sub module 𝜗 of 𝜇  satisfies d.c.c. 
 
Let 𝜇

 
𝑀

𝑁
 
 is the quotient fuzzy G sub module of 𝜇 𝑜𝑛

𝑀

𝑁
. Then 

any descending chain  {𝜇
𝑖 

𝑀

𝑁
 
} of fuzzy G sub modules of 

𝜇
 
𝑀

𝑁
 
 corresponds to a descending chain of fuzzy G sub 

modules {𝜇𝑖} of 𝜇 with 𝑠𝑢𝑝𝑝𝜇
𝑖 

𝑀

𝑁
 

= 𝑠𝑢𝑝𝑝 𝜇𝑖 . As 𝜇 satisfies 

d.c.c, {𝑠𝑢𝑝𝑝 𝜇𝑖} satisfies d.c.c of G modules. This proves 
that 𝜇

 
𝑀

𝑁
 
  satisfies d.c.c.  

 
4.4 Proposition      

 

Let μ is a fuzzy G module on a G module M and ϑ is a fuzzy 
G sub module of μ  defined on a G sub module N of M. If ϑ 
and μ

(
M

N
)
 satisfies d.c.c then μ also satisfies d.c.c. 

 

Proof: Consider a descending chain {μ
i
} of fuzzy G sub 

modules ofµ. Then {μ
i
∩ 𝜗} is descending chain of fuzzy G 

sub modules of 𝜗. As 𝜗 satisfies d.c.c, there is an integer r 
such that 𝑠𝑢𝑝𝑝 μ

r
∩ 𝜗 = 𝑠𝑢𝑝𝑝 μ

r+1
∩ 𝜗 = 𝑠𝑢𝑝𝑝 (μ

r+2
∩

𝜗) = ⋯ 
Also {μ

i
+ 𝜗}

 
𝑠𝑢𝑝𝑝  μi +𝜗  

𝑁
 
 is descending chain of fuzzy G sub 

modules of 𝜇
(
𝑀

𝑁
)
. As 𝜇

(
𝑀

𝑁
)
satisfies d.c.c there is an integer s 

such that 𝑠𝑢𝑝𝑝  μs +𝜗 

𝑁
=

𝑠𝑢𝑝𝑝  μs+1+𝜗 

𝑁
=

𝑠𝑢𝑝𝑝  μs+2+𝜗 

𝑁
= ⋯ 

Hence we have   
1.  μ

n
≥ μ

n+1
for all n, 

2. 𝑠𝑢𝑝𝑝 μ
n
∩ 𝜗 = 𝑠𝑢𝑝𝑝 μ

n+1
∩ 𝜗  for all 𝑛 ≥ 𝑟, 

3. 𝑠𝑢𝑝𝑝  μn +𝜗 

𝑁
=

𝑠𝑢𝑝𝑝  μn +1+𝜗 

𝑁
 for all 𝑛 ≥ 𝑠, 

4. 𝑠𝑢𝑝𝑝 μ
n

+ 𝜗 ≅
𝑠𝑢𝑝𝑝 μn

Supp {μn∩𝜗}
 

 
Hence 𝑠𝑢𝑝𝑝 μn

Supp {μn∩𝜗}
=𝑠𝑢𝑝𝑝  μn +𝜗 

𝑁
=

𝑠𝑢𝑝𝑝  μn +1+𝜗 

𝑁
=

𝑠𝑢𝑝𝑝 μn +1

Supp {μn +1∩𝜗}
 

and by using 2 we prove that 𝑠𝑢𝑝𝑝 μ
n
 = 𝑠𝑢𝑝𝑝 μ

n+1
  for 

all 𝑛 > max(𝑟, 𝑠). Hence satisfies d.c.c. 
 

