Elastic Electron Scattering from Some Even-Even Ge-Isotopes

A. Rahmani, F. Kaddoori

Department of Physics, College of Science for Woman, University of Baghdad, Baghdad-Iraq

Abstract: The proton momentum distributions (PMD) and the elastic electron scattering form factors $F(q)$ of the ground state for some even mass nuclei in the 2p-1f shell for 70Ge, 72Ge, 74Ge and 76Ge are calculated by using the Coherent Density Fluctuation Model (CDFM) and expressed in terms of the fluctuation function (weight function) $|f(x)|^2$. The fluctuation function has been related to the charge density distribution (CDD) of the nuclei and determined from the theory and experiment. The difference of the CDD of (70Ge - 72Ge), (72Ge - 74Ge) and (74Ge - 76Ge) isotopes have been also calculated to illustrate the influence of the extra two neutrons on the CDD. The property of the long-tail behavior at high momentum region of the proton momentum distribution has been obtained by both the theoretical and experimental fluctuation functions. The calculated form factors $F(q)$ of all nuclei under study are in good agreement with those of experimental data throughout all values of momentum transfer q.

Keywords: density distributions; elastic electron scattering form factors; momentum distributions; 2p-1f shell nuclei; Coherent Density Fluctuation Model (CDFM).

1. Introduction

The study of momentum distribution is important tool for studying the ground state properties of nuclei, especially the momentum distribution of protons [1]. This is measured in the framework of the coherent density fluctuation model (CDFM), which is exemplified by the work of Antonov et al. [2, 3]. There is no method for directly measuring the proton momentum distribution (PMD) in nuclei. The quantities that are measured by particle-nucleus and nucleus-nucleus collisions are the cross sections of different reactions, and these contain information on the (PMD) of target nucleus. The experimental evidence obtained from inclusive and exclusive electron scattering on nuclei establish the existence of long-tail behavior of the (PMD) at high momentum region ($k ≥ 2 fm^{-1}$) [4-6]. The mean field theories cannot describe correctly the form factor $F(q)$ and the (PMD) simultaneously [7] and they exhibit a steep slope behavior of the (PMD) at high momentum region. In fact, the (PMD) depends a little on the effective mean field considered due to its sensitivity to the short-rang and tensor nucleon-nucleon correlations [7,8] which are not included in the mean field theories. In the coherent density fluctuation model (CDFM), the local charge density distribution (CDD) and the (PMD) are simply related and expressed in terms of an experimentally obtainable fluctuation function (weight function) $|f(x)|^2$. A lot of experimental and theoretical work on elastic and inelastic electron scattering at different energies has provided detailed information on the charge density distribution of the nuclear ground state and on the energy, strength, and quantum numbers of the excited states produced by single particle or collective excitation mechanisms [9,10,11,12]. The interest in charge densities result from that, they can provide more detailed information for the internal structure of nuclei, because they are directly related to the wave functions of protons that is important keys for many calculations in nuclear physics [13,14]. There are several theoretical methods used to study elastic electron- nucleus scattering, such as the plan-wave Born approximation (PWBA), the eikonal approximation and the phase-shift analysis method [15-19]. The (PWBA) method can give qualitative results and has been used widely for its simplicity. To include the Coulomb distortion effect, which is neglected in (PWBA), the other two methods may be used. In the last few years, some theoretical studies of elastic electron scattering off exotic nuclei have been performed. Wang et al.[15,16] studied such scattering along some isotopic and isotonic chains by combining the eikonal approximation with the relativistic mean field theory. Karataglidis and Amos[18] have studied the elastic electron scattering form factors, longitudinal and transverse, from exotic (He and Li) isotopes and from B nucleus using large space shell models. Al-Rahmani and Hussien [20] have studied the (CDD) and elastic electron scattering form factors of some 2s-1d shell nuclei using the (PWBA) and demonstrated that the inclusion of the higher 1f-2p shell in the calculation leads to produce a good result in comparison with those of the experimental data. Hamoudet et al. [21] have been calculated elastic electron scattering form factor (EESFF) and the nucleon momentum distribution (NMD) of the ground state for p-shell nuclei with $Z = N$ such as (6Li, 16B, 12C and 14N nuclei). Besides, the weight functions have expressed in terms of nucleon density distribution of the nuclei and the coherent density fluctuation model has expressed in term weight function $|f(x)|^2$ and measured from the experiment and the theory. Their results appeared a good agreement with the experimental results. Al-Rahmani A.A. [22] have been calculated the G.S. elastic charge form factors and proton momentum distribution for the upper region of the 2s-1d shell nuclei like (34Cl, 37Cl and 39K). At the same year, also, Al-Rahmani A.A. [22] have measured the nucleon momentum distributions and elastic electron scattering form factor of the ground state for some odd 2s-1d shell nuclei like (19F,25Mg,27Al and 29Si) by using the coherent density fluctuation model and expressed in terms of the fluctuation function(weight function)$|f(x)|^2$. In addition, through her work she found that the inclusion of the quadrupleformfactors F_{2c} (q) in all nuclei under study

