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Abstract: The main aim and contribution of the current paper is to implement a semi-analytical iterative method proposed by Temimi 

and Ansari namely (TAM) to solve the Riccati, pantograph and elastic beam deformation equations, which appeared in models of 

various problems in engineering and applied sciences. The exact solutions are obtained for Riccati, Pantograph equations and an 

approximate solution for beam equation. The convergence of the TAM is investigated for the three problems. In general, the accuracy of 

our result for beam equation is better than those of Homotopy perturbation method (HPM) and Variational Iteration Method (VIM). 

The software used for the terms calculation in iterative process was MATHEMATICA® 10. 
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1. Introduction 
 

When you submit your paper print it in two-column format, 

including figures and tables [1]. In addition, designate one 

author as the “corresponding author”. This is the author to 

whom proofs of the paper will be sent. Proofs are sent to the 

corresponding author only [2]. 

 

The linear and nonlinear differential equations play an 

important role in many problems that occur in various areas 

of physics, chemistry, engineering and applied science. The 

past few decades have seen significant advances to 

implement analytic, approximate and numerical methods for 

solving linear and nonlinear differential equations, earlier 

studies [31]. Several methods have applied to solve linear 

and nonlinear ODEs and PDEs such as the Adomian 

decomposition method (ADM) [1], the variational iteration 

method (VIM) [37], homotopy perturbation method (HPM) 

and differential transform method (DTM) [17]. Although 

these methods achieve some useful solutions, however, some 

drawbacks have been appeared such as calculate Adomian 

polynomial to deal with nonlinear terms in ADM, calculating 

Lagrange multiplier in VIM in which the terms of the 

sequence became complicated after several iteration, 

construct a homotopy and solve the corresponding equations 

in HPM. 

 

Riccati equation is an initial value problem of nonlinear 

differential equation which plays a significant role in many 

fields of applied science such as random processes, optimal 

control, diffusion problems, network synthesis and financial 

mathematics [7]. 

 

Also, pantograph equation is originated from the work of 

Ockendon and Tayler on the collection of current by the 

pantograph head of an electric locomotive [24]. The 

pantograph equations are appeared in modeling of various 

problems in engineering and sciences such as biology, 

economy, control and electrodynamics. 

 

On the other hand, the beam deformation equation is a 

nonlinear boundary value problem (BVP) which is 

frequently used as mathematical model in viscoelastic, 

inelastic flows and deformation of beams [10, 38]. Recently, 

Temimi and Ansari have introduced a semi–analytical 

iterative method namely (TAM) for solving nonlinear 

problems [35]. The main feature of the TAM is does not any 

required restricted assumptions to deal with nonlinear terms, 

time saver and has a higher convergence and accuracy. The 

TAM was inspired from the homotopy analysis method 

(HAM) [28] and it is one of the famous iterative methods 

that used for solving nonlinear problems [12]. Moreover, this 

method has been successfully applied to solve other different 

problems [19, 4-6]. In this article, the application of TAM 

for solving the Riccati, pantograph and elastic beam 

deformation equations will be presented. The efficiency and 

accuracy has been proved by studying the convergence and 

error analysis. 

 

Our work in this paper is organized as follows; in section 

two the basic idea of the TAM is presented. The convergence 

of the TAM is discussed in section three. The scientific 

applications with some examples are introduced and solved 

in section four. Finally the conclusion is given in section 

five. 

 

2. The Basic Idea of TAM 
 

We start by pointing out that nonlinear differential equation 

can be written as 

We start by pointing out that nonlinear differential equation 

can be written as: 
     L(u(x))+N(u(x))+g(x) = 0 ,        B(u,du

dx
 ) = 0.                 (1) 

 

Where x denotes the independent variable, u(x) is an 

unknown function, g(x) is a known function, L is a linear 

operator, N is a nonlinear operator and B is a boundary 

operator. The main requirement here is that L is the linear 

part of the differential equation, but it is possible to take 

some linear parts and add them to N as needed. The method 
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works in the following steps, starts by assuming that u0(x) is 

an initial guess of the solution to the problem [35]. 

     L(u0(x))+ g(x) = 0 ,                      B(u0,d u 0
dx

 ) = 0.           (2) 

 

To generate the next iteration to the solution, we solve the 

following problem: 

     L(u1 (x)) + g(x)+ N(u0 (x)) = 0 ,         B(u1,d u 1
dx

 ) = 0.    (3) 

Thus, we have a simple iterative procedure which is 

effectively the solution of a linear set of problems i.e.  

L(un+1 (x)) + g(x)+ N(un  (x)) = 0 ,    B(un+1, 
dun +1

dx
) = 0. (4) 

It is important to note that each ui(x) are solutions to the 

problem. That this procedure iterative although perfect to 

apply has merit in that each solution is an improvement of 

the previous iterate and as more iteration are taken the 

solution converges to the solution of problem. 

 

3. The Convergence of the TAM 
 

The Banach fixed-point theorem (also known as 

the contraction mapping theorem or contraction mapping 

principle) is an important tool in the theory of metric spaces; 

it guarantees the existence and uniqueness of fixed points of 

certain self-maps of metric spaces, and provides a 

constructive method to find those fixed points. The theorem 

is named after Stefan Banach (1892–1945), and was first 

stated by him in 1922 [9]. In this section, some basic 

concepts and the main theorem of the convergence will be 

presented. 

 

Definition 3.1 Let (X, d) be a metric space. Then a 

map T: X → X is called a contraction mapping on X if there 

exists k ∈ [0, 1) [9], such that 

d T x , T y  ≤  kd(x, y)         for all x, y in X. 

 

Banach Fixed Point Theorem 3.2 Let (X, d) be a non-

empty complete metric space with a contraction 

mapping T: X → X. Then T admits a unique fixed-

point x* in X (i.e. T(x*) = x*). Furthermore, x* can be found 

as follows: start with an arbitrary element x0 in X and define 

a sequence {xn} by xn = T(xn−1), then xn → x* [9]. 

