International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

T-Pure Fuzzy Submodules

Hatam Y. Khalaf¹, Shaymaa A. Muheyaddin²

Department of Mathematics Pure, College of Education, University of Baghdad

Abstract: The main aim of this paper is to extend and study the notion of (ordinary) T-pure submodule into T-pure fuzzy submodule and T-pure ideal into T-pure fuzzy ideal. This lead us to introduced and study other notions such as T-pure fuzzy submodule and T-pure fuzzy ideal

Keywords: Fuzzy module, submodules

1. Introduction

Let X be a fuzzy module of an R-module M, we denoted by X-F(M), it is well known that A is fuzzy submodules of X denoted by F-S(X) is called T-pure fuzzy submodule of X. if for each fuzzy ideal I of R such that $I^2 X \cap A =$ $I^2 A$. And an fuzzy ideal I of a ring R denoted by F-I(R) is called T-pure fuzzy ideal of R if for each fuzzy ideal J^2 of R $J^2 \cap I = J^2 I$

In this paper, we fuzzify these concepts T-pure fuzzy submodule and T-pure fuzzy ideal, moreover we generalize many properties of T-pure fuzzy submodule and T-pure fuzzy ideal

This paper consists of two part. In part one, various basis properties about T-pure fuzzy submodule are discussed . part two included T-pure fuzzy ideal and basic properties about this concept

1.1 T-pure Fuzzy submodule

In this section we inerdue the concept of T-pure fuzzy submodule by of provided some properties of this concepts.

Definition (1.1): Let X-F(M) .let A be a F-S(X). A is called a T-pure fuzzy submodule if for each fuzzy ideal K of R, $KX \cap A = KA$. [4]

Proposition (1.2):

Let X-F(M) and let A be fuzzy submodules of X. Then A is a T-pure F-S(X) $\Leftrightarrow A_t$ is a T-pure submodules of X_t . $\forall t \in (0,1]$

Definition (1.3):

Let X-F(M) and let A be a F-S(X). A is called T-pure F-S(X). if for each fuzzy ideal I of R such that $I^2X \cap A = I^2A$.

Proposition (1.4):

Let X-F(M) and let A be fuzzy submodules of X. Then A is T-pure fuzzy submodule of X if and only if A_t is T-pure submodules of X_t . $\forall t \in (0,1]$

Proof:

Let J be an ideal of ring R

Define $I^2: \mathbb{R} \to [0, 1]$ by $I^2(x) = \begin{cases} t & \text{if } x \in J \\ o & \text{otherwise} \end{cases} \quad \forall t \in (0, 1]$

And let $N \ll M$ Define A: $M \longrightarrow [0,1]$ by $A(x) = \begin{cases} t & if \ x \in N \\ o & otherwise \end{cases}$ $t \in (0,1]$ It is clear that I^2 is F-I(R) and A is F-S(X). Now, $A_t = N$, $I_t^2 = J$, $X_t = M$

(⇒) Let A is T-pure fuzzy submodule of X. To prove A_t is T-pure submodules of X_t . $\forall t \in (0,1]$. To show that $I_t^2 X_t \cap A_t = A_t I_t^2$

$$\begin{aligned} I_t^2 X_t \cap A_t &= (I^2 X)_t \cap A_t & \text{by[6]} \\ &= (I^2 X \cap A)_t & \text{by[1]} \\ &= (I^2 A)_t & \text{since A is T-pure} \\ &= A_t I_t^2 \end{aligned}$$

Thus A_t is T-pure submodules of X_t . $\forall t \in (0,1]$. Conversely Let l^2 be F-I(R) and A be a F-S(X).

T.p A is T-pure fuzzy submodule of X

$$(I^2X \cap A)_t = (I^2X)_t \cap A_t \quad \forall t \in (0,1].$$

 $= I_t^2X_t \cap A_t$
but A_t is T-pure submodules of X_t .
Then $I_t^2X_t \cap A_t = I_t^2A_t$
 $= (I^2A).$

Hence $(I^2X \cap A)_t = (I^2A)_t$

$$I^2 X \cap A = I^2 A$$

Therefore A is T-pure fuzzy submodule of X.