Volume 6 Issue 2, February 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Paper ID: ART2017584
DOI: 10.21275/ART2017584
which was described by the undeformed 2S–1d shell nuclei, was essential for obtaining a notable accordance between the experimental and theoretical form factors. It is important to point out that all above calculations obtained in the framework of CDFM improved a high momentum tail in the PMD. Elastic electron scattering from 40Ca nucleus was also investigated in [23], where the calculated elastic differential cross sections $d\sigma/d\Omega$ are in good agreement with those of experimental data.

The aim of the present work is to derive an analytical expression for the (CDD) applicable throughout all 2p-1f shell nuclei based on the use of the single particle harmonic oscillator wave functions and the occupation numbers of the states. The derived form of the (CDD) is employed in determining the theoretical weight function $f(x)$ which is then used in the (CDFM) to study the (PMD) and elastic scattering form factors $F(q)$ for some 2p-1f shell nuclei for 70,72,74,76Ge isotopes. It is found that the theoretical weight function based on the derived CDD is capable to give information about the PMD and elastic charge form factors as do those of experimental data.

$$\rho_n(r) = \frac{1}{4\pi} \sum_{nl} \zeta_{nl} 2(2l + 1)[R_{nl}(r)]^2$$ (1)

where $\rho_n(r)$ is the charge density distribution of nuclei, ζ_{nl} is the proton occupation probability of the state nl ($\zeta_{nl} = 0$ or 1 for closed shell nuclei and $0 < \zeta_{nl} < 1$ for open shell nuclei) and $R_{nl}(r)$ is the radial part of the single-particle harmonic oscillator wave function. To derive an explicit form for the CDD of $1f - 2p$ shell nuclei, it is supposed that there is a core of filled $1s$ and $1p$ and $1d$ shells and the proton occupation numbers in $2s, 1f$ and $2p$ shells are equal to $(2 - \alpha)$, β and $(Z - 20 - \beta + \alpha)$, respectively, for 70,72,74,76Ge nuclei, instead of $2, (Z - 20)$ and 0 as in the simple shell model. Using this assumption in equation (1), we get:-

$$\rho_n(r) = \frac{e^{-r^2/b^2}}{\pi^{3/2}b^3} \left\{ \left(5 - \frac{3}{2} \alpha\right) + \left[\frac{11}{3} \alpha + \frac{5}{3} (Z - 20 - \beta)\right] \left(\frac{\zeta}{b}\right)^2 + \left[4 - 2\alpha - \frac{4}{3} (Z - 20 - \beta)\right] \left(\frac{\zeta}{b}\right)^4 + \left[\frac{8}{15} \beta + \frac{4}{15} (Z - 20 - \beta) + \frac{4}{15} \alpha\right] \left(\frac{\zeta}{b}\right)^6 \right\}$$ (3)

The mean square charge radius (MSR) of the considered 1f-2p shell nuclei can be written as : [2,3]

$$\langle r^2 \rangle = \frac{4\pi}{Z} \int_0^\infty \rho_n(r)r^4 dr$$ (4)

The normalization condition of the $\rho_n(r)$ is given by [2,3]

$$Z = 4\pi \int_0^\infty \rho_n(r)r^2 dr$$ (5)

And the corresponding MSR is

$$\langle r^2 \rangle = b^2 \left\{ \frac{9}{2} - \frac{30}{Z} + \frac{\alpha}{Z} \right\}$$ (6)

The central $\rho_n(r = 0)$ is obtained from Eq. (3) as

$$\rho_n(0) = \frac{1}{\pi^{3/2}b^3} \left\{ 5 - \frac{3}{2} \alpha \right\}$$ (7)

The parameter α can be determined from the central CDD of Eq. (6) as

$$\alpha = \frac{2}{3} \left\{ 5 - \pi^{3/2}b^3 \rho_n(0) \right\}$$ (8)

In Eq. (8), the values of the central density, $\rho_n(0)$, are taken from the experiments while the harmonic oscillator size parameter b is chosen in away so that to reproduce the experimental root mean square charge radii $\langle r^2 \rangle^{1/2}$ of the considered nuclei. The experimental charge density distribution of the FB is given by [24].