 

Theorem 3.3 Suppose that X and Y be Banach space and 

N: X → Y. is a contraction nonlinear mapping, that is [13]. 

∀ v, v∗ ∈ X ;  N v − N v∗   ≤ k v − v∗  ,      0 < 𝑘 < 1  . 
Which according to Banach's fixed point theorem, having the 

fixed point u, that is N u = u, the sequence generated by 

the TAM will be regarded as 

un = N(un−1),          u = limn → ∞ un , 

and suppose that u0 ∈ Br u where Br u =  u∗ ∈ X,
  u∗−u<𝑟 then we have the following statements: 

1.  un − u  ≤ kn u0 − u , 

2. un ∈ Br u , 
3. limn → ∞ un = u, 

Proof: See [13]. 

 

4. Application of the TAM with Convergence 

for the Riccati, Pantograph, and Beam 

Deformation Equations 
 

In this section, three types of nonlinear equations, namely the 

Riccati equation, pantograph equation, and beam 

deformation equation, will be solved by the TAM and the 

convergence will be proved. 

 

4.1 Riccati differential equation 

 

Consider the following nonlinear Riccati differential 

equation [21]. 

 u′ x = A x + B x u x + C x u2 x ,   u x0 = α,
x0 ≤ x ≤ Xf                                                   (5) 

where A x , B x  and C x  are continuous functions, x0, 

Xf   and α are arbitrary constants, and u(x) is unknown 

function. 

 

The Riccati differential equation is named after the Italian 

noble man Count Jacopo Francesco Riccati (1676-1754) [7]. 

This equation has many applications such as stochastic 

realization theory, robust stabilization, and network 

synthesis. Several applications are available in literature such 

as financial mathematics [8], control the boundary arising in 

fluid structure interaction falls in the class of SECS [26]. 

 

A substantial amount of research work has been done to 

develop the solution of Riccati differential equation. The 

most used methods are ADM [1] HAM [15, 34] Taylor 

matrix method [23] and Haar wavelet method [27], HPM 

[32] combination of Laplace, Adomian decomposition and 

Pade approximation methods [25], and many other methods 

available in literature. Two examples will be solved by 

TAM. 

 

4.1. Example 1 

 

Let us consider the following Riccati differential equation 

[37], 

  u′ = u2 − 2xu + x2 + 1, u 0 =
1

2
.                                       (6) 

We apply the TAM by first distributing the equation as, 

     L u = u′, N u = −u2 + 2xu 

and g x = −x2 − 1.                                         (7) 
Thus, the initial problem which needs to be solved is 

     L u0 x  = x2 + 1, u0 0 =
1

2
.                                  (8) 

By using simple manipulation, one can solve Eq. (8) as 

follows: 

      u0′(x)ⅆx
x

0

=   x2 + 1 ⅆx,
x

0

  u0 0 =
1

2
.                     9  

Then, we get 

     u0 x =
1

2
+ x +

x

3

3

.                                                            10  

The second iteration can be carried through 

     L u1 x  + N u0 x  + g x = 0, u1 0 =
1

2
.      11  

By integrating both sides of equation (11) from 0 to x, we get 

      u1
′  x ⅆx

x

0

=   u0
2 x − 2xu0 x + x2 + 1 ⅆx,

x

0

 

 u1 0 =
1

2
.                                                            (12) 

Thus, 

      u1 x =
1

2
+

5x

4
+

x4

12
+

x7

63
.                                             (13) 

The next iteration is 

     L u2 x  + N u1 x  + g x = 0, u2 0 =
1

2
.     14  
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By solving Eq. (14), we have 

     u2 x =
1

2
+

5x

4
+

x2

8
+

x3

48
+

x5

60
+

x6

144
+

x8

504
+

5x9

3024

+
x12

4536
+

x15

59535
.                                    (15) 

By continuing in this manner, we will get a series of the 

form: 

     u x = lim
n→∞

 un x 

=
1

2
+

5x

4
+

x2

8
+

x3

16
+

x4

32
+

x5

64
+

x6

128

+
x7

256
+

x8

512
+ ⋯ ,                                  (16) 

This series converges to the exact solution given in [37], 

     u x = x +
1

2− x
,  x < 2                                         (17) 

              =
1

2
+

5x

4
+

x2

8
+

x3

16
+

x4

32
+

x5

64
+

x6

128
+

x7

256
+

x8

512

+
x9

1024
+

x10

2048
+ ⋯.     

Suppose that N: [0,1] → R, then un = N(un−1)  and  0 ≤ x ≤
1.          
According to the Theorem 3.3 for nonlinear mapping N, a 

sufficient condition for convergence of the TAM is strictly 

contraction N, the exact solution is u = u x = x +
1

2−x
,

 x < 2, therefore, we have    

 u0 − u =  
1

2
+ x +

x3

3
− (x +

1

2 − x
) , 

 u1 − u =  
1

2
+

5x

4
+

x4

12
+

x7

63
− (x +

1

2− x
) 

≤  
1

2
+ x +

x3

3
− (x

+
1

2− x
)  (

1
2

+
5x
4

+
x4

12
+

x7

63
−  x +

1
2 − x

 

1
2

+ x +
x3

3
− (x +

1
2− x

)
) , 

But, ∀ x ϵ  0,1 ,   0 < 𝑘 < 1, When  𝑥 =  
1

2
,

 (
1

2
+

5x

4
+

x 4

12
+

x 7

63
− x+

1

2−x
 

1

2
+x+

x 3

3
−(x+

1

2−x
)

