Meromorphic Starlike Univalent Functions with Positive Coefficients

Adluru Narasimha Murthy ${ }^{1}$, P. Thirupathi Reddy ${ }^{2}$
Department of Mathematics, Govt Aided AVV Junior College,Warangal-506002. T.S. India
Department of Mathematics, Kakatiya University Warangal, 506009. T.S. India

Abstract

In this paper we obtained sharp results concerning coefficient estimates, distortion theorem, radius of convexity and closure theorem for the class $\sigma_{p}(\alpha, \beta, \xi)$.

2000 Mathematics Subject Classification: 30C45
Keywords: Meromorphic, Starlike, Coefficient inequality, Convexity

1. Introduction

Let \sum denote the class the class of functions of the form

$$
\begin{equation*}
f(z)=\frac{1}{z}+\sum_{n=1}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are regular in domain $\mathrm{E}=\{\mathrm{z}: 0<|\mathrm{z}|<1\}$ with a simple pole at the origin with residue 1 there.

Let $\sum_{s}, \Sigma^{*}(\alpha)$ and $\sum_{k}(\alpha)(0 \leq \alpha<1)$ denote the subclasses of \sum that are univalent, moromorphically starlike of order α and meromorphically convex of order α respectively. Analytically $f(z)$ of the form (1.1) is in $\Sigma^{*}(\alpha)$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{-\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha, \mathrm{z} \in \mathrm{E} \tag{1.2}
\end{equation*}
$$

Similarly, $f \in \sum_{k}(\alpha)$ if and only if, $f(\mathrm{z})$ is of the form (1.1) and satisfies

$$
\begin{equation*}
\operatorname{Re}\left\{-\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right\}>\alpha, \text { z } \in \mathrm{E} \tag{1.3}
\end{equation*}
$$

It being understood that if $\alpha=1$ then $f(z)=\frac{1}{z}$ is the only function which is $\Sigma^{*}(1)$ and $\Sigma_{k}(1)$.

The classes $\Sigma^{*}(\alpha)$ and $\Sigma_{k}(\alpha)$ have been extensively studied by Pommerenke [5], Clunie [1], Royster [6] and others.

Since to a certain extent the work in the meromorphic univalent case has paralleled that of regular univalent case, it is natural to search for a subclass of \sum_{s} that has properties analogous to those of $T^{*}(\alpha)$. Juneja and Reddy [3] introduced the class \sum_{p} of functions of the form (1.1) that are meromorphic and univalent in E. They showed that the class

$$
\sum_{p}^{*}(\alpha)=\sum_{p} \cap \sum^{*}(\alpha) .
$$

Also, Mogra, Reddy and Juneja [4] introduced the class of meromorphically starlike function of order α and type β which is denoted by $\sum_{p}^{*}(\alpha, \beta)$ They showed that the class

$$
\sum_{p}^{*}(\alpha, \beta)=\sum_{p} \cap \sum(\alpha, \beta)
$$

and extended some of the results of Juneja and Reddy [3] to this class..

The aim of the present paper is to introduce the class $\sigma_{p}(\alpha, \beta, \xi)$ consisting the functions of the form (1.1) which satisfies the condition
$\left\lvert\, \frac{\frac{z f^{\prime}(z)}{f(z)}+1}{2 \xi\left(\frac{z f^{\prime}(z)}{f(z)}+\alpha\right)-\left(\frac{z f^{\prime}(z)}{f(z)}+1\right)}<\beta\right.$ for $z \mid<1$.
where $0 \leq \alpha<1,0<\beta \leq 1$ and $\frac{1}{2}<\xi \leq 1$.
We find a necessary and sufficient condition, coefficient inequality, distortion properties and radius of convexity and other properties. The results of this paper is generalize the results of Mogra, Reddy and Juneja [4].

2. Main Results

Definition 2.1: $\sigma_{p}(\alpha, \beta, \xi)$ denote the subclass of Σ consisting of the functions of the form $f(z)=\frac{1}{z}+\sum_{n=1}^{\infty} a_{n} z^{n}$ which satisfies

$$
\left|\frac{\frac{z f^{\prime}(z)}{f(z)}+1}{2 \xi\left(\frac{z f^{\prime}(z)}{f(z)}+\alpha\right)-\left(\frac{z f^{\prime}(z)}{f(z)}+1\right)}<\beta,|z|<1 .\right.
$$

where $0 \leq \alpha<1,0<\beta \leq 1$ and $\frac{1}{2}<\xi \leq 1$.