4.5 Proposition  

 

The direct sum of finitely many fuzzy G sub modules on a G 
module M satisfying d.c.c satisfies d.c.c 
 
Proof: Let μ

1,
μ

2
, … , μ

n
 be a finite family of fuzzy G sub 

modules on a G module M satisfying d.c.c. We use 
Mathematical Induction to show that the direct sum 𝜇 =
⨁𝑖=1𝑛μi  of these n fuzzy G sub modules also satisfy d.c.c. 
Let N = ⨁𝑖=1

𝑛 𝑠𝑢𝑝𝑝 μ
i 
. For 𝑛 = 1,  the proof is trivial. For 

𝑛 ≥ 2 we assume that ⨁𝑖=1
𝑛−1μ

i 
 satisfies d.c.c. Then, 

𝑁 , = ⨁𝑖=1
𝑛−1𝑠𝑢𝑝𝑝 μ

i 
satisfies  d.c.c. 

We have, 𝑁

𝑠𝑢𝑝𝑝 μn  

=
𝑁,+𝑠𝑢𝑝𝑝 μn  

𝑠𝑢𝑝𝑝 μn  

=
𝑁,

𝑁,∩𝑠𝑢𝑝𝑝 μn  

.  

As 𝑁 , satisfy d.c.c, 𝑁,

𝑁,∩𝑠𝑢𝑝𝑝 μn  

 satisfies d.c.c. Hence 𝑁

𝑠𝑢𝑝𝑝 μn  

 

satisfies d.c.c. Since 𝑠𝑢𝑝𝑝μ
n 

and 𝑁

𝑠𝑢𝑝𝑝 μn  

 satisfies d.c.c 𝑁also 

satisfies d.c.c. Since   𝑠𝑢𝑝𝑝⨁𝑖=1
𝑛 μ

i
= ⨁𝑖=1

𝑛 𝑠𝑢𝑝𝑝μ
i

= 𝑁,  the 
proof is complete by mathematical induction.  

 
4.6 Proposition 

 
The following statements are equivalent for a fuzzy G 
moduleµ of a G Module M 
1) The ascending chain condition holds for µ 
2) Any non empty family of fuzzy G sub modules ofµ has a 

maximal sub module 
 
Proof: 𝟏) ⇒ 𝟐) Assume that ascending chain condition 
holds for µ. Consider a family {μ

i
} of fuzzy G sub modules 

of µ. Take any fuzzy G sub module μ
i
 form the family. If  μ

i
 

is the maximal then the proof is complete. Otherwise there is 
fuzzy G sub module 𝜇𝑗  with 𝑆𝑢𝑝𝑝𝜇𝑗 ⊇ 𝑆𝑢𝑝𝑝𝜇𝑖 . If 𝜇𝑗  is the 
maximal, the proof is complete. If not, we continue the 
process and if we cannot find a maximal element in finite 
steps, we get an ascending chain of fuzzy G sub modules 
whose corresponding chain of supports is non stationary. 
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This contradicts our assumption and proves the existence of 
a maximal fuzzy G sub module for 𝜇. 
 
𝟏) ⇒ 𝟐) Assume that every non empty family of fuzzy G 
sub modules of µ has a maximal element. Hence there is a 
fuzzy G sub 
module 𝜇𝑖   such that, for any fuzzy G sub modules  μj   in 
the family 𝑆𝑢𝑝𝑝𝜇𝑖 ⊇ 𝑆𝑢𝑝𝑝𝜇𝑗 . Consider a chain of fuzzy G 
sub modules of µ and they must have a maximal element 𝜇𝑟  
satisfying 𝑆𝑢𝑝𝑝𝜇𝑟 ⊇ 𝑆𝑢𝑝𝑝𝜇𝑗  for all 𝑗 ≥ 𝑟. But as the chain 
is a ascending chain we can conclude that 𝑆𝑢𝑝𝑝𝜇𝑟 =
𝑆𝑢𝑝𝑝𝜇𝑗  for all𝑗 ≥ 𝑟. Hence 𝜇 satisfies the ascending chain 
condition. 
 
4.7 Proposition  

 

If a fuzzy G sub module μ on a G module M satisfies 
ascending chain condition then all its fuzzy G sub modules 
and quotient fuzzy G sub modules satisfy the a.c.c. 
 