)  ≤  k = 0.290675 < 1, thus, 

 u1 − u ≤ k 
1

2
+ x +

x3

3
− (x +

1

2−x
) = k  u0 − u , 

Then, we get 

 u1 − u ≤ k  u0 − u , 

 u2 − u =  
1

2
+

5x

4
+

x2

8
+

x3

48
+

x5

60
+

x6

144
+

x8

504
+

5x9

3024
+

x124536+x1559535−(x+12−x)≤(12+5x4+x412+x763−

x+12−x)(12+5x4+x28+x348+x560+x6144+x8504+5x
93024+x124536+x1559535−x+12−x12+5x4+x412+x7
63−x+12−x)Since,  ∀ x ϵ 0,1,   0<𝑘<1,When  𝑥= 12,  

 (
1

2
+

5x

4
+

x 2

8
+

x 3

48
+

x 5

60
+

x 6

144
+

x 8

504
+

5x 9

3024
+

x 12

4536
+

x 15

59535
− x+

1

2−x
 

1

2
+

5x

4
+

x 4

12
+

x 7

63
− x+

1

2−x
 

) ≤ k =

0.197393 < 1,  

 u2 − u ≤ k 
1

2
+

5x

4
+

x4

12
+

x7

63
− (x +

1

2−x
) =

k u1 − u ≤ kk u0 − u , 

Thus, 

 u2 − u ≤ k2 u0 − u , 

Similarly, we have 

 u3 − u ≤ k3 u0 − u , 
By continuing in this way we get: 

 un − u ≤ kn u0 − u , 
Therefore, 

 limn → ∞ un − u ≤  limn → ∞kn  u0 − u = 0, 

limn → ∞kn = 0, then 

 limn → ∞ un − u  = 0→ limn → ∞ un = u, that is u x =

lim
n → ∞

 un x = x +
1

2−x
 , which is an exact solution. 

 

4.1. Example 2 

Let us consider the following Riccati differential equation 

[22] 
     u′ = ⅇx − ⅇ3x + 2ⅇ2xu− ⅇxu2, u 0 = 1.              (18) 
Applying TAM as earlier by first distributing the equation as, 

     L u = u′,          N u = −2ⅇ2xu + ⅇxu2 

    and     g x = −ⅇx + ⅇ3x .                                  (19) 
Thus, the initial problem will be 

     L u0 x  = ⅇx − ⅇ3x , u0 0 = 1.                             (20) 

By integrating both sides of equation (20) from 0 to x, we 

obtain 

      u0
′  x ⅆx

x

0

=   ⅇx − ⅇ3x ⅆx,
x

0

 

u0 0 = 1                                                    (21) 

Therefore, we have 
     u0 x 

=
1

3
+ ⅇx

−
ⅇ3x

3
 .                                                                                                       22  

The second iteration can be given as 

     L u1 x  + N u0 x  + g x = 0,          u1 0 

= 1 .                                                    23  
By integrating both sides of equation (23) from 0 to x, we get 

      u1
′  x ⅆx

x

0

=   ⅇx − ⅇ3x + 2ⅇ2xu0 x − ⅇ
x u0

2 x  ⅆx,
x

0

 

u1 0 = 1.                                                                 (24) 
Then, we obtain 

     u1 x =
1

14
+

8ⅇx

9
+
ⅇ4x

18
−
ⅇ7x

63
.                                        (25) 

We turn the function u1 x  by using Taylor series expansion 

to exponential function, we get 

     u1 x = 1 + x +
x2

2
−

x3

6
−

23x4

24
−

209x5

120
.                 (26) 

Applying the same process, we get the second iteration 

u2 x , 

     L u2 x  + N u1 x  + g x = 0, u2 0 = 1.      27  
Then, we have 

     u2 x =
11

9720
+

195ⅇx

196
+
ⅇ2x

126
−
ⅇ3x

243
−
ⅇ5x

630
+
ⅇ6x

486

+
ⅇ8x

3528
−

5ⅇ9x

6804
+
ⅇ12x

6804
−

ⅇ15x

59535
.     (28) 

We turn the function u2 x  to series as following 

     u2 x = 1 + x +
x2

2
+

x3

6
+

x4

24
+

x5

120
+

x6

720
−

79x7

5040

−
3919x8

40320
−

116479x9

362880
.                        (29) 

By continuing in this way we will get a series of the form: 
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     u x = lim
n→∞

 un x 

= 1 + x +
x2

2
+

x3

6
+

x4

24
+

x5

120
+

x6

720

+
x7

5040
+ ⋯ .                                            (30) 

This series converges to the following exact solution [22]  

     u x = ⅇx = 1 + x +
x2

2
+

x3

6
+

x4

24
+

x5

120
+

x6

720
+

x7

5040

+
x8

40320
+ ⋯ .                                          (31) 

Suppose that N: [0,1] → R, then un = N(un−1)  and  0 ≤ x ≤
1.          
Similar steps as for example 1 can be followed, since the 