3. Coefficient Estimates

The following theorem give a sufficient condition for a function to be in $\sum^{*}(\alpha, \beta, \xi)$.

Theorem 2.1: Let $f(z)=\frac{1}{z}+\sum_{n=1}^{\infty} a_{n} z^{n}$ be regular in E. if

$$
\begin{gather*}
\sum_{n=1}^{\infty}[(1-\beta+2 \beta \xi) n+(2 \alpha \xi-1) \beta+1] \frac{1}{(n+2)^{\sigma}}(1-\alpha)\left|a_{n}\right| \leq 2 \beta \xi \tag{2.1}\\
0 \leq \alpha<1,0<\beta \leq 1, \sigma>0 \text { and } \frac{1}{2}<\xi \leq 1, \text { then } f \in \sum^{*}(\alpha, \beta, \xi, \sigma)
\end{gather*}
$$

Proof: Suppose (2.1) holds for all admissible values of α, β and ξ. Consider the expression

$$
\begin{equation*}
H\left(f, f^{\prime}\right)=\left|z\left(I^{\sigma} f(z)\right)^{\prime}+f(z)\right|-\beta\left|2 \xi\left(z f^{\prime}(z)+\alpha f(z)\right)-\left(z f^{\prime}(z)+f(z)\right)\right| \tag{2.2}
\end{equation*}
$$

Replacing $f(z)$ and $f^{\prime}(z)$ by their series expansions, we have for $0<|z|=r<1$.

$$
H\left(f, f^{\prime}\right)=\left|\sum_{n=1}^{\infty}(n+1) a_{n} z^{n}\right|-\beta\left|2 \xi(\alpha-1) \frac{1}{z}+\sum_{n=1}^{\infty}(2 \xi n+2 \xi \alpha-n-1) a_{n} z^{n}\right|
$$

or

$$
\begin{aligned}
r H\left(f, f^{\prime}\right) & \leq \sum_{n=1}^{\infty}(n+1)\left|a_{n}\right| r^{n+1}-\beta\left\{2 \xi(1-\alpha)-\sum_{n=1}^{\infty}(2 \xi n+2 \xi \alpha-n-1)\left|a_{n}\right| r^{n+1}\right\} \\
& \left.=\sum_{n=1}^{\infty}[1-\beta+2 \beta \xi) n+(2 \alpha \xi-1) \beta+1\right]\left|a_{n}\right| r^{n+1}-2 \beta \xi(1-\alpha)
\end{aligned}
$$

Since the above inequality holds for all $r, 0<r<1$, letting $\mathrm{r} \rightarrow 1$, we have
$H\left(f, f^{\prime}\right) \leq \sum_{n=1}^{\infty}[(1-\beta+2 \beta \xi) n+(2 \alpha \xi-1) \beta+1]\left|a_{n}\right|-2 \beta \xi(1-\alpha)$
≤ 0,
by (2.1). Hence it follows that

$$
\left|\frac{z f^{\prime}(z)}{f(z)}+1\right|<\beta\left|2 \xi\left(\frac{z f^{\prime}(z)}{f(z)}+\alpha\right)-\left(\frac{z f^{\prime}(z)}{f(z)}+1\right)\right|
$$

so that $f \in \sum^{*}(\alpha, \beta, \xi)$. Hence the theorem.
Theorem 2.2: Let $f(z)=\frac{1}{z}+\sum_{n=1}^{\infty} a_{n} z^{n}, a_{n} \geq 0$, be regular in E. Then $f(z) \in \sigma_{p}(\alpha, \beta, \xi)$ if only if (2.1) is satisfied.

Proof: In view of theorem 2.1 it is sufficient to show that 'only if' part. Let us assume that

$$
f(z)=\frac{1}{z}+\sum_{n=1}^{\infty} a_{n} z_{n}, a_{n} \geq 0 \text { is in } \sigma_{p}(\alpha, \beta, \xi) . \text { Then }
$$

$\left|\frac{\frac{z f^{\prime}(z)}{f(z)}+1}{2 \xi\left(\frac{z f^{\prime}(z)}{f(z)}+\alpha\right)-\left(\frac{z f^{\prime}(z)}{f(z)}+1\right)}\right|=\left|\frac{\sum_{n=1}^{\infty}(n+1) a_{n} z^{n}}{2 \xi(1-\alpha) \frac{1}{z}-\sum_{n=1}^{\infty}(2 \xi n+2 \xi \alpha-n-1) a_{n} z^{n}}\right|<\beta$
for all $z \in E$. Using the fact that $\operatorname{Re}(z) \leq|z|$ for all z .

