
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 6, June 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

An Optimized Approach for Processing Small Files

in HDFS

Deepika

Department of CSE, MSRIT, Bangalore-54, India

Abstract: In Today’s world cloud storage, has become an important part of the cloud computing system. Hadoop is an open-source

software for computing huge number of data sets to facilitate storage, analyze,manage and access functionality in distributed systems

across huge number of systems. Many of the user created data are of small files. HDFS is a distributed file system that manages the file

processing across huge number of machines in distributed systems with minimum hardware requirement for computation. The

performance of the HDFS degrades when it is handling the storage and access functionality of huge number of small files. This paper

introduces the optimized strategies to handle small file processing in terms of storage and access efficiencies. Replication algorithms:

HAR and sequenceFile, merging algorithms, replica placement algorithms, Structurally-Related Small Files (SSF)- File Merging and

Prefetching Scheme (FMP) and SSF-FMP with three level prefetching-catching technology. The proposed strategies help in effective

increase of access and storage efficiency of small files. Inclemently shorten the time spent for reading and writing of small files when

requested by clients.

Keywords: Cloud storage, HDFS, Merging, Replica placement, sequence File.

1. Introduction

Now days’ cloud computing has become most important

computation mechanism in the web pattern computation and

more and more around the world. Cloud storage is the main

part of cloud computing as it provides the data storage access

of large data sets for end users whenever and wherever

required in the distributed file system[1]. Data replication

acts vital role in the cloud storage in terms of data

availability, minimizing data access latency and load balance

on several servers at the same time. Hence performance of

the system increased exponentially [3].

Hadoop

Hadoop is an open-source software for computing huge data

sets to facilitate storage, manage, analyze and access

functionality in distributed systems across huge number of

systems. The Hadoop mechanism started in Google,

Facebook, Twitter etc. to store and process huge amount of

data. Hadoop mainly contains the two parts they are: Map

Reduce and Hadoop Distributed File System(HDFS) [2].

HDFS is a distributed file system that manages the file

processing across huge number of machines in distributed

systems with minimum hardware requirement for

computation. HDFS mainly supports write once-read many

type of workload on streaming data access and huge data

sets. It provides the data block replication of data to save

against hardware failures. HDFS is mainly a master/slave

architecture and includes the mainly three components those

are: Name Node, Data Node and Clients as show in bellow

figure.

HDFS contains single Name Node that mainly responsible

for managing namespace for file systems with respect block

replacement mechanism and data Node. It stores the

metadata or file namespace in DRAM for fast access and

also keeps the copy of the file system namespace

(FSIMange) on disk for data recovery. Any modification or

updation to the file system namespace are stored in the

EDitLog and timely merge with the FsImage so that stored

copy of the file system namespace always be up to date.

Name Node contains the files metadata, filedirectories, file

content blocks which includes updation time,file length,

block size, proprietorship, replication, access information.

Data Nodes stores the blocks of data from the splitting

mechanism of original file into smaller blocks of data with

each blocking having the size of 64MB.Data Nodes are

stores the file in terms of blocks of data and responsible for

serving read write to/from clients. Data Nodes does the

operations on blocks based on the instruction given by the

Name Node. HDFS mainly offers replication for fault

tolerant and saves against node failure. HDFS mainly defers

from other file system in the following cases:

1) Fault-tolerant

2) Low cost hardware

3) Increased Throughput

MapReduce

MapReduce is another mechanism that supports the parallel

generating and processing huge data sets. It mainly takes

care of paralleling, scheduling of tasks and handles the

failures automatically. Map function inMapReduce frame

processes the key-value pair to generate intermediate key-

value pairs.Reduce function in MapReduce frame integrates

the intermediate values that associated with the same

intermediate key [4].

2. Small File Problem in HDFS

HDFS is a distributed file system that manages the file

processing across huge number of machines in distributed

systems with minimum hardware requirement for

computation. The capacity of the HDFS incrementally

reduces, when it is handling the storage and access

functionality of huge number of small files. Many current

systems in energy, climatology, astronomy, biology, e-

Business, e-Library, and e-Learning contain huge amounts of

small files. Hence how to manage storage and access of

small files and the replication becomes a critical issue in

Paper ID: ART20174185 402

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 6, June 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

HDFS. Storing and managing of huge number of small files

mainly creates heavy burden on the Name Node itself. It

Increases the memory consumption of Name Node and

degrades the access efficiency of small files. The huge

number of small files creates more impact on the

performance of the metadata management in HDFS.HDFS

appears as a bottleneck for handling metadata services for

huge small files.