exact solution is u = u x = ⅇx , therefore, we have    

 u0 − u =  
1

3
+ ⅇx −

ⅇ3x

3
− ⅇx , 

 u1 − u =  1 + x +
x2

2
−

x3

6
−

23x4

24
−

209x5

120
− ⅇx 

≤  (
1

3
+ ⅇx −

ⅇ3x

3

− ⅇx )  (
1 + x +

x2

2
−

x3

6
−

23x4

24
−

209x5

120
− ⅇx

1
3

+ ⅇx −
ⅇ3x

3
− ⅇx

) , 

But, ∀ x ϵ  0,1 ,   0 < 𝑘 < 1, When  𝑥 =  
1

3
,

 (
1+x+

x 2

2
−

x 3

6
−

23x 4

24
−

209 x 5

120
−ⅇx

1

3
+ⅇx−

ⅇ3x

3
−ⅇx

)  ≤  k = 0.0556864 < 1, thus, 

 u1 − u ≤ k 
1

3
+ ⅇx −

ⅇ3x

3
− ⅇx = k  u0 − u , 

Then, we have 
 u1 − u ≤ k  u0 − u , 

 u2 − u =  
11

9720
+

195ⅇx

196
+

ⅇ2x

126
−

ⅇ3x

243
−

ⅇ5x

630
+

ⅇ6x

486
+

ⅇ8x

3528
−

5ⅇ9x6804+ⅇ12x6804−ⅇ15x59535−ⅇx≤(1+x+x22−x36−

23x424−209x5120−ⅇx)(119720+195ⅇx196+ⅇ2x126−ⅇ
3x243−ⅇ5x630+ⅇ6x486+ⅇ8x3528−5ⅇ9x6804+ⅇ12x68
04−ⅇ15x59535−ⅇx1+x+x22−x36−23x424−209x5120−ⅇ
x)Since,  ∀ x ϵ 0,1,   0<𝑘<1,When  𝑥= 13,  

 (
11

9720
+

195ⅇx

196
+
ⅇ2x

126
−
ⅇ3x

243
−
ⅇ5x

630
+
ⅇ6x

486
+
ⅇ8x

3528
−

5ⅇ9x

6804
+
ⅇ12x

6804
−
ⅇ15x

59535
−ⅇx

1+x+
x 2

2
−

x 3

6
−

23x 4

24
−

209 x 5

120
−ⅇx

) ≤ k =

0.00207751 < 1,  

 u2 − u ≤ k 1 + x +
x2

2
−

x3

6
−

23x4

24
−

209x5

120
− ⅇx =

k u1 − u ≤ kk u0 − u , 

Thus, we get 

 u2 − u ≤ k2 u0 − u , 

Similarly, we have 

 u3 − u ≤ k3 u0 − u , 
By continuing in this way we get: 

 un − u ≤ kn u0 − u , 
Therefore, 

 limn → ∞ un − u ≤  limn → ∞k
n  u0 − u = 0, limn → ∞k

n =

0, then 

 limn → ∞ un − u  = 0→ limn → ∞ un = u, that is u x =

lim
n → ∞

 un x = ⅇx , 

which is an exact solution. 

 

4.2 Pantograph differential equation 

 

Pantograph equation used in many applications, such as 

industrial applications [20], studies based on biology, 

economy, control and electrodynamics [14]. 

Pantograph equation was solved by many authors either 

analytically or numerically. For instance Yang and Huang 

presented a spectral-collocation method for fractional 

pantograph delay-integro differential equations [39], [40] 

proposed an efficient algorithm for solving generalized 

pantograph equations with linear functional argument, the 

authors of investigated an exponential approximation to 

obtain an approximate solution of generalized pantograph-

delay differential equations [41]. In [36] the authors 

proposed a new collocation scheme based on Bernoulli 

operational matrix for numerical solution of generalized 

pantograph equation.  Recently, Doha et al. proposed and 

developed a new Jacobi rational-Gauss collocation method 

for solving the generalized pantograph equations on a semi-

infinite domain [18]. Two examples of pantograph equations 

will be solved by TAM. 

 

4.2. Example 3: 

Consider the following pantograph differential equation [33], 

     u′ =
1

2
u +

1

2
 ⅇ

x
2 u  

x

2
 , u 0 = 1.                            (32) 

By implementing the TAM: 

     L u = u′,          N u = −
1

2
u−

1

2
 ⅇ

x
2 u  

x

2
  

     and     g x = 0.                                                  (33) 

By first distributing equation as, 

     L u0 x  = 0, u0 0 = 1.                                          (34) 

By solving Eq.(34), we have 

      u0′(x)ⅆx
x

0

= 0, u0 0 = 1,                                     (35) 

Then, we get 
     u0 x = 1 ,                                                                             36  

The second iteration will be 

     L u1 x  + N u0 x  + g x = 0, u1 0 = 1.     37  
By integrating both side of problem (37),  

      u1
′  x ⅆx

x

0

=   
1

2
u0 x +

1

2
ⅇ

x
2u0 x  ⅆx,

x

0

 

u1 0 = 1.                                                                   (38) 
Then, we obtain 

     u1 x = ⅇ
x
2 +

x

2
.                                                               (39) 

The next iteration is 

     L u2 x  + N u1 x  + g x = 0, u2 0 = 1.     40  
Therefore, we have 

     u2 x = −
1

6
+
ⅇ

x
2

2
+

2

3
ⅇ

3x
4 +

1

4
x ⅇ

x
2 +

x2

8
.                      (41) 

We turn the function u2 x  by using Taylor series expansion 

to exponential function, 

     u2 x = 1 + x +
x2

2
+

17x3

192
+

47x4

3072
+

43x5

20480
+

71x6

294912

+
197x7

8257536
.                                             (42) 

The next iteration is 

     L u3 x  + N u2 x  + g x = 0, u3 0 = 1 .     43  
In similar manner, we get 
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     u3 x = 1 + x +
x2

2
+

x3

6
+

377x4

12288
+

2479x5

491520

+
16109x6

23592960
+

104267x7

1321205760
.             (44) 

By continuing in this way we will get the following series: 

     u x = lim
n→∞

 un x 

= 1 + x +
x2

2
+

x3

6
+

x4

24
+

x5

120
+

x6

720

+
x7

5040
+ ⋯ .                                            (45) 

This series converges to the exact solution [33], 

     u x = ⅇx = 1 + x +
x2

2
+

x3

6
+

x4

24
+

x5

120
+

x6

720
+

x7

5040

+
x8

40320
+ ⋯ .                                          (46) 