It follows that
$\operatorname{Re}\left\{\frac{\sum_{n=1}^{\infty}(n+1) a_{n} z^{n}}{2 \xi(1-\alpha) \frac{1}{z}-\sum_{n=1}^{\infty}(2 \xi n+2 \xi \alpha-n-1) a_{n} z^{n}}\right\}<\beta, z \in E$.
Now choose the values of z on the real axis so that $\frac{z f^{\prime}(z)}{f(z)}$ is real. Upon clearing the denominator in (2.3) and letting $z \rightarrow 1$. through positive values, we obtain

$$
\sum_{n=1}^{\infty}(n+1) a_{n} \leq \beta\left\{2 \xi(1-\alpha)-\sum_{n=1}^{\infty}(2 \xi n+2 \xi \alpha-n-1) a_{n}\right\}
$$

or

$$
\sum_{n=1}^{\infty}[(1-\beta+2 \beta \xi) n+(2 \alpha \xi-1) \beta+1] a_{n} \leq 2 \beta \xi(1-\alpha)
$$

Hence the result follows.
Corollary 2.1: If $f(z) \in \sigma_{p}(\alpha, \beta, \xi)$ then
$a_{n} \leq \frac{2 \beta \xi(1-\alpha)}{(1-\beta+2 \beta \xi) n+(2 \alpha \xi-1) \beta+1}, \quad n=1,2, \ldots \ldots$.
(2.4)
with equality for each n , for function of the form

$$
f_{n}(z)=\frac{1}{z}+\frac{2 \beta \xi(1-\alpha)}{(1-\beta+2 \beta \xi) n+(2 \alpha \xi-1) \beta+1} z^{n}
$$

(2.5)

Remark 2.1: If $f(z) \in \sigma_{p}(\alpha, \beta, 1)$ i.e., replacing $\xi=1$, we obtain

$$
a_{n} \leq \frac{2 \beta(1-\alpha)}{(1+\beta) n+(2 \alpha-1) \beta+1}, \quad n=1,2,3, \ldots \ldots
$$

Equality holds for

$$
f_{n}(z)=\frac{1}{z}+\frac{2 \beta(1-\alpha)}{(1+\beta) n+(2 \alpha-1) \beta+1} z^{n}
$$

which is known result of Mogra, Reddy and Juneja [4].
Remark 2.2: If $f(z) \in \sigma_{p}(\alpha, 1,1)$ i.e., replacing $\beta=1$ and $\xi=1$. We obtain

$$
a_{n} \leq \frac{(1-\alpha)}{n+\alpha}, \quad n=1,2,3, \ldots \ldots
$$

with equality, for each n, for functions of the form.

$$
f_{n}(z)=\frac{1}{z}+\frac{1-\alpha}{n+\alpha} z^{n}
$$

which is known result of Jeneja and Reddy [3].

4. Distortion Property and Radius of Convexity Estimates

$\frac{1}{r}-\frac{\beta \xi(1-\alpha)}{1-\beta[1-(1+\alpha) \xi]} r \leq|f(z)| \leq \frac{1}{r}+\frac{\beta \xi(1-\alpha)}{1-\beta[1-(1+\alpha) \xi]}$ (2.6)
where equality holds for the funciton

$$
f_{1}(z)=\frac{1}{z}+\frac{\beta \xi(1-\alpha)}{1-\beta[1-(1+\alpha) \xi]} z . \text { At } z=i r, r(2.7)
$$

Proof: Suppose $f(z) \in \sigma_{p}(\alpha, \beta, \xi)$. In view of Theorem 2.2
We have

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n} \leq \frac{\beta \xi(1-\alpha)}{1-\beta[1-(1+\alpha) \xi]} \tag{2.8}
\end{equation*}
$$

Thus for $0<|z|=r<1$.

$$
\begin{aligned}
& |f(z)|=\left|\frac{1}{z}+\sum_{n=1}^{\infty} a_{n} z^{n}\right| \leq\left|\frac{1}{z}\right|+\sum_{n=1}^{\infty} a_{n} z^{n}|z|^{n} \\
& \leq \frac{1}{r}+r \sum_{n=1}^{\infty} a_{n} \\
& \leq \frac{1}{r}+\frac{\beta \xi(1-\alpha)}{1-\beta[1-(1+\alpha) \xi]} r,
\end{aligned}
$$

by (2.8). This gives the right hand inequality of (2.6).
Also,

$$
|f(z)| \geq \frac{1}{r}-\sum_{n=1}^{\infty} a_{n} r \geq \frac{1}{r}-\frac{\beta \xi(1-\alpha)}{1-\beta[1-(1+\alpha) \xi]} r
$$

which gives the left hand side of (2.6).
It can be easily seen that the function $f_{1}(z)$ defined by (2.7) is extremal for the theorem.

