
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 2, February 2017
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Ultra-High Reliability for Non-Mission-Critical
Applications

Renu Garg1, Dr. Amit Gupta2

1Research Scholar, Mewar University,Chittorgarh, Rajasthan, India

2Maharaja Agersen Institute of Technology, Guru Gobind Singh Indraprastha University, Rohini, Delhi , India

Abstract: A desire to achieve Ultra high reliability of a system may demand more investment in terms of time and cost. Which means
higher time and higher cost may diminish the expected returns. In other words, increasing the reliability may increase the efficiency of
the software, but it does not always ensure the achievement of commercial objective of the organisation. A system is reliable if it is used
according to its specific parameters. For non-mission-critical applications achieving ultra-high reliability is advantageous but not
obligatory rather it may lead to diminish the returns. In today's competitive environment, delay in product release may lead to
opportunity loss and hence revenue loss. If system is tested time and again to make it failure free, it may offer a competitive advantage to
other company. However, in case of mission-critical applications achieving ultra-high reliability is imperative. Such applications are
expected to deliver high level of security and accuracy because low reliability may lead to unbearable losses. In this scenario, investment
of time and cost is acceptable & justified.

Keywords: Ultra-high reliability, mission-critical applications, Software Quality, reliability prediction

1. Introduction

Software reliability can be defined as the probability that no
failure occurs up to time t. Software Reliability is hard to
achieve, because the complexity of software tends to be
high. Thus, Software has become an essential part of
industry, medical systems, spacecraft and military systems,
and many other commercial systems. The application of
software in many systems has led software reliability to be
an important research area. Researchers and engineers have
worked to increase the chance that the software systems will
perform satisfactorily during operation. This process
required the removal of faults during the testing phase.
Researchers used existing technologies in order to improve
the software reliability significantly by avoiding the
occurrence of faults in the design and development of
software programs. A failure is the departure of software
behavior from the user requirements. This phenomenon
must be distinguished from the fault (bug) in the software
code which causes the occurrence of failure as soon as it is
activated during program execution. When a failure has been
experienced, the underlying fault is detected and fixed
correctly, then the reliability of software will improve with
time.

2. Software Reliability Prediction

After fitting a model describing the failure process we can
estimate its parameters, and the quantities such as the total
number of faults in the code, future failure intensity and

Metrics are used to predict a variety of measures including
the initial failure rate , final failure rate, fault density per
executable lines of code, fault profile, as well as the
parameters of a software reliability growth model. The final
outcomes of a software reliability prediction include:
 Relative measures for practical use and management.
 A prediction of the number of faults expected during

each phase of the life cycle.

 A constant failure rate prediction at system release that
can be combined with other failure rates.

The major difference between software reliability prediction
and software reliability estimation is that predictions are
performed based on historical data while estimations are
based on collected data. Predictions, by their nature, will
almost certainly be less accurate than estimations. However,
they are useful for improving the software reliability during
the development process. If the organization waits until
collected data is available (normally during testing), it will
generally be too late to make substantial improvements in
software reliability. The predictions should be performed
iteratively during each phase of the life cycle and as
collected data becomes available the predictions should be
refined to represent the software product at hand.

A software reliability prediction is performed early in the
software life cycle, but the prediction provides an indication
of what the expected reliability of the software will be either
at the start of system test or the delivery date. It is largely
based on the projected fault count at the point system test is
initiated.

While hardware analysts will perform predictions to
determine what improvements, if any, can be made in
designing and selecting parts, the software analysts will
perform predictions to determine what improvements, if any,
can be made to the software development techniques
employed and the rigor with which the process is carried
out. The techniques can be on a global level, such as
organization procedures, or they can be on a local level such
as the complexity of each software unit. The software
analyst, like the hardware analyst, must be involved in the
software engineering day-to-day activities to be able to
measure the software reliability parameters and to be able to
understand what improvements can be made.