Suppose that N: [0,1] → R, then un = N(un−1)  and  0 ≤ x ≤
1. 
Similar procedure can be followed; the exact solution is 

u = u x = ⅇx , therefore we have    
 u0 − u =  1 − ⅇx , 

 u1 − u =  ⅇ
x
2 +

x

2
− ⅇx ≤  (1 − ⅇx )  (

ⅇ
x
2 +

x
2
− ⅇx

1 − ⅇx
) , 

But, ∀ x ϵ  0,1 ,   0 < 𝑘 < 1, When  𝑥 =  
1

3
,  (

ⅇ
x
2+

x

2
−ⅇx

1−ⅇx )  ≤

 k = 0.120283 < 1, thus, 
 u1 − u ≤ k 1− ⅇx = k  u0 − u , 

Then, we have 

 u1 − u ≤ k  u0 − u , 

 u2 − u =  −
1

6
+

ⅇ
x
2

2
+

2

3
ⅇ

3x

4 +
1

4
x ⅇ

x

2 +
x2

8
− ⅇx ≤

 (ⅇ
x

2 +
x

2
− ⅇx)  (

−
1

6
+
ⅇ

x
2

2
+

2

3
ⅇ

3x
4 +

1

4
x ⅇ

x
2 +

x 2

8
−ⅇx

ⅇ
x
2+

x

2
−ⅇx

) , 

Since,  ∀ x ϵ  0,1 ,   0 < 𝑘 < 1, When  𝑥 =  
1

3
,

 (
−

1

6
+
ⅇ

x
2

2
+

2

3
ⅇ

3x
4 +

1

4
x ⅇ

x
2 +

x 2

8
−ⅇx

ⅇ
x
2+

x

2
−ⅇx

) ≤ k = 0.0682217 < 1,  

 u2 − u ≤ k ⅇ
x

2 +
x

2
− ⅇx = k u1 − u ≤ kk u0 − u , 

Thus, we get 

 u2 − u ≤ k2 u0 − u , 

Similarly, we have 

 u3 − u ≤ k3 u0 − u , 
By continuing in this way we get: 

 un − u ≤ kn u0 − u , 
Therefore, 

 limn → ∞ un − u ≤  limn → ∞kn  u0 − u = 0, 

limn → ∞kn = 0, then 

 limn → ∞ un − u  = 0→ limn → ∞ un = u, that is u x =

lim
n → ∞

 un x = ⅇx  , which is an exact solution. 

 

4.2. Example 4 

Let us deal with the following pantograph differential 

equation [33], 

      u′′ =
3

4
u + u  

x

2
 − x2 + 2, 

u 0 = 0 , u′ 0 = 0.                                             47  
We apply the TAM by first distributing the equation as, 

      L(u) = u",   N(u) = −
3

4
u − u(

x

2
) 

and   g(x) = x2 − 2.                                              (48) 
Thus, the initial problem which needs to be solved is 

      L u0 x  = −x2 + 2, 

u0 0 = 0  and   u0
′ 0 = 0.                                      (49) 

By integrating both sides of problem (49), will be achieved 

        u0
′′ x  dx

x

0

=    −x2 + 2 dx
x

0

 , 

u0 0 = 0  and    u0
′ 0 = 0.                             (50) 

Then, we have 

      u0
′  x = −

x3

3
+ 2x, u0 0 = 0.                               (51) 

Once again, by taking the integration to both sides of 

problem (51), we have 

       u0
′ x  dx

x

0

=   −
x3

3
+ 2x dx

x

0

, 

u0 0 = 0.                                                                 (52) 

Then, we obtain 

     u0 x = −
x4

12
+ x2.                                                        (53) 

The second iteration can be carried as 

     L u1 x  + N u0 x  + g x = 0, 

u1 0 = 0  and  u1
′ 0 = 0.                                         54  

By integrating both sides of equation (54) from 0 to x, we 

obtain 

  u1
′′  x ⅆxdx

x

0

x

0

=    −x2 + 2 +
3

4
u0 x 

x

0

x

0

+ u0  
x

2
  ⅆxdx, 

u1 0 = 0, u1
′ 0 = 0                                (55) 

Thus, 

     u1 x = x2 −
13x6

5760
.                                                            (56) 

The next iteration is 

     L u2 x  + N u1 x  + g x = 0 , 

u2 0 = 0 and u2
′ 0 = 0.                                             57  

Thus, we have 

     u2 x = x2 −
91x8

2949120
 .                                                   (58) 

The next iteration is 

     L u3 x  + N u2 x  + g x = 0 , 

u3 0 = 0 and u3
′ 0 = 0.                                            59  

Then, we get 

     u3 x = x2 −
17563x10

67947724800
 .                                         (60) 

By continuing in this way we will get: 

     un x = x2 − small term.                                                (61) 
This series converges to the exact solution [33], 

     u x = lim
n→∞

 un x = x2 .                                                     (62) 

Suppose that N: [0,1] → R, then un = N(un−1)  and  0 ≤ x ≤
1.          
Following the same procedure, the exact solution is 

u = u x = x2, therefore we have    

 u0 − u =  −
x4

12
+ x2 − (x2) , 
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 u1 − u =  x2 −
13x6

5760
− (x2) 

≤  (−
x4

12
+ x2

− (x2))  (
x2 −

13x6

5760
− (x2)

−
x4

12
+ x2 − (x2)

) , 

But, ∀ x ϵ  0,1 ,   0 < 𝑘 < 1, When  𝑥 =  
1

4
,

 (
x2−

13x 6

5760
−(x2)

−
x 4

12
+x2−(x2)

)  ≤  k = 0.00169271 < 1, thus, 

 u1 − u ≤ k −
x4

12
+ x2 − (x2) = k  u0 − u , 

Then, we have 

 u1 − u ≤ k  u0 − u , 

 u2 − u =  x2 −
91x8

2949120
− (x2) ≤  (x2 −

13x6

5760
−

(x2))(x2−91x82949120−(x2)x2−13x65760−(x2)), 

Since,  ∀ x ϵ  0,1 ,   0 < 𝑘 < 1, When  𝑥 =  
1

4
,

 (
x2−

91x 8

2949120
−(x2)

x2−
13x 6

5760
−(x2)