Remarks and Examples (1.5):

1- Let X-F(M) and let A be a pure F-S(X) , Then A is T-pure F-S(X).

Proof: It is clear The converse not true by Example: Let M=Z₄ as Z-module and N=2Z₄ Define X: M→[0,1] by $X(x) = \begin{cases} 1 \text{ if } x \in M \\ o \text{ otherwise} \end{cases}$ Define A: M→[0,1] by $A(x) = \begin{cases} t \text{ if } x \in N \\ o \text{ otherwise} \end{cases}$ $\forall t \in (0,1]$ It is clear that X is F(M), A is F-S(X) and $X_t = M, A_t = N$ A_t is T-pure submodules of X_t . by[7] Thus A is T-pure fuzzy submodule of X by (Proposition 1.4) But A is not pure fuzzy submodule of X since if $I_t = 2Z$ where $I: R \rightarrow [0,1]$ Such that I(x) = t if $x \in 2Z$ and I(x) = 0 if $x \notin 2Z$ Now $2Z.4Z \cap 2Z_4 = \{\overline{0}, \overline{2}\}$ but $2Z.2Z_4 = 2\{\overline{0}, \overline{2}\} = \{\overline{0}\}$ Thus A_t is not pure submodules of X_t

Volume 6 Issue 4, April 2017

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY

Therefore A is not pure fuzzy submodule of X. [4]

2- Let X-F(M). It is clear that the fuzzy singleton $\{o_t\}$ and X are always T-pure fuzzy submodule of X. $\forall t \in (0,1]$

3-In the fuzzy module Z as Z-module. The only T-pure fuzzy submodule are fuzzy singleton $\{o_t\}$ and X

Proof:

Let X: $Z \rightarrow [0,1]$ by $X(x) = \begin{cases} 1 & \text{if } x \in Z \\ o & \text{otherwise} \end{cases}$ Define O_t : $X \rightarrow [0,1]$ by $O_t(x) = \begin{cases} t & \text{if } x = 0 \\ o & \text{otherwise} \end{cases} \forall t \in (0,1]$ $X_t = Z$ and $O_t = 0$ By(2) clear that \boldsymbol{X} and \boldsymbol{O}_t are T-pure fuzzy submodule If there exists a fuzzy submodule A:nZ \rightarrow [0,1] by $A(x) = \begin{cases} t \ if \ x \in nZ \\ o \ otherwise \end{cases} \forall t \in (0,1]$ $A_t = nZ$ Let $I(\mathbf{x}):\langle \boldsymbol{n} \rangle^2 \rightarrow [0,1]$ by $I(\boldsymbol{x}) = \begin{cases} t \text{ if } \boldsymbol{x} \in \langle \boldsymbol{n} \rangle^2 \\ o \text{ otherwise} \end{cases} \forall t \in (0,1] \end{cases}$ It is clear that $I_t = \langle n \rangle^2$ and I is a fuzzy ideal $n^2 = n^2 \cdot 1\epsilon \langle n \rangle^2 Z \cap nZ = \langle n \rangle^2 \cdot nZ = n^3 Z$ But $n^2 \notin n^3$ Z Thus A_t is not T- pure by [7]

 $X_t=Z$, $O_t=0$ only two T-pure submodule of Z-module \forall $t \in (0,1]$ by (Proposition 1.4)

4-Let X be a fuzzy module of an Z-module Q. and let A be a non-empty FC-S(X). then A is not T-pure F-S(X).

Proof:

Define X: Q \rightarrow [0,1] by $X(x) = \begin{cases} 1 \text{ if } x \in Q \\ o \text{ otherwise} \\ 1 \text{ if } x \in N \\ o \text{ otherwise} \end{cases} \forall t \in (0,1]$ where N is submodule of Q, $X_t = Q$ and $A_t = N$ N is not T- pure fuzzy submodule of Q by [7] *Then* A is not T-pure F-S(X) by (Proposition(1.4))

5- Let X-F(M) . let A be a T-pure F-S(X) such that $A \cong B$ where \boldsymbol{B} is F-S(X), then B is not T- pure F-S(X) for example.