Paper ID: ART2017905 1053

expected to deliver high level of security and accuracy because low reliability may lead to unbearable losses. In this scenario, investment
of time and cost is acceptable & justified.

high reliability, mission-critical applications, Software Quality, reliability prediction

Software reliability can be defined as the probability that no
failure occurs up to time t. Software Reliability is hard to
achieve, because the complexity of software tends to be
high. Thus, Software has become an essential part of
industry, medical systems, spacecraft and military systems,
and many other commercial systems. The application of
software in many systems has led software reliability to be
an important research area. Researchers and engineers have
worked to increase the chance that the software systems will
perform satisfactorily during operation. This process
required the removal of faults during the testing phase.
Researchers used existing technologies in order to improve
the software reliability significantly by avoiding the
occurrence of faults in the design and development of
software programs. A failure is the departure of software
behavior from the user requirements. This phenomenon
must be distinguished from the fault (bug) in the software
code which causes the occurrence of failure as soon as it is
activated during program execution. When a failure has been
experienced, the underlying fault is detected and fixed

 A constant failure rate prediction at system release that
can be combined with other failure rates.

The major difference between software reliability prediction
and software reliability estimation is that predictions are
performed based on historical data while estimations are
based on collected data. Predictions, by their nature, will
almost certainly be less accurate than estimations. However,
they are useful for improving the software reliability during
the development process. If the organization waits until
collected data is available (normally during testing), it will
generally be too late to make substantial improvements in
software reliability. The predictions should be performed
iteratively during each phase of the life cycle and as
collected data becomes available the predictions should be
refined to represent the software product at hand.

A software reliability prediction is performed early in the
software life cycle, but the prediction provides an indication
of what the expected reliability of the software will be either
at the start of system test or the delivery date. It is largely
based on the projected fault count at the point system test is

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 2, February 2017
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

One important benefit from performing predictions is to
correlate the software methods and techniques employed
to the actual failure rate later experienced. This comparison
can lead to improved software methods and techniques,
particularly testing techniques.

There are certain parameters in this prediction model that
have tradeoff capability. This means that there is a large
difference between the maximum and minimum predicted
values for that particular factor. Performing a tradeoff means
that the analyst determines where some changes can be
made in the software engineering process or product to
experience an improved fault density prediction. A tradeoff
is valuable only if the analyst has the capability to impact
the software development process.

The tradeoff analysis can also be used to perform a cost
analysis. For example, a prediction can be performed using
a baseline set of development parameters. Then the
prediction can be performed again using an aggressive set of
development parameters. The difference in the fault density
can be measured to determine the payoff in terms of fault
density that can be achieved by optimizing the development.
A cost analysis can also be performed by multiplying the
difference in expected total number of defects by either a
relative or fixed cost parameter.

The output of this model is a fault density in terms of faults
per KSLOC. This can be used to compute the total
estimated number of inherent defects by simply multiplying
by the total predicted number of KSLOC. If function points
are being used, they can be converted to KSLOC. Fault
density can also be converted to failure rate by using one of
the following:
1) Collected test data,
2) Historical data from other projects in your organization,

and/or
3) The transformation table supplied with the model.

Ideally, the developing organization should determine a
conversion rate between fault density and failure rate. If that
data is not available then this technique supplies a
conversion ratio table. The predicted fault density output
from this model can also be used as an input to the Musa
prediction model.

The values of many of the parameters in this model may
change as development proceeds. The latest updated values
should always be used when making a prediction. The

predictions will tend to become more and more accurate as
the metrics from each successive phase become available
and as the values are updated to more closely reflect the
characteristics of the final design and implementation. The
details of this model are not contained in this notebook.

3. Ultra High Reliability Prediction

It is essential to consider achievability and testability when
predicting reliability for software systems that must be
relatively high. Demands for perfection should be avoided
as they are not testable or demonstrable. For example, if the
demand for the failure rate is 10-4 then there must be
sufficient resources for extensive validation and verification
to demonstrate this level. The current state of the art is
limited in providing any help in assessing the software
reliability at this level. Techniques such as Formal Methods
are currently being used by software organizations
developing ultra high reliability systems.

Optimum Release Time
There are methods available for predicting the optimal
release time. Musa model is based on software reliability
growth. Process Productivity Parameter was developed by
Quantitative Software Management, Inc. It can predict
optimal release time based on current productivity, effort
and size of product. COCOMO model was developed by
Barry Boehm. It is based on size, schedule time and effort as
well as some product and development characteristics. The
Musa software reliability growth model can be used to
determine the optimum release time for minimizing overall
cost.

4. Limitations to Achieve High Reliability

The first limitation comes from the fact that we want to
achieve higher reliability but we have limited time and cost
as well. If a software is tested time and again to make it
failure free it may happen that some competitive company
releases its software therefore revenue loss.