) ≤ k = 0.000854492 < 1,  

 u2 − u ≤ k x2 −
13x6

5760
− (x2) = k u1 − u ≤

kk u0 − u , 

Thus, we get 

 u2 − u ≤ k2 u0 − u , 

Similarly, we have 

 u3 − u ≤ k3 u0 − u , 
By continuing in this way we get: 

 un − u ≤ kn u0 − u , 
Therefore, 

 limn → ∞ un − u ≤  limn → ∞kn  u0 − u = 0, 

limn → ∞kn = 0, then 

 limn → ∞ un − u  = 0→ limn → ∞ un = u, that is u x =

lim
n → ∞

 un x = x2 , which is an exact solution. 

 

4.3 Beam differential equation 

 

According to the classical beam theory, the function 

u = u x  represents the configuration of the deformed beam. 

The length of the elastic beam is L =1, where x =0 at the left 

side and x =1 at the right side and f =f(x) is a load which 

causes the deformation [10], as it is shown in Figures (1) and 

(2). 

 

 
Figure1: Beam on elastic bearing. 

 

 
Figure 2: Loads and Reactions on a simply supported beam 

 

Let us consider the nonlinear beam deformation problem as a 

general fourth order boundary value problem of the form 

[10], 

u''''(x) = f(x, u, u′, u'', u''')                                                  (63) 

with the boundary conditions: 

u a = α1 ,  u′ a = α2 , 
u b = β

1
,          u′ b = β

2
, 

where f is a continuous function on [a, b] and the parameters 

α1 , α2 ,  β
1

and β
2
 are finite real arbitrary constants. Eq. (63) 

used as mathematical models in viscoelastic and in elastic 

flows [30], deformation of beams [29] and plate deflection 

theory [16].  

Recently, many analytical methods are used to solve 

nonlinear elastic beam deformation problems, such as HPM 

[3], the VIM [10], and the ADM [2]. The following two 

problems of the beam deformation will be solved by TAM. 

 

4.3. Example 5 

 

Consider the following form of the beam deformation 

equation [10] 

u′′′′ = u2 − x10 + 4x9 − 4x8 − 4x7 + 8x6 − 4x4 + 120x −
48, 

u 0 = 0, u′ 0 = 0, u 1 = 1, u′ 1 = 1.                     (64) 
Applying TAM as earlier by first distributing the equation, 

 L u = u′′′′ , N u = −u2, 
 g x = x10 − 4x9 + 4x8 + 4x7 − 8x6 + 4x4 − 120x

+ 48.                                                           (65) 

Thus, the initial problem which needs to be solved is 

 L u0 x  + g x = 0  , 

u0 0 = 0, u0′ 0 = 0, u0 1 = 1, u0′ 1 = 1                 (66) 

By integrating both sides of (66) from 0 to x four times, one 

can obtain 

      u0′′′′ x ⅆxⅆxⅆxⅆx
x

0

x

0

x

0

x

0

=     −g x ⅆxⅆxⅆxⅆx ,
x

0

x

0

x

0

x

0

 

   u0 0 = 0, u0′ 0 = 0, u0 1 = 1, u0′ 1 = 1.      (67) 

Then, we have 

   u0 x =
718561x2

360360
+

4019x3

540540
− 2x4 + x5 −

x8

420
+

x10

630

−
x11

1980
−

x12

2970
+

x13

4290
−

x14

24024
.      68  

The second iteration can be carried through and we have 

   L u1 x  + N u0 x  + g x = 0, 

u1 0 = 0, u1′ 0 = 0, u1 1 = 1, u1′ 1 = 1.            69  
Once again, by taking the integration to both sides of 

problem (69) four times from 0 to x, one can have: 
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      u1′′′′ x ⅆxⅆxⅆxⅆx
x

0

x

0

x

0

x

0

=     ((u0(x))2
x

0

x

0

x

0

x

0

− g x )ⅆxⅆxⅆxⅆx , 
     u1 0 = 0, u1 ′ 0 = 0, u1 1 = 1, u1 ′ 1 = 1.             70  

Thus, we get,  

u1 x 

=
4720792684282308505367359x2

2360410309588661890560000

+
18553248327867926839x3

1180205154794330945280000
− 2x4 + x5

−
3107407679x8

218163673728000
+

2887896659x9

294520959532800

+
7018307521x10

1472604797664000
−

22553x11

4281076800
+

4019x12

3210807600

−
718561x14

1818030614400
−

4019x15

3718698984000

+
1799641x16

4958265312000
−

10117717x17

85587287385600

−
68671x18

655004750400
+

127713533x19

1941434080185600

+
11676571x20

7550021422944000
−

2086087x21

186529941037440

+
11827x22

3321402084000
−

19x23

49945896000
+

x24

61856071200

−
x25

111891780000
−

1153x26

672022030680000

+
289x27

112699346760000
−

2857x28

5522267991240000

−
41x29

203359710153600
+

191x30

1525197826152000

−
x31

38914512436800

+
x32

498105759191040
.                                                                               (71) 

The next iteration is 

   L u2 x  + N u1 x  + g x = 0, 

u2 0 = 0, u2′ 0 = 0, u2 1 = 1, u2′ 1 = 1           72   
By solving Eq. (72), we get 
u2 x = 
2202693265997560554567213964153742646845680934915346589114693562189521 x2

1101346644272668697923151144090577661303808881187603590152192000000000
+

855632663017256066584093885697499043829245100900282567647301 x3

31170188045452887677070315398789933810485157014743497834496000000000
−

2x4 + x5 −
263750476406975714017258504829503142857365119 x8

9360181873748903687839491050962491340750848000000000
+

87586038975871882144948292891844699430648201 x9

4212081843187006659527770972933121 103337881600000000
+

65938158414357322657860997721971676825491921 x10

7020136405311677765879618288221868505563136000000000
+ O x 11 . 