3. Optimized Solutions to Small Files

Data replication

Data replication is widely used in the cloud computing

system to give the promise for data availability and increased

system reliability. Computation node access the data for

computation also be stored in the storage that may have some

geological distance from the computational node. Hence, we

can use the data replica strategy that stores the replica of data

to other storage node that close to the computation node so

that time to access the data from storage node can be reduced

incrementally method of data replication helps in large

distributed system can minimize the energy cost and

expenses of the operating systems also handles the data lost

during some situation in the distributed systems

.

General Solutions

1. HAR (Hadoop archives):

HAR combines the HDFS files into blocks of data. AR

maintained both data files and metadata files. It may increase

the performance on memory usage of Name Node. Creation

of copy of the file when creation of archives leads to heavy

load on the disk space [3].

2. Sequence File

Sequence File has the concept of Persistent data structure is

used to store the binary key-value pairs of data files. The key

value contains the filename and value become the content of

the files. The bottle neck with Sequence File access is that, it

needs to read whole Sequence File to lookup into particular

key and the mentioned key can be deleted or updated. Hence

access efficiency of sequence File is mostly affected [3].

The Merging Algorithm of Small Files

 Merging algorithms has the concept forstoring of huge

number of small files into large files. It reduces the length of

the metadata ofhuge number of small files storage. Hence

data access efficiency and latency can be improved and

access time is saved accordingly. Here files are classified

into four types they are: Read intensive, write intensive, read

and write intensive and read and write sparse. The idea

behind here is classifying all small files into four types and

merge the files that belongs to specific categories and

allocate files into blocks of data. Then merging of third and

second category to fourth category and then merge files of

first category to these blocks if some blocks are not

otherwise merge all files belongs to first category. Basic idea

is small files are merged into large files and allocated storage

interims of blocks [3].

Replica Placement Algorithm

Based on the merging algorithms, replica placement

algorithm will act accordingly. Some set of small files will

be selected based on the size of the small files and placement

logic will be activated at some interval of time t. Level

mechanism maintained here, firstly merged files are stored in

level 2, if user want to access these files these files will be

moving upper levels i.e. level1 and level0.The data at level2

is from Data Nodes. The main objective of the replica

placement algorithm is todetermine whether a block that

stores small files should be placed in an Innode[3].

Structurally-Related Small Files (SSF)- File Merging and

Prefetching Scheme (FMP)

Structurally-related files are the files that are dependent

segments of a large file. These files have the characteristics

that, they can be merged into fixed set, to be represented as

large file. Set contains fixed file numbers and other files are

not included in this fixed set. By considering the approach of

structurally related files, FMP-SSF is introduced. FMP-SSF

includes the following steps:

 The large files contain the Structurally-related small

files are merged into single file and italso calledmerged

file to reduce burden on the Name Node in terms of

memory consumption.

 Prefetching and caching methods are user to improve the

access efficiency of small files.

File merging will take place in HDFS clients, that merges

large files contain the structurally-related small files into

single merged file. Name Node manages the metadata of

merged file and existence of original files will not be

perceived in Name Node. So, huge small files merging

methods reduces the complexity of metadata management by

Name.Thus, memory consumption on Name Node reduces

increasingly. Local index file contains the indexes for

original files which defines length and offset of merged file.

Hence for every merged file, index file is built to denote

offset and length of native files in merged file. If, merged file

contains multiple blocks, local index files for each block are

pointed by the starting address of each block. Storage

efficiency improved incrementally using SSF-FMP method

by reducing memory consumption on Name Node with

merging of huge number of small files into single merged

file and improved access efficiency by using catching

technique to access small files by reducing access time [4].

Structurally-Related Small Files (SSF)- File Merging and

Prefetching Scheme (FMP) with three level prefetching-

catching technology

SSF-FMP includes the following three level prefetching and

catching technology

a) Metadata catching

b) Prefetching index

c) Prefetching correlated files

a) Metadata catching
In metadata catching, file mustbe bind to the merged file to

get the merged file metadata from Name Node for reading

and writing of small files when requested by clients. The

cached metadata of the merged file helps in minimizing the

connection to the Name Node to fetch the metadata and

clients can directly access the cached metadata when the

native files of the merged file requested by clients. Hence,

we can save the accessing time for merged file metadata

Paper ID: ART20174185 403

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 6, June 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

from the Name Node when end user requests the same file

repeatedly [5].

b) Prefetching index

Local index files contain the offset and length of each files

belongs to the merged files and stored in different blocks.

This helps the client to identify blocks that contains the

requested file. Prefetching local index file from the Data

Node helps to perform direct I/O operations when reading

files that belongs to the same merged file. Hence reducing

the I/O operation time [5].

c) Prefetching correlated file
Files of the merged file contains the files in logical order and

have the right correlations. The prefetching correlated files

triggered when the clients gets the requested file. Depending

on the logical order of the files in merged file, prefetching of

the correlated files in the same merged files takes place [5].