Example: Let M=Z

<u>Example:</u> Let M=Z Let X: M \rightarrow [0,1] by $X(x) = \begin{cases} 1 & if \ x \in M \\ o & otherwise \end{cases}$ Let A: Z \rightarrow [0,1] by $A(x) = \begin{cases} t & if \ x \in Z \\ o & otherwise \end{cases}$ A t∈(0,1]

Let B: $Z \rightarrow [0,1]$ by $B(x) = \begin{cases} t & if \ x \in 2Z \\ o & otherwise \end{cases}$ A t∈(0,1]

It is clear that A and B are F-S(X), Now A_t =Z and B_t =2Z and $Z \cong 2Z$ but 2Z is not T-pure submodules [7] B is not T-pure fuzzy submodule by (Proposition(1.4))

Proposition (1.6):

Let X-F(M), and let A and B are two F-S(X). if A is T-pure F-S(X), B \subseteq A. and B is T-pure F-S(A) , then B is T-pure fuzzy submodule of X.

Proof:

Since A be a T-pure F-S(X) then $I^2 X \cap A = I^2 A \dots (1)$ where I^2 is F-I(R) and since B be a T-pure F-S(A) then $I^2 \mathbf{A} \cap B = I^2 B \dots (2)$ Now, we get $I^2 B = I^2 A \cap B$(2) $= (I^2 X \cap A) \cap B....(1)$

 $= I^2 X \cap (A \cap B)$ since $B \subseteq A$ Therefore B is T-pure fuzzy submodule of X.

Proposition(1.7):

Let X-F(M) . and let C be a T-pure F-S(X). If B is a F-S(X) contating A, then A is T-pure F-S(B)

Proof:

Let I^2 be a F-I(R) and let C be a T-pure F-S(X) Hence $I^2 X \cap C = I^2 C$ Now, $I^2 B \cap C = (I^2 B \cap I^2 X) \cap C$ since $C \subseteq B \subseteq X$ $= I^2 \mathbf{B} \cap (I^2 X \cap C)$ $= I^2 \mathbf{B} \cap I^2 C$ $=I^2C$ Thus C is T-pure fuzzy submodule of a fuzzy submodule B.

"Definition (1.8):

Let X ,Y -F(M₁, M₂)respectively. Define $X \oplus Y$: M₁ $\oplus M_2 \rightarrow$ by $(X \oplus Y)(a, b) = \min \mathbb{X}(a), Y(b)$ for all $(a, b) \in$ [0,1] $M_1 \oplus M_2$ X \oplus Y is called a fuzzy external direct sum of X and Y. [9]"

Lemma(1.9):

Let N_1 and N_2 be two S(M_1) and S (M_2) if $N_1 \oplus N_2$ is Tpure submodule of $M_1 \oplus M_2$ then N_1 and N_2 are T-pure submodule in M_1 and M_2 .

Proof:

T.p $I^2 M_1 \cap N_1 = I^2 N_1$ and $I^2 M_2 \cap N_2 = I^2 N_2$ for each ideal I^2 of R. Since $N_1 \oplus N_2$ is T-pure in $M_1 \oplus M_2$ we get: $I^{2}(M_{1} \oplus M_{2}) \cap (N_{1} \oplus N_{2}) = I^{2}(N_{1} \oplus N_{2})$ $(I^2 M_1 \oplus I^2 M_2) \cap (N_1 \oplus N_2) = I^2 N_1 \oplus I^2 N_2$ Hence $I^2 M_1 \cap N_1 = I^2 N_1$ and $I^2 M_2 \cap N_2 = I^2 N_2$ Thus N_1 and N_2 are T-pure.

Proposition(1.10):

Let X_1 -F(M₁) and X_2 -F(M₂), If A, B be are two F-S(X_1) and F-S(X_2). respectively then A and B are T-pure fuzzy submodule of X_1 and X_2 if and only if $A \oplus B$ is T-pure fuzzy submodule of $X_1 \bigoplus X_2$.