                                                                                                       (73) 
 

In order to check the accuracy of the approximate solution, 

we calculate the absolute error,    rn  =  u(x) −
un(x) where  ux=x5−2x4+2x2 is the exact solution and 

un(x) is the approximate solution. In Table (1) we compare 

the absolute error of TAM with n=2 together with the HPM, 

and the VIM. 

 

 

 

 

Table 1:  Comparison of the absolute errors for TAM, VIM 

and HPM 
x  r2  for TAM  r2  for VIM  r2  for HPM 

0 0 0 0 

0.1 2.0× 10−10  6.8× 10−9 1.896× 10−7 

0.2 6.0 × 10−10  2.39× 10−8 6.4171× 10−7 

0.3 1.1× 10−9 4.64× 10−8 1.18180× 10−6 

0.4 1.5× 10−9 6.92× 10−8 1.6405× 10−6 

0.5 1.8× 10−9 8.74× 10−8 1.8703× 10−6 

0.6 1.7× 10−9 9.61× 10−8 1.7815× 10−6 

0.7 1.3× 10−9 9.06× 10−8 1.3816× 10−6 

0.8 8.0× 10−10  6.7× 10−8 7.958× 10−7 

0.9 2.0× 10−10  2.92× 10−8 2.437× 10−7 

1.0 0 1.2× 10−9 6.0× 10−10  

 

It can be observed clearly from Table (1), the absolute error 

for TAM is lower than VIM and HPM. 

Suppose that N: [0,1] → R, then un = N(un−1)  and  0 ≤ x ≤
1.          
The convergence issue can be done as follows: 

Since, the exact solution is u = u x = x5 − 2x4 + 2x2 , 
therefore, we have 

 u0 − u =  u0 − (x5 − 2x4 + 2x2) , 
 u1 − u =  u1 − (x5 − 2x4 + 2x2) 

≤  (u0 − (x5 − 2x4

+ 2x2))  (
u1 − (x5 − 2x4 + 2x2)

u0 − (x5 − 2x4 + 2x2)
) , 

But, ∀ x ϵ  0,1 ,   0 < 𝑘 < 1, When  𝑥 =  
1

2
,

 (
u1−(x5−2x4+2x2)

u0−(x5−2x4+2x2)
)  ≤  k = 0.00178287 < 1, thus, 

 u1 − u ≤ k u0 − (x5 − 2x4 + 2x2) = k  u0 − u , 

Then, we have 

 u1 − u ≤ k  u0 − u , 

 u2 − u =  u2 − (x5 − 2x4 + 2x2) ≤  (u1 − (x5 −
2x4+2x2))(u2−(x5−2x4+2x2)u1−(x5−2x4+2x2))Since,  

∀ x ϵ  0,1 ,   0 < 𝑘 < 1, When  𝑥 =  
1

2
,

 (
u2−(x5−2x4+2x2)

u1−(x5−2x4+2x2)
) ≤ k = 0.00170467 < 1,  

 u2 − u ≤ k u1 − (x5 − 2x4 + 2x2) = k u1 − u ≤
kk u0 − u , 

Thus, we get 

 u2 − u ≤ k2 u0 − u , 

Similarly, we have 

 u3 − u ≤ k3 u0 − u , 
By continuing in this way we get: 

 un − u ≤ kn u0 − u , 
Therefore, 

 limn → ∞ un − u ≤  limn → ∞kn  u0 − u = 0, 

limn → ∞kn = 0, then 

 limn → ∞ un − u  = 0→ limn → ∞ un = u, that is u x =

lim
n → ∞

 un x = x5 − 2x4 + 2x2 , which is an exact solution. 

 

4.3. Example 6 

 

Consider the beam deformation equation [11], 

     u′′′′ = u + u′′ + ⅇx(x− 3), 
   u 0 = 1, u′ 0 = 0, u 1 = 0, u′ 1 = −ⅇ.                 (74) 

In the following, the TAM will be used, 

     L u = u′′′′ ,     N u = −u − u′′ , 
  g x = −ⅇx x − 3 .                                  (75) 

Paper ID: ART20173765 DOI: 10.21275/ART20173765 535 



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2017): 78.96 | Impact Factor (2017): 6.391 

Volume 6 Issue 6, June 2017 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Applying TAM as earlier by first distributing the equation 

like 

     L u0 x  + g x = 0 , 

 u0 0 = 1, u0
′  0 = 0, u0 1 = 0, u0

′  1 = −ⅇ.       (76) 
By integrating both sides of equation (76) from 0 to x, we 

will have 

      (u0′′′′ x )ⅆxⅆxⅆxⅆx
x

0

x

0

x

0

x

0

=     ⅇx (x − 3)ⅆxⅆxⅆxⅆx ,
x

0

x

0

x

0

x

0

 

   u0 0 = 1, u0
′  0 = 0, u0 1 = 0, u0

′  1 = −ⅇ.     (77) 

Then, we get 

   u0 x = 8 − 7ⅇx + 6x + ⅇx x − 36x2 + 14ⅇx2 + 22x3

− 8ⅇx3.                                                        78  
The second iteration can be carried through and is given as 

   L u1 x  + N u0 x  + g x = 0, 

u1 0 = 0, u1
′  0 = 0, u1 1 = 2ⅇ, u1

′  1 = −ⅇ.        79  
By integrating both sides of (79), it will be achieved 

      (u1′′′′ x )ⅆxⅆxⅆxⅆx
x

0

x

0

x

0

x

0

     