Theorem 2.4: If $f(z)$ is in $\sigma_{p}(\alpha, \beta, \xi)$, then $f(z)$ is meromorphically convex of order $\delta(0 \leq \delta<1)$ in $|z|<r=r(\alpha, \beta, \xi, \delta)$, where

Theorem 2.3: If $f(z) \in \sigma_{p}(\alpha, \beta, \xi)$, then for $0<|z|=r$ <1

Volume 6 Issue 3, March 2017

International Journal of Science and Research (IJSR)
 ISSN (Online): 2319-7064
 Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

$$
r(\alpha, \beta, \xi, \delta)=\inf _{n}\left\{\frac{(1-\delta)[(1-\beta+2 \beta \xi) n+(2 \alpha \xi-1) \beta+1]}{2 \beta \xi(1-\alpha) n(n+2-\delta)}\right\}^{(1 / n+1)}, n=1,2, \ldots \ldots
$$

The bound for $|z|$ is sharp for each n, with the extremal function being of the form (2.5).

Proof: Let $f(z) \in \sigma_{p}(\alpha, \beta, \xi)$ Then, by Theorem 2.2

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{[(1-\beta+2 \beta \xi) n+(2 \alpha \xi-1) \beta+1]}{2 \beta \xi(1-\alpha)} a_{n} \leq 1 \tag{2.9}
\end{equation*}
$$

It is sufficient to show that
$\left|2+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq 1-\delta$ for $|z|<r(\alpha, \beta, \xi, \delta)$
or equivalently, to show that

$$
\begin{equation*}
\left|\frac{f^{\prime}(z)+\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}\right| \leq 1-\delta \tag{2.10}
\end{equation*}
$$

for $|z|<r(\alpha, \beta, \xi, \delta)$
In view of (2.9), it follows that (2.11) is true if

$$
\begin{aligned}
& \frac{n(n+2-\delta)}{1-\delta}|z|^{n+1} \leq \frac{(1-\beta+2 \beta \xi) n+(2 \alpha \xi-1) \beta+1}{2 \beta \xi(1-\alpha)}, \quad n=1,2, \ldots \ldots . \text { or } \\
& |z| \leq\left\{\frac{(1-\delta)[1-\beta+2 \beta \xi] n+(2 \alpha \xi-1) \beta+1}{2 \beta \xi(1-\alpha) n(n+2-\delta)}\right\}^{(1 / n+1)} \quad n=1,2, \ldots . .(2.12)
\end{aligned}
$$

setting $|z|=r(\alpha, \beta, \xi, \delta)$ in (2.12), the result follows.

$$
f_{n}(z)=\frac{1}{z}+\frac{2 \beta \xi(1-\alpha)}{(1-\beta+2 \beta \xi) n+(2 \alpha \xi-1) \beta+1} z^{n}
$$

The result is sharp, the extremal function being of the form
Corollary 2.2: If $f \in \sigma_{p}(\alpha, \beta, 1)$, then f is convex in the disk

$$
0<|z|<r(\alpha, \beta, \xi, \delta)=\inf _{n}\left\{\frac{(1-\delta)[(1+\beta) n+(2 \alpha-1) \beta+1]}{2 \beta(1-\alpha) n(n+2-\delta)}\right\}^{[1 /(n+1)]} n=1,2,3, \ldots \ldots
$$

The result is sharp for

$$
f_{n}(z)=\frac{1}{z}+\frac{2 \beta(1-\alpha)}{(1+\beta) n+(2 \alpha-1) \beta+1} z^{n} \text { for some } n
$$

This is due to Mogra, Reddy and Juneja [4].
Corollary 2.3: If $f \in \sigma_{p}(\alpha, 1,1)$ then f is meromorphically convex of order

$$
\begin{aligned}
& \delta(0 \leq \delta<1) \text { in }|z|<r=r(\alpha, \delta) \\
& =\inf _{n}\left[\frac{(n+\alpha)(1-\delta)}{n(n+2-\delta)(1-\alpha)}\right]^{1 / n+1}, n=1,2, \ldots
\end{aligned}
$$

$f_{n}(z)=\frac{1}{z}+\frac{1-\alpha}{n+\alpha} z^{n}$ for some n.
This is due to Juneja and Reddy [5].