Proof:

 $(\Rightarrow) A_t \oplus B_t = (A \oplus B)_t$ and $(X_{1t} \oplus X_{2t}) = (X_1 \oplus X_2)_t$ $\forall t \in (0, 1]$ by [4] Therefore $(\mathbf{A} \oplus \mathbf{B})_t$ is T-pure of $(X_1 \oplus X_2)_t$ by [7] Thus $A \oplus B$ is T-pure fuzzy submodule of $X_1 \oplus X_2$. (Proposition(1.4))

 \leftarrow let $A \oplus B$ is T-pure fuzzy submodule of $X_1 \oplus X_2$. To show that A and B are T-pure fuzzy submodule of X_1, X_2 respectively. By [4, lemma (2.2.4)] and (Proposition 1.4) we get :- $(\mathbf{A} \oplus \mathbf{B})_t = \mathbf{A}_t \oplus \mathbf{B}_t$ is T-pure in module $(X_1)_t \oplus (X_2)_t$ Thus A_t and B_t are T-pure submodule of $(X_1)_t$ and $(X_2)_t$ by (lemma (1.9)) Therefore A and B are two T-pure fuzzy submodules of a

fuzzy modules X_1 and X_2 by (Proposition(1.4)).

Proposition(1.11):

Let H be a direct summand of a fuzzy module X. then H is T-pure fuzzy submodule of X.

Volume 6 Issue 4, April 2017

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Proof:

Let $X = H \oplus C$, where C is a F-S(X) and H is a direct summand of X.

Such that X=H+C and $H \cap C = 0$ by[def of fuzzy direct summand]

To prove H is T-pure (i.e $I^2 X \cap H = I^2 H$ for each I^2 is F-I(R))

 $I^{2}X \cap H = I^{2}(H \oplus C) \cap H$ =($I^{2}H \oplus I^{2}C$) $\cap (H \oplus 0)$ =($I^{2}H \cap H$) $\oplus (I^{2}C \cap 0)$ by[4] =($I^{2}H \cap H$) $\oplus 0$ = $I^{2}H \cap H$ = $I^{2}H$ since $I^{2}H \subseteq H$ Therefore H is T-pure fuzzy submodule of X.

Proposition(1.12):

let $f: X \to Y$ be epimorphism of X_1 -F(M₁) and X_2 -F(M₂) respectively, let B be a fuzzy submodule of X and X is f-invariant, if B is a T-pure F-S(X) ,then f(B) is T-pure F-S(Y).

Proof:

To prove $I^2Y \cap f(B) = I^2f(B)$ for each fuzzy ideal I of R. $I^2Y \cap f(B)=I^2f(X) \cap f(B)$ since f is epimorphism $=f(I^2X) \cap f(B)$ by[4] $=f(I^2X \cap B)$ by[3] $=f(I^2B)$ since B is T-pure $=I^2f(B)$ by[4] Thus f(B) is T-pure fuzzy submodule of Y.

Proposition(1.13):

let $f: X \to Y$ be epimorphism of X_1 -F(M₁) and X_2 -F(M₂) respectively, such that every submodule of X is f-invariant, if C is T-pure F-S(Y), then f^{-1} (C) is T-pure fuzzy submodule of X.

Proof:

To prove f^{-1} (C) is T-pure (i.e $I^2 X \cap f^{-1}(C) = I^2 f^{-1}(C)$ for each I^2 is F-I(R)). $f(I^2 X \cap f^{-1}(C)) = f(I^2 X) \cap f(f^{-1}(C))$ by[3] $=I^2 f(X) \cap C$ by[4] $=I^2 Y \cap C$ since f is epimorphism $= I^2 C$ since A is T-pure Therefore $f(I^2 X \cap f^{-1}(C)) = I^2 C$ so $f^{-1}[f(I^2 X \cap f^{-1}C)] = f^{-1}(I^2 C)$ But $f^{-1}[f(I^2 X \cap f^{-1}(A))] = I^2 X \cap f^{-1}(C)$ since by hyposse and $f^{-1}(I^2 C) = I^2 f^{-1}(C)$ by[4] Thus $I^2 X \cap f^{-1}(C) = I^2 f^{-1}(C)$

Lemma(1.14):

Let $\{I_i, i \in N\}$ be an ascending chain of T-pure fuzzy submodules of a F(X) and let A be a F-I(R), then $A^2[\bigcup_{i\in N} I_i] = \bigcup_{i\in c} [A^2 I_i]$.