2. Theory

The charge density distribution of one–body operator can be written respectively, as [21]

$$\rho_n(r) = \frac{1}{4\pi} \sum_{nl} \zeta_{nl} 2(2l + 1)[R_{nl}(r)]^2$$ (1)

where $\rho_n(r)$ is the charge density distribution of nuclei, ζ_{nl} is the proton occupation probability of the state nl ($\zeta_{nl} = 0$ or 1 for closed shell nuclei and $0 < \zeta_{nl} < 1$ for open shell nuclei) and $R_{nl}(r)$ is the radial part of the single-particle harmonic oscillator wave function. To derive an explicit form for the CDD of $1f - 2p$ shell nuclei, it is supposed that there is a core of filled $1s$ and $1p$ and $1d$ shells and the proton occupation numbers in $2s, 1f$ and $2p$ shells are equal to $(2 - \alpha)$, β and $(Z - 20 - \beta + \alpha)$, respectively, for 70,72,74,76Ge nuclei, instead of $2, (Z - 20)$ and 0 as in the simple shell model. Using this assumption in equation (1), we get:-

$$\rho_n(r) = \frac{e^{-r^2/b^2}}{\pi^{3/2}b^3} \left\{ \left(5 - \frac{3}{2} \alpha\right) + \left[\frac{11}{3} \alpha + \frac{5}{3} (Z - 20 - \beta)\right] \left(\frac{\zeta}{b}\right)^2 + \left[4 - 2\alpha - \frac{4}{3} (Z - 20 - \beta)\right] \left(\frac{\zeta}{b}\right)^4 + \left[\frac{8}{15} \beta + \frac{4}{15} (Z - 20 - \beta) + \frac{4}{15} \alpha\right] \left(\frac{\zeta}{b}\right)^6 \right\}$$ (3)

The mean square charge radius (MSR) of the considered 1f-2p shell nuclei can be written as : [2,3]

$$\langle r^2 \rangle = \frac{4\pi}{Z} \int_0^\infty \rho_n(r)r^4 dr$$ (4)

The normalization condition of the $\rho_n(r)$ is given by [2,3]

$$Z = 4\pi \int_0^\infty \rho_n(r)r^2 dr$$ (5)

And the corresponding MSR is

$$\langle r^2 \rangle = b^2 \left\{ \frac{9}{2} - \frac{30}{Z} + \frac{\alpha}{Z} \right\}$$ (6)

The central $\rho_n(r = 0)$ is obtained from Eq. (3) as

$$\rho_n(0) = \frac{1}{\pi^{3/2}b^3} \left\{ 5 - \frac{3}{2} \alpha \right\}$$ (7)

The parameter α can be determined from the central CDD of Eq. (6) as

$$\alpha = \frac{2}{3} \left\{ 5 - \pi^{3/2}b^3 \rho_n(0) \right\}$$ (8)

In Eq. (8), the values of the central density, $\rho_n(0)$, are taken from the experiments while the harmonic oscillator size parameter b is chosen in away so that to reproduce the experimental root mean square charge radii $\langle r^2 \rangle^{1/2}$ of the considered nuclei. The experimental charge density distribution of the FB is given by [24].
\[\rho(r) = \begin{cases} \sum_{\nu} j_\nu(\nu \pi r / R) & \text{for } r \leq R \\ 0 & \text{for } r > R \end{cases} \] \quad (9)

\[j_\nu(\nu \pi r / R) \] denoted the Bessel function of order zero.

The PMD \(n(k) \), for the \(1f - 2p \) shell nuclei is studied by using two distinct methods. In the first method, it is determined by the shell model using the single-particle harmonic oscillator wave functions in momentum representation and expressed as:

\[n(k) = \frac{b^2 e^{-k^2/2}}{\pi^{3/2}} \left[5 - \frac{3}{2} \alpha + \left(\frac{11}{3} \alpha + \frac{5}{3} (Z - 20 - \beta) \right) \left(\frac{x}{b} \right)^2 + \left(4 - 2 \alpha, - \frac{4}{3} (Z - 20 - \beta) \right) \left(\frac{x}{b} \right)^4 + \frac{8}{15} \beta + \frac{4}{15} (Z - 20 - \beta) + \frac{4}{15} \alpha \right] \left(\frac{x}{b} \right)^4 \] \quad (10)