=     (ⅇx(x − 3)
x

0

x

0

x

0

x

0

+ u0 x +u0′′ x )ⅆxⅆxⅆxⅆx , 
   u1 0 = 1, u1

′  0 = 0, u1 1 = 0, u1
′  1 = −ⅇ.   (80) 

Therefore, we have 

   u1 x = 28 − 27ⅇx + 24x + 3ⅇx x−
13919x2

105

+
22027ⅇx2

420
+

8626x3

105
−

9211ⅇx3

315
−

8x4

3

+
7ⅇx4

6
+

23x5

20
−

2ⅇx5

5
−

x6

10
+

7ⅇx6

180

+
11x7

420
−
ⅇx7

105
.                                          81  

The next iteration is 

     L u2 x  + N u1 x  + g x = 0, 

   u2 0 = 1, u2
′  0 = 0, u2 1 = 0, u2

′  1 = −ⅇ.        82  
Then, it can be obtained 

   u2 x 

= 80 − 79ⅇx + 72x + 7ⅇx x−
12771847x2

33075

+
10745568371ⅇx2

69854400
+

317593x3

1323
−

1482272317ⅇx3

17463600

−
12449x4

1260
+

22027ⅇx4

5040
+

4523x5

1050
−

9211ⅇx5

6300
−

17279x6

37800

+
27907ⅇx6

151200
+

11041x7

88200
−

11731ⅇx7

264600
−

17x8

5040
+
ⅇx8

720

+
x9

1344
−

ⅇx9

3780
−

x10

50400
+

ⅇx10

129600
+

x11

302400

−
ⅇx11

831600
.                                                                                  83  

 

The accuracy of the approximate solution has been proved 

by calculating the absolute error, where  u x =  1 − x ⅇx  is 

the exact solution. In Table (2) we compare the absolute 

error of TAM for two iterations together with the VIM. 

 

 

 

 

 

 

Table 2: Comparison of the absolute error for TAM and 

VIM 

x  r2  for TAM  r2  for VIM 

0 0 0 

0.1 2.22945× 10−7 3.93180× 10−6 

0.2 8.20857 × 10−7 1.35716× 10−5 

0.3 1.57987× 10−6 2.57244× 10−5 

0.4 2.21818× 10−6 3.72912× 10−5 

0.5 2.49333 × 10−6 4.52445× 10−5 

0.6 2.29399 × 10−6 4.70100× 10−5 

0.7 1.68701 × 10−6 4.08379× 10−5 

0.8 9.01995 × 10−7 2.70944× 10−5 

0.9 2.50721 × 10−7 9.81890× 10−6 

1.0 2.96245× 10−14  0 

 

It can be seen clearly from Table (2), the absolute error for 

TAM is lower than for VIM. 

Suppose that N: [0,1] → R, then un = N(un−1)  and  0 ≤ x ≤
1.          
Finally, the convergence is given in the following steps, 

since the exact solution is u = u x =  1 − x ⅇx  , therefore, 

we have    
 u0 − u =  u0 −  1 − x ⅇx   , 
 u1 − u =  u1 −  1 − x ⅇx   

≤  (u0

−  1 − x ⅇx  )  (
u1 −  1 − x ⅇx  

u0 −  1 − x ⅇx  
) , 

But, ∀ x ϵ  0,1 ,   0 < 𝑘 < 1, When  𝑥 =  
1

3
,

 (
u1− 1−x ⅇx  

u0− 1−x ⅇx  
)  ≤  k = 0.0230013 < 1, thus, 

 u1 − u ≤ k u0 −  1 − x ⅇx   = k  u0 − u , 

Then, we have 

 u1 − u ≤ k  u0 − u , 

 u2 − u =  u2 −  1 − x ⅇx   ≤  (u1 −  1 −
xⅇx )(u2−1−xⅇx u1−1−xⅇx ), 

Since,  ∀ x ϵ  0,1 ,   0 < 𝑘 < 1, When  𝑥 =  
1

3
,

 (
u2− 1−x ⅇx  

u1− 1−x ⅇx  
) ≤ k = 0.0236512 < 1,  

 u2 − u ≤ k u1 −  1 − x ⅇx   = k u1 − u ≤
kk u0 − u , 

Thus, we get 

 u2 − u ≤ k2 u0 − u , 

Similarly, 

 u3 − u =  u3 −  1 − x ⅇx   ≤  (u2 −  1 −
xⅇx )(u3−1−xⅇx u2−1−xⅇx ), 

Since,  ∀ x ϵ  0,1 ,   0 < 𝑘 < 1, When  𝑥 =  
1

3
,

 (
u3− 1−x ⅇx  

u2− 1−x ⅇx  
) ≤ k = 0.0236351 < 1,  

 u3 − u ≤ k u2 −  1 − x ⅇx   = k u2 − u ≤
kk2 u0 − u , 

 u3 − u ≤ k3 u0 − u , 
By continuing in this way we get: 

 un − u ≤ kn u0 − u , 
Therefore, 

 limn → ∞ un − u ≤  limn → ∞kn  u0 − u = 0, 

limn → ∞kn = 0, then 

 limn → ∞ un − u  = 0→ limn → ∞ un = u, that is u x =

lim
n → ∞

 un x =  1 − x ⅇx   , which is an exact solution. 
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5. Conclusion: 
 

The main objective of this paper has been achieved by 

solving initial and boundary value problems that appeared in 

engineering and applied science.  The exact solutions for 

Riccati and Pantograph equations are obtained. However, we 

achieved the approximate solutions for beam equation 

through calculate the absolute error functions and better 

accuracy is obtained in comparison to HPM and VIM. The 

efficiency and accuracy of the TAM has been proved by 

studying the convergence and error analysis. It is seems that 

the TAM appears to be accurate to employ with reliable 

results and does not required any restricted assumption to 

deal with nonlinear terms. 
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