Proof:

Since $A^2 I_i \subseteq A^2[\bigcup_{i \in N} I_i], \forall i \in N$ implies that $\bigcup_{i \in c} [A^2 I_i] \subseteq A^2[\bigcup_{i \in N} I_i].....(1)$ and by $A^2[\bigcup_{i \in N} I_i] \subseteq A^2$ and $A^2[\bigcup_{i \in N} I_i] \subseteq \bigcup_{i \in N} I_i$ since $\bigcup_{i \in N} I_i$ is fuzzy submodule of X then $A^2[\bigcup_{i \in N} I_i] \subseteq A^2 X \cap [\bigcup_{i \in N} I_i]$ $=\bigcup_{i \in c} [A^2 X \cap I_i] \text{ by}[4]$ = $\bigcup_{i \in c} [A^2 I_i] \text{ since } I_i \text{ T-pure fuzzy submodule}$ Thus $A^2[\bigcup_{i \in N} I_i] \subseteq \bigcup_{i \in c} [A^2 I_i]$ Therefore $A^2[\bigcup_{i \in N} I_i] = \bigcup_{i \in c} [A^2 I_i]$

Proposition(1.15):

If $\{I_i, i \in N\}$ be an ascending chain of T-pure fuzzy submodule of fuzzy module X, then $\bigcup_{i \in N} I_i$ is T-pure fuzzy submodule of X.

Proof:

We must prove that $\bigcup_{i \in N} I_i$ is T-pure i.e $C^2 X \cap [\bigcup_{i \in N} I_i] = C^2[\bigcup_{i \in N} I_i]$ for each fuzzy ideal C^2 of R $C^2 X \cap [\bigcup_{i \in N} I_i] = \bigcup_{i \in c} [C^2 X \cap I_i]$ by [4] $= \bigcup_{i \in c} [C^2 I_i]$ since I_i T-pure F-I(R) $= C^2[\bigcup_{i \in N} I_i]$ by lemma1.14) Thus $\bigcup_{i \in N} I_i$ is T-pure submodule of X.

2. T-pure fuzzy ideal

Definition (2.1):

An fuzzy ideal I of a ring R is called T-pure F-I(R) if for each fuzzy ideal J^2 of R $J^2 \cap I = J^2 I$

Definition (2.2):

If every F-I(R) is T-pure fuzzy ideal then we say R is T-regular fuzzy ring.

Proposition (2.3):

Let I be a fuzzy ideal of R then I is T-pure if and only if I_t is a T-pure ideal of R. $\forall t \in (0,1]$

Proof:

(⇒) Let I is T-pure F-I(R) T.p I_t is a T-pure ideal of R \forall t∈(0,1]

Let J^2 be an ideal of R

Define
$$K^2$$
: $J^2 \rightarrow [0,1]$ by $K^2(x) = \begin{cases} t & if \ x \in J^2 \\ o & otherwise \end{cases}$
 $t \in (0,1]$
It is clear that K^2 is F-I(R) and $K_t^2 = J^2$
T.P $J^2 \cap I_t = J^2 I_t$
 $J^2 \cap I_t = K_t^2 \cap I_t$
 $= (K^2 \cap I)_t$
 $= (K^2 I)_t$ since I is T-pure ideal
 $= K_t^2 I_t$ $\forall t \in (0,1]$
 $\Leftarrow I_t$ is a T-pure ideal T.p I is T-pure fuzzy ideal
Let K^2 is fuzzy ideal of R T.p $K^2 \cap I = K^2 I$
 $(K^2 \cap I)_t = K_t^2 \cap I_t$
 $= (K^2 I)_t$ since I_t is T-pure ideal
Thus $(K^2 \cap I)_t = (K^2 I)_t$
Hence $K^2 \cap I = K^2 I$
I is T-pure fuzzy ideal of R.