while in the second method, the \(n(k) \) can be determined by

\[\rho(\tilde{r}, \tilde{r}') = \int_0^\infty |f(x)|^2 \rho_\lambda(\tilde{x}; \tilde{r}, \tilde{r}') \, dx \] \quad (11)

since

\[\rho_\lambda(\tilde{r}, \tilde{r}') = 3 \rho_0(x) \frac{j_\nu(k_{\rho}(x) |\tilde{r} - \tilde{r}'|)}{k_{\rho}(x) |\tilde{r} - \tilde{r}'|} \times \left(\frac{|\tilde{r} + \tilde{r}'|}{2} \right) \] \quad (12)

is the density matrix for \(Z \) protons uniformly distributed in the sphere with radius \(x \) and density \(\rho_0(x) = 3Z/4\pi x^3 \).

The Fermi momentum is defined as \([2,3]\)

\[k_{\rho}(x) = \left(\frac{3\pi^2}{2} \rho_0(x) \right)^{1/3} = \frac{V}{x} \quad \text{and} \quad V = \left(\frac{9\pi Z}{8} \right)^{1/3} \] \quad (13)

and the step function \(\theta(x) \), in Eq. (12), is defined by

\[\theta(y) = \begin{cases} 1, & y \geq 0 \\ 0, & y < 0 \end{cases} \] \quad (14)

According to the density matrix definition of Eq. (11), one-particle density \(\rho(r) \) is given by its diagonal element as \([21,22]\)

\[\rho_\lambda(r) = \rho_\lambda(r, r') \big|_{r=r'} = \int_0^\infty |f(x)|^2 \rho_\lambda(r) \, dx \] \quad (15)

In Eq. (15), \(\rho_\lambda(r) \) and \(|f(x)|^2 \) have the following forms \([2,3]\)

\[\rho_\lambda(r) = \rho_0(x) \theta(x - \tilde{r}) \] \quad (16)

\[|f(x)|^2 = \left. -\frac{1}{\rho_0(x)} \frac{d \rho_\lambda(r)}{dr} \right|_{r=x} \] \quad (17)

The weight function \(|f(x)|^2 \) of Eq. (17), determined in terms of the ground state \(\rho_0(r) \), satisfies the following normalization condition \([2,3]\)

\[\int_0^\infty |f(x)|^2 \, dx = 1 \] \quad (18)

and holds only for monotonically decreasing \(\rho_\lambda(r) \), i.e.

\[\frac{d \rho_\lambda(r)}{dr} < 0. \]

On the basis of Eq. (15), the PMD \(n(k) \), is given by \([2,3]\)

\[n(k) = \int_0^\infty |f(x)|^2 n_\lambda(k) \, dx, \] \quad (19)

where

\[n_\lambda(k) = \frac{4}{3} \pi c^3 \theta(k_F(x) - |k|) \] \quad (20)

is the Fermi-momentum distribution of the system with density \(\rho_0(x) \). By means of Eqs. (17), (19) and (20), an explicit form for the PMD is expressed in terms of \(\rho_\lambda(r) \) \([2,3]\) as

\[n_CDFM(k : |\rho_\lambda|) = \left(\frac{4 \pi}{3} \right)^2 \frac{4}{Z} \int_0^1 \rho_0(x) x^2 \, dx - \left(\frac{V_k}{k} \right)^6 \rho_0 \left(\frac{V_k}{k} \right) \] \quad (21)

with normalization condition

\[Z = \int n_CDFM(k) \frac{d^3k}{(2\pi)^3} \] \quad (22)

While the experimental weight functions for \(^{70}\)Ge and \(^{74}\)Ge determined the two-parameter Fermi (2PF) and for \(^{74}\)Ge and \(^{76}\)Ge the Fourier- Bessel (FB), thus, yields respectively.

\[|f(x)|^2_{2PF} = \left(1 + e^{-x/z} \right)^{-2} \exp \left(\frac{x-c}{z} \right) \] \quad (23)

\[|f(x)|^2_{FB} = -\sum_{v} \frac{4 \pi}{3 Z} \left[\frac{\cos(v \pi x / R)}{x} - \frac{\sin(v \pi x / R)}{x (v \pi x / R)} \right] \] \quad (24)

Where the values of parameters \(c, z \) and \(a_v \) in above equations are taken from experimental data \([24]\) while the constant \(\rho_0 \) is determined from the normalization of Eq. (5). The elastic monopole charge form factors \(F_{CO}(q) \) of the target nucleus are also expressed in the CDFM as \([2,3]\):

\[F_{CO}(q) = \frac{1}{Z} \int |f(x)|^2 F(q, x) \, dx \] \quad (25)