An inappropriate increase of the reliability of the system
may lead to a simultaneous increase of time therefore
increase the cost. In other words, increasing the reliability of
a system does not always mean increasing the efficiency of
the software.

Paper ID: ART2017905 1054

prediction can be performed again using an aggressive set of
development parameters. The difference in the fault density
can be measured to determine the payoff in terms of fault
density that can be achieved by optimizing the development.
A cost analysis can also be performed by multiplying the
difference in expected total number of defects by either a
relative or fixed cost parameter.

The output of this model is a fault density in terms of faults
per KSLOC. This can be used to compute the total
estimated number of inherent defects by simply multiplying
by the total predicted number of KSLOC. If function points
are being used, they can be converted to KSLOC. Fault
density can also be converted to failure rate by using one of

Historical data from other projects in your organization,

The transformation table supplied with the model.

Ideally, the developing organization should determine a
conversion rate between fault density and failure rate. If that
data is not available then this technique supplies a
conversion ratio table. The predicted fault density output
from this model can also be used as an input to the Musa

Optimum Release Time
There are methods available for predicting the optimal
release time. Musa model is based on software reliability
growth. Process Productivity Parameter was developed by
Quantitative Software Management, Inc. It can predict
optimal release time based on current productivity, effort
and size of product. COCOMO model was developed by
Barry Boehm. It is based on size, schedule time and effort as
well as some product and development characteristics. The
Musa software reliability growth model can be used to
determine the optimum release time for minimizing overall
cost.

4. Limitations to Achieve High Reliability

The first limitation comes from the fact that we want
achieve higher reliability but we have limited time and cost
as well. If a software is tested time and again to make it
failure free it may happen that some competitive company
releases its software therefore revenue loss.

An inappropriate increase of the reliability of the system
may lead to a simultaneous increase of time therefore
increase the cost. In other words, increasing the reliability of
a system does not always mean increasing the efficiency of

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 2, February 2017
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

5. Conclusion

The objective of estimating delivery time is to either
minimize the overall costs (or downtime, etc.) or meet a
reliability objective. The ultimate goal is – To decide when
to stop testing by observing the minimal risk for non-
mission-critical applications.

Behavior of software failure is very complex owing to the
debugging process, the sequence of input and the operational
environment. To recollect the success, the projects where
this has been used for predicting out going quality and has
matched to the prediction. A system is reliable if it is used
according to its specific parameters. If the access is forced
beyond limits by the employee, the system can become
unreliable. As per Industry perspective, various parameters
can be added like Level, Time and stage of failure.
Customer satisfaction is the direct measure of software
reliability.

Many software reliability growth models have been
analyzed for measuring the growth of software reliability
and it has been concluded that a particular model is suitable
for particular industry. Initially industries recognize the
model that is appropriate for them. Once this phase is
completed, it is very easy to estimate the delivery time.

Simulation of various models enables evaluation of the
system without actually modifying organizational structure
and procedures, with simulation; it is made possible to
analyze the earliest delivery date of a non-mission-critical-
application

In Industry, as we surveyed some mobile companies, it has
been concluded that level of customer satisfaction varies
from company to company and cost of the product. If a
customer purchases some costly product, his expectations
will be high. Moreover, customer’s expectation (satisfaction
criteria) differs with branded and non-branded product.

Achieving ultra-high reliability for software may lead to
increase cost (investment) and time. After a critical point
returns may be diminished.

References

[1] Loan Pham , Hoang Pham . Software Reliability Models
with Time-Dependent Hazard Function Based on
Bayesian Approach. IEEE Transactions on Systems ,
Man and Cybernatics- Part A: Systems and Humans,
Vol. 30, No. 1, Jan 2000

[2] Mettas, A. and Zhao, W. Modeling and Analysis of
Complex Repairable Systems, Technique Report,
ReliaSoft Corporation, 2004.

[3] H. Roberts. Predicting the Performance of Software
Systems via the Power Law Process. Ph.D. thesis,
University of South Florida, Tampa, FL, 2000.

[4] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented
Software, Reading, MA: Addison-Wesley, 2005.

[5] J. D. Musa, A. Iannino, and K. Okumoto. Software
reliability. McGraw-Hill,New York, 1987

[6] Kaminskiy, M. and Krivtsov, V. "A Monte Carlo
approach to repairable system reliability analysis."
Probabilistic Safety Assessment and Management, New
York: Springer; p. 1063-1068, 1998.