Remarks and Examples(2.4):

1-Let X-F(M), . R is regular fuzzy ring then R is T-regular fuzzy ring.

<u>Proof</u>: It is clear that The converse not true by

Volume 6 Issue 4, April 2017

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY

Example: Let $M=Z_4$ as Z-module and $N=\{\overline{0},\overline{2}\}$ Define X: $M \rightarrow [0,1]$ by $X(x) = \begin{cases} 1 \text{ if } x \in M \\ o \text{ otherwise} \end{cases}$ Define I: $R \rightarrow [0,1]$ by $A(x) = \begin{cases} t \text{ if } x \in N \\ o \text{ otherwise} \end{cases} \forall t \in (0,1]$ It is clear that I is fuzzy ideal of R and $X_t=M$, $I_t=N$ Then X_t is T-regular ring by [7] Hence X is T- regular fuzzy ring since every ideal of Z_4 is T-pure by (Proposition 1.4) every ideal is fuzzy T-pure. But X_t is not regular ring since ideal $\{\overline{0}, \overline{2}\}$ is not pure [7] Thus I not pure fuzzy ring .

2- Let X-F(M), if R is a ring then the fuzzy singleton $\{o_t\}$ and a ring R are always T-pure F-I(R)

3- Let X-F(M) . if R is a field , then X is T- regular ring.

Proof:

Since every field has only one submodule 0 then by(2), X is T- regular ring.

The converse of (3) is true if we gives the condition, R is a fuzzy integral domain

Proposition (2.5):

Let R_1 , R_2 be two rings and Let g any epimorphism function from R_1 to R_2 . If C be a T-pure F-I(R_1), then g(C) is a T-pure F-I(R_2). Proof:

Let
$$I^2$$
 be a F-I(R_2). To prove $g(C) \cap I^2 = I^2 g(C)$.
 $g(C) \cap I^2 = g(C) \cap g^{-1}(g(I^2))$. [5]
 $= g(C \cap g(I^2))$ [3]
But $g^{-1}(I^2)$ is F-I(R_1) by [5]
And C is T-pure F-I(R_1) so that
 $g(C \cap g^{-1}(I^2)) = g(A, g^{-1}(I^2))$
 $= g(C)$. $g(g^{-1}(I^2))$ by [2]
 $= g(C)$. I^2 by[5]

Proposition (2.6):

Let R_1 , R_2 be two rings and Let f any epimorphism function from R_1 to R_2 and every fuzzy ideal of R_1 is f-invariant, then if C is T-pure fuzzy ideal of R_2 . Then $f^{-1}(C)$ is T-pure F-I (R_1) .

Proof:

Let C be a F-I(R_2). then $f^{-1}(C)$ is F- I(R_1) .see [5] Let J^2 be a F-I(R_2). To. Prove $f^{-1}(C) \cap J^2 = f^{-1}(C)J^2$ And by $f(f^{-1}(C) \cap J^2) = f(f^{-1}(C) \cap f(J^2)$ see[3] $=C \cap f(J^2)$ see[5] $=C. f(J^2)$ since C is T-pure $= f(f^{-1}(C)f(J^2)$ by [5] $= f(f^{-1}(C)J^2)$ by [2] Hence $f^{-1}[f(f^{-1}(C)J^2)] = f^{-1}[f(f^{-1}(C) \cap J^2)]$ and by hyposse. We get $f^{-1}(C) \cap J^2 = (f^{-1}(C)J^2)$ Therefore $f^{-1}(C)$ is T-pure F-I(R_1).

Proposition (2.7):

Let K be a is F-I(R_1) and let J be a F-I(R_2), then $K \oplus J$ is T-pure fuzzy ideal of $R_1 \oplus R_2$ if and only if K and J are T-pure fuzzy ideal in R_1 and R_2 respectively.