Proof: 

Assume 𝜗 is a fuzzy G sub module of  𝜇. Then any 
ascending chain {𝜗𝑖} of fuzzy G sub modules of 𝜗 is a 
ascending chain of fuzzy G sub modules of 𝜇. Hence 
{𝑠𝑢𝑝𝑝 𝜗𝑖} satisfies the a.c.c and thereby proves that the 
fuzzy G sub module 𝜗 of 𝜇  satisfies a.c.c. 
Let 𝜇

(
𝑀

𝑁
)
 is the quotient fuzzy G sub module of 𝜇 𝑜𝑛 𝑀/𝑁. 

Then any ascending chain  {𝜇
𝑖(
𝑀

𝑁
)
} of fuzzy G sub modules 

of 𝜇
(
𝑀

𝑁
)
 corresponds to an ascending chain of fuzzy G sub 

modules {𝜇𝑖} of 𝜇 with 𝑠𝑢𝑝𝑝 𝜇
𝑖(
𝑀

𝑁
)

= 𝑠𝑢𝑝𝑝 𝜇𝑖 . As 𝜇 satisfies 

a.c.c, {𝑠𝑢𝑝𝑝𝜇𝑖} satisfies a.c.c of G modules. This proves that 
𝜇

(
𝑀

𝑁
)
  satisfies a.c.c. 

 
4.8 Proposition  

 

Let μ is a fuzzy G module on a G module M and ϑ is a fuzzy 
G sub module of μ  defined on a G sub module N of M. If ϑ 
and μ

(
M

N
)
 satisfies a.cc.,  then μ also satisfies a.c.c. 

 
Proof: Consider an ascending chain {μ

i
} of fuzzy G sub 

modules of µ. Then {μ
i
∩ 𝜗} is ascending chain of fuzzy G 

sub modules of 𝜗. As 𝜗satisfies a.c.c there is an integer r 
such that 𝑠𝑢𝑝𝑝 μ

r
∩ 𝜗 = 𝑠𝑢𝑝𝑝 μ

r+1
∩ 𝜗 = 𝑠𝑢𝑝𝑝 (μ

r+2
∩

𝜗) = ⋯ 
 
Also {μ

i
+ 𝜗}

 
𝑠𝑢𝑝𝑝  μi +𝜗  

𝑁
 
 is an ascending chain of fuzzy G 

sub modules of 𝜇
(
𝑀

𝑁
)
. As 𝜇

(
𝑀

𝑁
)
satisfies a.c.c there is an integer 

s such that 𝑠𝑢𝑝𝑝  μs +𝜗 

𝑁
=

𝑠𝑢𝑝𝑝  μs+1+𝜗 

𝑁
=

𝑠𝑢𝑝𝑝  μs+2+𝜗 

𝑁
= ⋯ 

 
Hence we have 
1.  μ

n
≤ μ

n+1
for all n, 

2. 𝑠𝑢𝑝𝑝 μ
n
∩ 𝜗 = 𝑠𝑢𝑝𝑝 μ

n+1
∩ 𝜗  for all 𝑛 ≥ 𝑟, 

3. 𝑠𝑢𝑝𝑝  μn +𝜗 

𝑁
=

𝑠𝑢𝑝𝑝  μn +1+𝜗 

𝑁
 for all 𝑛 ≥ 𝑠, 

4. 𝑠𝑢𝑝𝑝 μ
n

+ 𝜗 ≅
𝑠𝑢𝑝𝑝 μn

Supp {μn∩𝜗}
 

Hence 𝑠𝑢𝑝𝑝 μn

Supp {μn∩𝜗}
=𝑠𝑢𝑝𝑝  μn +𝜗 

𝑁
=

𝑠𝑢𝑝𝑝  μn +1+𝜗 

𝑁
=

𝑠𝑢𝑝𝑝 μn +1

Supp {μn +1∩𝜗}
 

and by using 2 we prove that 𝑠𝑢𝑝𝑝 μ
n
 = 𝑠𝑢𝑝𝑝 μ

n+1
  for 

all 𝑛 > max(𝑟, 𝑠). Hence satisfies a.c.c. 
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