[7] J. D. Musa, A. Iannino, and K. Okumoto. Software
reliability. McGraw-Hill,New York, 1987

[8] Kaminskiy, M. and Krivtsov, V. "A Monte Carlo
approach to repairable system reliability analysis."
Probabilistic Safety Assessment and Management, New
York: Springer; p. 1063-1068, 1998.

[9] J. D. Musa, A. Iannino, and K. Okumoto. Software
reliability. McGraw-Hill,New York, 1987

[10] Kaminskiy, M. and Krivtsov, V. "A Monte Carlo
approach to repairable system reliability analysis."
Probabilistic Safety Assessment and Management, New
York: Springer; p. 1063-1068, 1998.

[11] J. D. Musa, A. Iannino, and K. Okumoto. Software
reliability. McGraw-Hill,New York, 1987

[12] Kaminskiy, M. and Krivtsov, V. "A Monte Carlo
approach to repairable system reliability analysis."
Probabilistic Safety Assessment and Management, New
York: Springer; p. 1063-1068, 1998.

[13] J. D. Musa, A. Iannino, and K. Okumoto. Software
reliability. McGraw-Hill,New York, 1987

[14] Kaminskiy, M. and Krivtsov, V. "A Monte Carlo
approach to repairable system reliability analysis."
Probabilistic Safety Assessment and Management, New
York: Springer; p. 1063-1068, 1998.

Author Profile

Renu Garg is a research scholar of Mewar university, Chittorgarh,
Rajasthan, India. She is currently working with Vivekananda
College, Delhi University. She has completed MCA from Gurukul
Kangri University- Hardwar, M. Tech from DOEACC(C Level).
She has 14 years academic experience. Her research interests are in
improving software reliability.

Dr Amit Gupta is working as Associate Professor in Maharaja
Agrasen Institute of Technology, affiliated to Guru Gobind Singh
Indraprastha University, Delhi. He obtained his Ph.D degree from
University of Delhi. He has published extensively in Indian

Paper ID: ART2017905 1055

Many software reliability growth models have been
analyzed for measuring the growth of software reliability
and it has been concluded that a particular model is suitable
for particular industry. Initially industries recognize the
model that is appropriate for them. Once this phase is
completed, it is very easy to estimate the delivery time.

Simulation of various models enables evaluation of the
system without actually modifying organizational structure
and procedures, with simulation; it is made possible to
analyze the earliest delivery date of a non-mission-critical-

Patterns: Elements of Reusable Object-Oriented
Software, Reading, MA: Addison-Wesley, 2005.

[5] J. D. Musa, A. Iannino, and K. Okumoto. Software
reliability. McGraw-Hill,New York, 1987

[6] Kaminskiy, M. and Krivtsov, V. "A Monte Carlo
approach to repairable system reliability analysis."
Probabilistic Safety Assessment and Management, New
York: Springer; p. 1063-1068, 1998.

[7] J. D. Musa, A. Iannino, and K. Okumoto. Software
reliability. McGraw-Hill,New York, 1987

[8] Kaminskiy, M. and Krivtsov, V. "A Monte Carlo
approach to repairable system reliability analysis."
Probabilistic Safety Assessment and Management, New
York: Springer; p. 1063-1068, 1998.

[9] J. D. Musa, A. Iannino, and K. Okumoto. Software
reliability. McGraw-Hill,New York, 1987

[10] Kaminskiy, M. and Krivtsov, V. "A Monte Carlo
approach to repairable system reliability analysis."
Probabilistic Safety Assessment and Management, New
York: Springer; p. 1063-1068, 1998.

[11] J. D. Musa, A. Iannino, and K. Okumoto. Software
reliability. McGraw-Hill,New York, 1987

[12] Kaminskiy, M. and Krivtsov, V. "A Monte Carlo
approach to repairable system reliability analysis."
Probabilistic Safety Assessment and Management, New
York: Springer; p. 1063-1068, 1998.

[13] J. D. Musa, A. Iannino, and K. Okumoto. Software

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 2, February 2017
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Journals and abroad in the area of Reliability, optimization,
Innovation in ICT and maintenance and software reliability. He had
guided M.Phil/ Ph.D theses in Computer Science as well in
Operational Research

Paper ID: ART2017905 1056

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 2, February 2017
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Paper ID: ART2017905 1057

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