Where the form factor of uniform charge density distribution is given by \([2,3]\)

\[F_{CO}(q) = \frac{3Z}{(qx)^3} \left[\frac{\sin(qx)}{x} - \frac{\cos(qx)}{x} \right] \] \quad (26)
Inclusion of the correction due to the finite nucleon size \(f_{fs}(q) \) and the center of mass correction \(f_{cm}(q) \) in the calculation requires multiplying the form factor of Eq. (25) by these corrections

Here, \(f_{fs}(q) \) is considered as free nucleon form factor which is assumed to be the same for protons and neutrons [25]

\[
f_{fs}(q) = e^{-\frac{0.49q^2}{4}}
\]

The correction \(f_{cm}(q) \) remove the spurious state arising from the motion of the center of mass when shell model wave function is used and is given by [25]

\[
f_{cm}(q) = e^{-\frac{q^2}{4a^2}}
\]

Multiplying the right hand side of Eq. (26) by these corrections yields:

\[
F_{Co}(q) = \frac{1}{Z} \int_0^1 |f(x)|^2 F(q,x) dx f_{fs}(q)f_{cm}(q).
\]

It is important to point out that all physical quantities studied above in the framework of the CDFM such as \(n(k) \) and \(F_{Co}(q) \), are expressed in terms of the weight function \(|f(x)|^2 \). In the previous work [2,3], the weight function was obtained from the NDD, extracted by analyzing elastic electron-nuclei scattering experiments. In the present work, the theoretical weight function \(|f(x)|^2 \) is expressed, by introducing the derived CDD of Eq. (3) in to Eq. (17), as

\[
|f(x)|^2 = \frac{8\pi^2}{3Zb^2} \rho_{ex}(x) - \frac{16\pi^4 e^{-x/b}}{3Zb^2 x^2} \left[\frac{11}{6} \alpha + \frac{5}{6} (Z - 2\beta) \right] + \left(4 - 2\alpha \right) \left(\frac{4}{3} (Z - 2\beta) \right) \left(\frac{x}{b} \right)^2 + \frac{4}{35} \beta + \frac{2}{5} (Z - 2\beta) + \frac{2}{5} \alpha \left(\frac{x}{b} \right)^4
\]

3. Result and Discussion

In this study, the proton momentum distribution \(n(k) \) and elastic electron scattering form factors, \(F(q) \) are calculated by using CDFM, for some even 2p-1f shell nuclei, (such as \(^70\text{Ge} \), \(^72\text{Ge} \), \(^74\text{Ge} \) and \(^76\text{Ge} \) isotopes. The distribution \(n_{\text{CDFM}}(k) \) of Eq. (21) was calculated by means of the CDD which was obtained firstly from theoretical consideration, like in Eq. (3). And then secondly from experimental data (such as 2PF for \(^70\text{Ge} \) and \(^72\text{Ge} \) [24]and FB for \(^74\text{Ge} \) and \(^76\text{Ge} \) [10]). The size parameters \(b \) is chosen in such a way so as to imitate the experimental root mean square (rms) charge radii of these nuclei. The values of \(a \) are determined by Eq.(8). The values of \(b \) and \(\alpha, \beta \) simultaneously with value of the central densities \(\rho_{ex}(0) \) and the root mean square charge radii \(\langle r^2 \rangle^{1/2} \) for \(^70\text{Ge} \), \(^72\text{Ge} \), \(^74\text{Ge} \) and \(^76\text{Ge} \) nuclei are present in Table 1 and Table 2.

In Fig. 1, the dependence of the CDD (in \(fm^{-3} \)) on \(r \) (in \(fm \)) for \(^70\text{Ge} \) [Fig. 1(a)], \(^72\text{Ge} \) [Fig. 1(b)], \(^74\text{Ge} \) [Fig. 1(c)] and \(^76\text{Ge} \) [Fig. 1(d)] nuclei. The solid and dotted curves are the measured charge density distributions of the treated nuclei by using Eq. (3) when \(\alpha \neq 0 \) and \(\alpha = 0 \), respectively while the solid circles correspond to the experimental data [24]. It is noticeable that the dotted curves distribution are poor agreement with the experimental data, particular for small \(r \). Introducing the parameters \(\alpha \) and \(\beta \) (i.e., taking into account the higher orbitals) into our calculations leads to a good agreement with the experimental data as demonstrated by the solid curves.