Proof:

 (\Rightarrow) Let $\mathbf{K} \oplus \mathbf{J}$ is T-pure fuzzy ideal To. Prove K and J are T-pure fuzzy ideal

Let A^2 and B^2 be two fuzzy ideal of R_1 and R_2 respectively. Then $A^2 \oplus B^2$ is T-pure fuzzy ideal of $R_1 \oplus R_2$ see[4]

Hence $(\mathbf{K} \oplus \mathbf{J}) \cap (A^2 \oplus B^2) = (\mathbf{K} \oplus \mathbf{J}) (A^2 \oplus B^2)$ since $(\mathbf{K} \oplus \mathbf{J})$ is T-pure fuzzy ideal

And by $(\mathbf{K} \oplus \mathbf{J}) \cap (\mathbf{A}^2 \oplus \mathbf{B}^2) = (\mathbf{K} \cap \mathbf{A}^2) \oplus (\mathbf{J} \cap \mathbf{B}^2)$ see[4]

 $(\mathbf{K} \oplus \mathbf{J}) (\mathbf{A}^2 \oplus \mathbf{B}^2) = (\mathbf{K}\mathbf{A}^2) \oplus (\mathbf{J} \ \mathbf{B}^2) \qquad \text{see}[4]$ There for $(\mathbf{K} \cap \mathbf{A}^2) = \mathbf{K}\mathbf{A}^2$ and $\mathbf{J} \cap \mathbf{B}^2 = \mathbf{J} \ \mathbf{B}^2$ see[4] Thus K and Lere T pure furgy ideals of \mathbf{B} and \mathbf{B}

Thus K and J are T-pure fuzzy ideals of R_1 and R_2 . (\Leftarrow) let K and J are T-pure fuzzy ideal of R_1 and R_2 . Let A^2 and B^2 be two fuzzy ideal of R_1 and R_2 Hence $A^2 \oplus B^2$ is fuzzy ideal in $R_1 \oplus R_2$ see[8] T.p (K $\oplus J$) $\cap (A^2 \oplus B^2) = (K \oplus J) (A^2 \oplus B^2)$ (K $\oplus J$) $\cap (A^2 \oplus B^2) = (K \cap A^2) \oplus (J \cap B^2)$ see [4] $=(KA^2) \oplus (JB^2)$ since K and J are T-pure $=(K \oplus J) (A^2 \oplus B^2) = (K \oplus J) (A^2 \oplus B^2)$ Hence (K $\oplus J$) $\cap (A^2 \oplus B^2) = (K \oplus J) (A^2 \oplus B^2)$ Thus K $\oplus J$ is T-pure fuzzy ideal in $R_1 \oplus R_2$

Proposition2.8:

Let I and J are T-pure $F-I(\mathbf{R})$, then $I \cap J$ is T-pure $F-I(\mathbf{R})$.

Proof:

T.p I \cap J is T-pure F-I(**R**). To show that for each fuzzy ideal K^2 of R (I \cap J) \cap $K^2 =$ $(I \cap J) K^2$ Now, $\forall t \in (0,1] ((\mathbf{I} \cap \mathbf{J})\mathbf{K}^2)_t = (\mathbf{I} \cap \mathbf{J})_t \mathbf{K}_t^2$ by[10] $=(I_t \cap J_t)K_t^2$ by[1] = $(I_t J_t) K_t^2$ since J_t is T-pure (by level) $=I_t (J_t K_t^2)$ $=I_t(JK^2)_t$ by [10] $=I_t(J \cap K^2)_t$ since J is T-pure $= I_t \cap (J \cap K^2)_t$ since I_t is T-pure $=I_t \cap (J_t \cap K_t^2)$ by [1] $=(I_t \cap J_t) \cap K_t^2$ $= ((I \cap J)_t \cap K_t^2)$ by [1] $=[(\mathbf{I} \cap \mathbf{J}) \cap \mathbf{K}^2]_t$ by [1] Therefore $(\mathbf{I} \cap \mathbf{J}) \cap \mathbf{K}^2 = (\mathbf{I} \cap \mathbf{J})\mathbf{K}^2$ Thus $I \cap J$ is T-pure fuzzy ideal of R Lemma2.9: let $\{J_i, i \in N\}$ be an ascending chain of T-pure F-I(R) . let C be a fuzzy ideal of R, then $C^2[\bigcup_{i\in N}J_i] = \bigcup_{i\in c}[C^2J_i]$. proof: $C^2 J_i \subseteq C^2[\bigcup_{i \in N} J_i], \forall i \in N$ implies that $\bigcup_{i \in c} [C^2 J_i] \subseteq C^2 [\bigcup_{i \in N} J_i].....(1)$ but $C^2[\bigcup_{i\in N}J_i] \subseteq C^2$ and $C^2[\bigcup_{i\in N}J_i] \subseteq \bigcup_{i\in N}J_i$ since $\bigcup_{i \in N} J_i$ is fuzzy ideal on other side $\mathcal{C}^2[\bigcup_{i\in N}J_i] \subseteq \mathcal{C}^2 \cap [\bigcup_{i\in N}J_i]$ $= \bigcup_{i \in c} [C^2 \cap J_i]$ by [4] $= \bigcup_{i \in c} [C^2 J_i]$ since J_i T-pure fuzzy ideal of R Thus $C^2[\bigcup_{i\in N}J_i] \subseteq \bigcup_{i\in c} [C^2J_i]$ Therefore $C^2[\bigcup_{i\in N}J_i] = \bigcup_{i\in c}[C^2J_i]$

Volume 6 Issue 4, April 2017

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY

DOI: 10.21275/ART20172592

Proposition2.10:

If $\{J_i, i \in N\}$ be an ascending chain of T-pure F-I(R), then $\bigcup_{i \in N} J_i$ is T-pure F-I(R).

Proof:

We must show that for each fuzzy ideal C^2 of R $C^2 \cap [\bigcup_{i \in \mathbb{N}} J_i] = C^2[\bigcup_{i \in \mathbb{N}} J_i]$ $C^2 \cap [\bigcup_{i \in \mathbb{N}} J_i] = \bigcup_{i \in c} [C^2 \cap J_i]$ by [4] $= \bigcup_{i \in c} [C^2 J_i]$ since J_i T-pure F-I(\mathbf{R}). $= C^2[\bigcup_{i \in \mathbb{N}} J_i]$ by lemma(2.9) Hence $\bigcup_{i \in \mathbb{N}} J_i$ is T-pure F-I(\mathbf{R}).

References

- [1] Zadeh L. A., "Fuzzy Sets, Information and control", Vol. 8, PP.338-353, (1965).
- [2] Zahedi M .M., 'A characterization of L-Fuzzy Prime Ideals ", Fuzzy Sets and Systems, Vol. 44, 147-160,(1991).
- [3] Zhao Jiandi, Shi K . Yue M., 'Fuzzy Modules over Fuzzy Rings'', The J. of Fuzzy Math. Vol. 3, PP. 531-540,(1993).
- [4] Maysoun A. H., ''F-Regular Fuzzy Modules'', M. Sc. Thesis, University of Baghdad,(2002).
- [5] Kumar R., "Fuzzy Semi primary Ideal of Rings". Fuzzy Sets and Systems, Vol. 42, PP. 263-272,(1991).
- [6] Kumar R., ''Fuzzy Cosets Some Fuzzy Radicals'', Fuzzy Sets and Systems, vol. 46,PP.261-265,(1992).
- [7] Ghaleb A. H., "Generalization of Regular Module and Pure Submodules". Ph.D. Thesis , University of Baghdad,(2015).
- [8] Areeg T. H., "On Almost Quasi- Frobenius Fussy Rings", M. Sc. Thesis, University of Baghdad,(2000).
- [9] Rabi H.J., "Prime Fuzzy Submodule and Prime Fuzzy Modules", M. Sc. Thesis, University of Baghdad, (2001).
- [10] Inaam M-A.H, 'On Fuzzy Ideals of Fuzzy Rings", Math. And Physics, Vol. 16, PP.4, (2001)