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1. Introduction 
 
Let  denote the class the class of functions of the form  
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which are regular in domain E = {z :0 < |z| < 1} with a 
simple pole at the origin with residue 1 there. 
 
Let s, * () and k () (0   < 1) denote the subclasses 
of  that are univalent, moromorphically starlike of order  
and meromorphically convex of order  respectively. 
Analytically (z) of the form (1.1) is in * () if and only if 
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Similarly,   k () if and only if, (z) is of the form (1.1) 
and satisfies 
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It being understood that if  = 1 then  
z

zf 1
  is the only 

function which is * (1) and k (1). 
 
The classes * () and k () have been extensively studied 
by Pommerenke [5], Clunie [1], Royster [6] and others. 
 
Since to a certain extent the work in the meromorphic 
univalent case has paralleled that of regular univalent case, it 
is natural to search for a subclass of s that has properties 
analogous to those of T* (). Juneja and Reddy [3] 
introduced the class p of functions of the form (1.1) that are 
meromorphic and univalent in E. They showed that the class 
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Also, Mogra, Reddy and Juneja [4] introduced the class of 
meromorphically starlike function of order  and type  

which is denoted by  
* ,
p
   They showed that the class 

   
* , ,
p p
        

and extended some of the results of Juneja and Reddy [3] to 
this class.. 
 
The aim of the present paper is to introduce the class 

(p ),,   consisting the functions of the form (1.1) 
which satisfies the condition 
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 for |z| < 1. 

where 0   < 1, 0 <   1 and 1
2
1

 . 

We find a necessary and sufficient condition , coefficient 
inequality, distortion properties and radius of convexity and 
other properties. The results of this paper is generalize the 
results of Mogra, Reddy and Juneja [4]. 
 
2. Main Results 
 

Definition 2.1: (p ),,   denote the subclass of  
consisting of the functions of the form 
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, |z| < 1. 

where 0   < 1, 0 <   1 and 1
2
1

 . 
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3. Coefficient Estimates 
 
The following theorem give a sufficient condition for a 

function to be in  
* ,,  . 

Theorem 2.1: Let   n
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zf 
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1  be regular in E. 

if  
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0   < 1, 0 <   1, 0   and 1
2
1

 , then f   
* , , ,    . 

 Proof: Suppose (2.1) holds for all admissible values of ,  
and . Consider the expression 

               , ( ) 2H f f z I f z f z zf z f z zf z f z             (2.2) 

 
Replacing f(z) and f (z) by their series expansions, we have for 0 < |z| = r < 1. 
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Since the above inequality holds for all r, 0 < r < 1, letting r  1, we have 
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 ,0  
by (2.1). Hence it follows that  
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so that f  
*

(, , ). Hence the theorem. 

Theorem 2.2: Let )(zf  
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be regular in E. Then )(zf  (p ),,   if only if (2.1) is 

satisfied. 
 

Proof: In view of theorem 2.1 it is sufficient to show that ‘only if’ part. Let us assume that  
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for all z  E. Using the fact that Re(z)  |z| for all z. 
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It follows that 
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. (2.3) 

Now choose the values of z on the real axis so that 
 
 zf

zfz 
 is real. Upon clearing the denominator in (2.3) and letting z  1. 

through positive values, we obtain 
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Hence the result follows. 
Corollary 2.1: If )(zf  (p ),,   then 
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with equality for each n, for function of the form 
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Remark 2.1: If )(zf  (p )1,,  i.e., replacing  = 1, 
we obtain 
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Equality holds for 
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which is known result of Mogra, Reddy and Juneja [4]. 
Remark 2.2: If )(zf  (p )1,1, i.e., replacing  = 1 

and  = 1. We obtain 
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with equality, for each n, for functions of the form. 
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which is known result of Jeneja and Reddy [3]. 
 
4. Distortion Property and Radius of Convexity 

Estimates 
 

Theorem 2.3: If )(zf  (p ),,  , then for 0 < |z| = r 
< 1 
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(2.6) 
where equality holds for the funciton 
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Proof: Suppose )(zf  (p ),,  . In view of 
Theorem 2.2 
We have 
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Thus for 0 < |z| = r < 1. 
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by (2.8). This gives the right hand inequality of (2.6).  
Also, 
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which gives the left hand side of (2.6). 
It can be easily seen that the function f1(z) defined by (2.7) is 
extremal for the theorem. 
 

Theorem 2.4: If f(z) is in (p ),,  , then f(z) is 
meromorphically convex of order 
    ,,,in    10 rrz  , where  
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The bound for |z| is sharp for each n, with the extremal 
function being of the form (2.5). 
 

Proof: Let )(zf  (p ),,   Then, by Theorem 2.2 
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It is sufficient to show that 
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or equivalently, to show that 
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where   ,,,r  is as specified in the statement of the 
theorem. 
 Substituting the series expansions for  zf   and 

   zfz  in the left side of (2.10) we have 
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This will be bounded by (1-) if  
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In view of (2.9), it follows that (2.11) is true if 
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setting   ,,, rz   in (2.12), the result follows. 
 
The result is sharp, the extremal function being of the form 

  
 

   
n

n z
nz

zf
11221

121








 

 

Corollary 2.2: If )1,,(  pf  , then f is convex in the 
disk 
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The result is sharp for  
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 for some n. 

This is due to Mogra, Reddy and Juneja [4]. 
 

Corollary 2.3: If  1,1, pf   then f is 
meromorphically convex of order  
     ,in    10 rrz   

 
  
  

,....2 ,1 , 
12

1inf
1/1

















n
nn
n

n

n 


 

The result is sharp for 
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 for some n. 

This is due to Juneja and Reddy [5]. 
 

5. Convex Linear Combinations 
 
In this section we shall prove that the class ),,(  p  is 
closed under convex linear combinations. 

Theorem 2.5: Let  
z

zf 1
0   and 
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This completes the proof of the theorem. 
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