In Fig. 2, shows the difference of the charge density distributions (CDD) of the \(^70\text{Ge} - ^72\text{Ge} \), \(^72\text{Ge} - ^74\text{Ge} \) and \(^74\text{Ge} - ^76\text{Ge} \) isotopes. It is seen that the addition two of neutrons to the nuclei \(^70\text{Ge} \), \(^72\text{Ge} \), \(^74\text{Ge} \) leads to change slightly the distribution of the protons in the shells due to the nuclear interactions that will be happen between these addition neutrons and protons. These interactions lead to some dwindling in the CDD particularly at the central regions of these nuclei, i.e. the additive neutrons leads to increase the probability of transferring the protons from the central region of the nucleus towards its surface.

In Fig. 3, we display the dependence of the \(n(k) \) (in \(fm^{-1} \)) on \(k \) (in \(fm^{-1} \)) for \(^70\text{Ge} \) [Fig. 2(a)], \(^72\text{Ge} \) [Fig. 2(b)], \(^74\text{Ge} \) [Fig. 2(c)], and \(^76\text{Ge} \) [Fig. 2(d)] nuclei. The long-dashed curves correspond to the PMD's of Eq. (10) evaluated by the shell model calculation used the single particle harmonic-oscillator wave function in the momentum space. The solid circles symbols and solid curves correspond to the PMD's obtained by CDFM of Eq. (21) employing the experimental and theoretical CDD, respectively. It is evident that the behavior of the dash distribution curves estimated by the shell model is in contrast with distributions imitated by the CDFM. The significant property of the long-dashed distribution is the steep slope mode, when \(k \) is increases. This behavior is in disagreement with our studies [2,3,26,27] and it is attributed to the fact that the ground state shell model wave function given in terms of Slater determinant does not take into account the major effect of the short range dynamical correlation functions. Hence, the short range repulsive features of the nucleon-nucleon force are responsible for the high momentum behavior of the PMD [26,7]. The property of long-tail behavior obtained by the CDFM, which is in agreement with the studies [2,3,26,27],
is connected to the presence of high densities \(\rho_s(r) \) in the decomposition of Eq. (15), though their fluctuation functions\\n\\n\[f(x) = \text{small. The PMD of } (^{70}\text{Ge}, {^{72}\text{Ge}) nucleus present in Figs.3 (a) and 3 (b), respectively, shows quite well agreement between the calculated data (the solid curve) and the experimental data (solid circles) up to } k = 2.2 \text{ fm}^{-1}, \text{ while beyond this region they shows an explicit deviation between them. Besides, This deviation in PMD at large } k \text{ may be interpreted by the deviation between the calculated charge density distribution of the } (^{70}\text{Ge} \text{ and } {^{72}\text{Ge}) nuclei and those of the experimental two parameters Fermi by used the charge density equation:}\\n\\n\[\rho(r) = \rho_0(1 + \exp((r-c)/z)) \text{ where their parameter is listed in Table3 [24]. Since this deviation affect greatly the PMD’s due to the dependence of the PMD on the employed CDD. The PMD of } (^{74}\text{Ge}) \text{ nucleus present in Fig. 3(c) shows a good agreement between the experimental data (solid circles symbols) and calculated data (solid curves), but there is slightly deviation between them. This deviation is in the two regions at (1.8 fm}^{-1} \leq k \leq 2.4 \text{ fm}^{-1} \text{) and (2.6 fm}^{-1} \leq k \leq 4.3\text{ fm}^{-1} \text{), respectively. The PMD of } (^{76}\text{Ge}) \text{ nucleus present in figure (3d) shows a good agreement between the experimental data (solid circles symbols) and calculated data (solid curves), but there is slightly deviation between them. This deviation is in the regions at (2.4 \text{ fm}^{-1} \leq k \leq 4.3\text{ fm}^{-1} \text{).