5. Convex Linear Combinations

In this section we shall prove that the class $\sigma_{p}(\alpha, \beta, \xi)$ is closed under convex linear combinations.
Theorem 2.5: Let $f_{0}(z)=\frac{1}{z}$ and

The result is sharp for

$$
f_{n}(z)=\frac{1}{z}+\frac{2 \beta \xi(1-\alpha)}{(1-\beta+2 \beta \xi) n+(2 \alpha \xi-1) \beta+1} z^{n} \quad \mathrm{n}=1,2, \ldots \ldots
$$

Then
Then $f(z) \in \sigma_{p}(\alpha, \beta, \xi)$ if and only if, it can be expressed in the form

$$
f(z)=\sum_{n=0}^{\infty} \lambda_{n} f_{n}(z) \text { where } \lambda_{n} \geq 0 \text { and } \sum_{n=0}^{\infty} \lambda_{n}=1
$$

$$
\begin{aligned}
& f(z)=\sum_{n=0}^{\infty} \lambda_{n} f_{n}(z)=\lambda_{0} f_{0}(z)+\sum_{n=1}^{\infty} \lambda_{n} f_{n}(z) \\
& =\left\lfloor 1-\sum_{n=1}^{\infty} \lambda_{n}\right\rfloor f_{0}(z)+\sum_{n=1}^{\infty} \lambda_{n} f_{n}(z)
\end{aligned}
$$

Proof: Let $f(z)=\sum_{n=0}^{\infty} \lambda_{n} f_{n}(z)$ with $\lambda_{n} \geq 0$ and $\sum_{n=0}^{\infty} \lambda_{n}=1$.

$$
\begin{gathered}
=\left[1-\sum_{n=1}^{\infty} \lambda_{n}\right] \frac{1}{z}+\sum_{n=1}^{\infty} \lambda_{n}\left[\frac{1}{z}+\frac{2 \beta \xi(1-\alpha)}{(1-\beta+2 \beta \xi) n+(2 \alpha \xi-1) \beta+1} z^{n}\right] \\
=\frac{1}{z}+\sum_{n=1}^{\infty} \lambda_{n} \frac{2 \beta \xi(1-\alpha)}{(1-\beta+2 \beta \xi) n+(2 \alpha \xi-1) \beta+1} z^{n} \\
\text { since }
\end{gathered} \sum_{n=1}^{\infty} \frac{(1-\beta+2 \beta \xi) n+(2 \alpha \xi-1) \beta+1}{2 \beta \xi(1-\alpha)} \lambda_{n} \frac{2 \beta \xi(1-\alpha)}{(1-\beta+2 \beta \xi) n+(2 \alpha \xi-1) \beta+1} .
$$

$$
=\sum_{n=1}^{\infty} \lambda_{n}=1-\lambda_{0} \leq 1
$$

Therefore $f(z) \in \sigma_{p}(\alpha, \beta, \xi)$.
Conversely, suppose $f(z) \in \sigma_{p}(\alpha, \beta, \xi)$. Since
$a_{n} \leq \frac{2 \beta \xi(1-\alpha)}{(1-\beta+2 \beta \xi) n+(2 \alpha \xi-1) \beta+1}, n=1,2, \ldots \ldots$
[4] M.L. Mogra, T.R. Reddy and O.P. Juneja Meromorphic univalent functions with positive coefficients' Bull. Austral. Math. Soc. 32, (1985) 161-176.
[5] Ch. Pommerenke, On meromorphic starlike functions, Pacific J. Math. 13 (1963) 221-235.
[6] W.C Royster, Meromorphic starlike multivalent functions, Trans. Amer. Math. Soc. 107 (1963). 300-308.
[7] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51(1975), 109-116.

Setting

$$
\lambda_{n}=\frac{(1-\beta+2 \beta \xi) n+(2 \alpha \xi-1) \beta+1}{2 \beta \xi(1-\alpha)} a_{n}, \mathrm{n}=1,2
$$

and $\lambda_{0}=1-\sum_{n=0}^{\infty} \lambda_{n}$.
it follows that $f(z)=\sum_{n=0}^{\infty} \lambda_{n} f_{n}(z)$.
This completes the proof of the theorem.

References

[1] J. Clunie, On meromorphic schlicht functions, J. London Math. Soc. (34) (1959), 215-216.
[2] V.P Gupta and P.K. Jain, Certain Classes of univalent functions with negative coefficients, Bull. Austral. Math. Soc. 14(1976), 409-416.
[3] O.P. Juneja and T. R. Reddy, Meromorphic starlike univalent functions with positive coefficients, Ann.Univ. Mariae Curie Sklodowska. Sect A 39, (1985), 65-76.