}\\n\\nThe elastic electron scattering charge form factors for the considered nuclei are calculated in the framework of the (CDFM) through introducing the theoretical weight functions \[f(x) \text{ of Eq. (30) into Eq. (29). In Fig. 3, we present the dependence of the form factors } F(q) \text{ on the momentum transfer } q \text{ (in fm}^{-1} \text{) for } (^{70}\text{Ge} [\text{Fig. 4(a)}], (^{72}\text{Ge} [\text{Fig. 4(b)}], (^{74}\text{Ge} [\text{Fig. 4(c)}] \text{ and } (^{76}\text{Ge} [\text{Fig. 4(d)}] \text{ nuclei, where the solid circles are representing experimental data [10]. In Fig. 4(a) } (^{70}\text{Ge} \text{ and Fig. 4(b) } (^{72}\text{Ge shows that the diffraction minima and maxima of the considered nuclei are reproduced in the correct places. While in Fig. 4(c) } (^{74}\text{Ge and Fig. 4(d) } (^{76}\text{Ge the third diffraction minimum of experimental data [10] is shifted slightly by about } q = 0.5 \text{ fm}^{-1} \text{ from the calculated one demonstrated by the solid curve which is located at } q = 2.5 \text{ fm}^{-1}. \text{ In all these Fig. 4, Both the behavior and the magnitudes of the calculated form factors of these nuclei are in reasonable agreement with those of the experimental data.}\\n\\n4. Conclusions\\n\\nThe (PMD) and elastic electron scattering form factors, calculated in the framework of the (CDFM), are expressed by means of the weight function \[f(x) \text{. The weight function, which is connected with the local density } \rho(r), \text{ was determined from experiment and from theory. If neutrons has been added to the nucleus, it may be explained by the proton redistribution due to the nuclear interaction between those additional neutrons and the protons as indicated by the change of the parameters } (\alpha, \beta) \text{ and (b). The feature of the long-tail behavior of the (PMD) is obtained by both theoretical and experimental weight functions, which is in agreement with the other studies [2,3, 26, 27] and is related to the existence of high densities } \rho_s(r) \text{ in the decomposition of Eq. (15), though their weight functions are small. The experimental form factors for elastic electron scattering from } (^{70}\text{Ge}, {^{72}\text{Ge}, {^{74}\text{Ge and } (^{76}\text{Ge nuclei are well reproduced by the monopole form factors. It is noted that the theoretical (CDD) of Eq.(3) employed in the determination of the theoretical weight function of Eq.(30) is capable of reproducing information about the (PMD) and elastic form factors.}\\n\\n5. Acknowledgment\\n\\nWe wish to thank Professor G. K. Mallot for providing us with the unpublished experimental data for the Germanium isotopes.\\n\\nReferences\\n\\n[1] P.M. Morse and H. Feshbach, Methods of Theoretical Physics. Part 2, McGraw-Hill book Company, 1953, New York.\\n[2] A. N. Antonov, P. E. Hodgson and I. ZhPetkov, Nucleon Momentum and Density Distribution in Nuclei. Clarendon Press, Oxford, (1988) 1-165.\\n[3] A. N. Antonov, V. A. Nikolaev and I. ZhPetkov, Physik,A297, (1980), 257-260.\\n[4] R.D.Amado, Phys. Rev., C14, (1976) 1264.\\n[5] V. I. Komarov, G. E. Kosarey, H. Muler, D. Netzband and T. Stiehler, Phys. Lett., B 69, (1977) 37.\\n[6] R. A. Ridha, Elastic electron scattering form factors and nuclear momentum distributions in closed and open shell nuclei, M.Sc. Thesis, (2006) University of Baghdad.\\n[7] M. Traimi and G. Orlandini, Physik Z., A321, (1985) pp. 479-484.\\n[8] M. Dal Ri, S. Stringariando. Bohigas, Nucl. Phys., A376 (1982), 81.\\n[9] T Y. Donnellyand J D Walecka Ann., Rev. Nucl., Part. Sci. 25 (1975) 329.\\n[10] G. K. Mallot, Electron Scattering of Germanium and M biomedical Atoms of Krypton as a Contribution to the Systematics of the Nuclear Charge Densities, Ph.D., thesis(1984) University of Mainz.\\n[11] G. Fricke, C. Bernhardt, K. Heiling, L. A. Schaller, L. Schellenberg, E.B. Shera, and C. W. Jager, Nucl. Data Table, (1995) 60 -177.\\n[12] J Heisenberg and H P Blok Ann., Rev. Nucl., Part. Sci. 33 (1983) 569.\\n[13] R. Hofstadter, Electron Scattering and Nuclear Structure Rev. Mod. Phys. 28,(1956) 214.\\n[14] A. H. Wapstra,G. Audi, and R. Hoekstra, Data Nucl., Data Tables 39, (1988) 281.\\n[15] Z Wangand Z. Ren, Phys. Rev., C 71 (2005) 5432.\\n[16] Z. Wang, Z Renand Y. Tan., Phys. Rev., C 73 (2006) 14610-1.\\n[17] X Roca-Maza, MCentelles, F salvat and X. Vinas, Phys. Rev., C 78 (2008) 044332.\\n[18] S Karataglidis and K. Amos, Phys. Lett., B 650 (2007) 148.\\n[19] Y. Chu, Z Ren, T Dong and Z. Wang, Phys. Rev., C 79 (2009) 44313-1

Table 1: The value of various parameters employed to CDD.

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>Type of CDD [10]</th>
<th>(\rho_{\text{exp}}) (r^2)</th>
<th>(< r^2 >_{\text{cal}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{68}\text{Ge})</td>
<td>FB</td>
<td>0.07609876</td>
<td>4.043</td>
</tr>
<tr>
<td>(^{70}\text{Ge})</td>
<td>FB</td>
<td>0.07443733</td>
<td>4.060</td>
</tr>
<tr>
<td>(^{72}\text{Ge})</td>
<td>FB</td>
<td>0.07260928</td>
<td>4.075</td>
</tr>
<tr>
<td>(^{74}\text{Ge})</td>
<td>FB</td>
<td>0.07106188</td>
<td>4.081</td>
</tr>
</tbody>
</table>

Table 2: Calculated parameters used in Eq. (3), To calculate CDD and occupation number in 1f-2p of nucleus and the calculated \(< r^2 \>_ {\text{cal}} \).

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>(b)</th>
<th>(a)</th>
<th>(\beta)</th>
<th>Occupation No. of 2s ((2-a))</th>
<th>Occupation No. of 1f (\beta)</th>
<th>Occupation No. of 2p ((Z-20-\beta+a))</th>
<th>(< r^2 >_ {\text{cal}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{68}\text{Ge})</td>
<td>2.137</td>
<td>0.5747450</td>
<td>10.8</td>
<td>1.425255</td>
<td>10.8</td>
<td>1.774745</td>
<td>4.067287</td>
</tr>
<tr>
<td>(^{70}\text{Ge})</td>
<td>2.1459</td>
<td>0.6011081</td>
<td>10.9</td>
<td>1.398819</td>
<td>10.9</td>
<td>1.701118</td>
<td>4.050529</td>
</tr>
<tr>
<td>(^{72}\text{Ge})</td>
<td>2.150</td>
<td>0.6529107</td>
<td>11</td>
<td>1.3470893</td>
<td>11</td>
<td>1.6529107</td>
<td>4.073133</td>
</tr>
<tr>
<td>(^{74}\text{Ge})</td>
<td>2.161</td>
<td>0.6695636</td>
<td>11.04</td>
<td>1.3304364</td>
<td>11.04</td>
<td>1.6295636</td>
<td>4.079458</td>
</tr>
</tbody>
</table>

Table 3: The value of various parameters employed to CDD of 2PF for \(^{68}\text{Ge}\) and \(^{70}\text{Ge}\).
Figure 1: The dependence of the CDD on r for (a) 70Ge, (b) 72Ge, (c) 74Ge and (d) 76Ge nuclei. The solid and dotted curves are the calculated CDD of the treated nuclei by using Eq. (3) when $\alpha \neq 0$ and $\alpha = 0$, respectively whereas the solid circles are those fitted to the experimental data of Fourier-Bessel (FB) CDD [24].
Figure 2: Dependence of the difference of the CDD of (\(^{70}\text{Ge},^{72}\text{Ge}\)), (\(^{72}\text{Ge},^{74}\text{Ge}\)) and (\(^{74}\text{Ge},^{76}\text{Ge}\)) isotopes \(\Delta \rho(r)\) on \(r\). The black curve is the calculated difference of the CDD with \((\alpha, \beta) \neq 0\). The red curve is experimental data, The shaded area represented the error bar.

Figure 3: The dependence of PMD on \(k\) for (a)\(^{70}\text{Ge}\), (b)\(^{72}\text{Ge}\), (c)\(^{74}\text{Ge}\) and (d)\(^{76}\text{Ge}\) nuclei. The long-dashed curves are the calculated PMD of Eq. (10) obtained by the shell model calculation using the single particle harmonic oscillator wave functions in the momentum representation. The solid circles symbols and solid curves distributions are the calculated PMD obtained in terms of the CDFM of Eq.(21) using the experimental 2PF of Eq.(23) and theoretical weight function for \(^{70}\text{Ge}\) and \(^{72}\text{Ge}\) of Eq. (30), respectively, and for \(^{74}\text{Ge}\) and \(^{76}\text{Ge}\) by using the experimental FB of Eq.(24) and theoretical weight function respectively.
Figure 4: Dependence of the charge form factors on q for (a) 70Ge, (b) 72Ge, (c) 74Ge and (d) 76Ge nuclei. The solid curve is the calculated $F(q)$ of the Eq. (25). The filled circle symbols are the experimental data, taken from Ref. [10].