Optimized Scheme – SIFM

Optimized schema called Structured index file merging used

to improve access and storage efficiency of small files in

Hadoop distributed file system. The idea behind SIFM

includes the following:

1) File correlations are included in merging files that

reduces the access time and delay while reading small

files.

2) Storing metadata of files in a structed distributed

architecture is used to reduce the access time operations

of requested files.

3) Access locality is applied in the inter block on Data

Nodes. Catching and prefetching used to reduce the

access time when simultaneous reading of huge number

of small files.

As per the file merging algorithm, small files are merged and

converted as a merged file. In optimized scheme, small files

are merged to the large file. At the same time the metadata

file creation and Structured index files are built for files of

merged file thatloaded into the Name Node and merged files

loaded into the Data Node. In other side catching and

prefetching schema helps in metadata catching and file

indexingto fetch small files. The requested files are searched

in HDFS blocks based on the offset and length of small files

when requested by clients.Optimized technique for fetching

small files greatly helps in improving I/O performance and

reduces the communication cost when reading huge number

of small files [6].

4. Observations and Suggestions on Below

Algorithms

By analyzing the table created above in Table 1, weakness in

some of these strategies are pointed out along with some

suggestions for improvement:

1) Merging algorithms and block replacement algorithm

performs better than HAR and SequenceFile in terms of

performance, access and storage efficiency [3].

2) Merging of structurally related small files enhances the

access and storage efficiency by using catching

technology to shorten the access the time than just

merging of files [4].

3) Structured index file merging and prefetching using

catching performs better than the merging algorithms and

incrementally reduces the burden on Name Node in

HDFS [6].

4) Merging model to merge massive small files with

efficient index structure optimizes the performance of

processing small files and efficiently reduces the CPU

time taken to process small files which reduces the

memory utilization of the Name Node [9].
 Comparison of existing Strategies for small file processing

Sl.

No.

Title of Paper Techniques Used What isOptimized Metrics for Evaluation

1 Research Article -

Optimized Data

Replication for Small

Files in Cloud Storage

Systems [3]

 Merging algorithm

 Block replica placement

algorithm

 Effectively shorten the time spent

reading and writing small files

 Improve the access efficiencies of

small files

 Performs better than HAR and

SequenceFile

 Time spent reading and

writing small files

 Access time of small files

2 An Efficient Approach for

Storing and Accessing

Small Files in HDFS [4]

 structurally-related small

files merging and

prefetching technique

 Caching technique

 Boundary Filling algorithm

 Good storage efficiency

 Access efficiency of small files

 Better performance by caching

 Storage efficiency

 access time

 Response Time

 Performance

3 An optimized approach

for storing and accessing

small files on cloud

storage [5]

 File grouping

 Prefetching technique

 Storage efficiency of small files

 Access efficiency of small files

 Response time

 Storage efficiency

 Access efficiency

4 Optimization Scheme for

Small Files Storage Based

on Hadoop Distributed

File System [6]

 Structured Index File

Merging-SIFM

 Prefetching and caching

strategy

 Better performance in storing and

accessing of huge small files on HDFS

 Performance

 Access time

5 An effective strategy for

improving small file

problem in distributed file

system [7]

 Small files merge strategy

 Prefetching files based the

transition probability

 MDS workload is ffectively reduced

 Request responsedelay.
 MDS workload

 Access delay

Paper ID: ART20174185 404

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 6, June 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

6 Optimization strategy of

Hadoop small file storage

for big data in healthcare

[8]

 File merging algorithm

based on balance of data

block

 Optimizethe volume distribution of the

big file after merging

 Effective reduce in number of data

blocks

 Reduce the memory overhead of major

nodes of cluster

 Reduce load to achieve high-efficiency

operation of data processing

 Distribution of big file

 Number of data blocks

 Memory overhead on

Name node

7 Improving the

Performance of

Processing for

Small Files in Hadoop: A

Case Study of Weather

Data Analytics [9]

 Merge Model to merge

massive small files

 Efficient indexing

mechanism

 Optimize performance of processing

small files drastically up to 90.83%

 Effectively reduces the memory

utilization of the namenode

 Less CPU time taken

 Reduces the time taken

 Efficiency of storing, managingand

processing small file

 Performance

 Data processing time

 Memory utilization

 CPU time

 Storage efficiency

5. Conclusion

Conclusion and Future work:

Most of the scientific and other applications are cloud based.

Cloud storage is the main part of cloud computing as it

provides the data storage access of large data sets for end

users whenever and wherever required in the distributed file

system.HDFS is a distributed file system that manages the

file processing across huge number of machines in

distributed systems with minimum hardware requirement for

computation. This paper introduces methods to handle the

small files problem inters of accessing and storage of huge

number of small files. Merging algorithm helps to

mergesmall files to form a large or logical merged file and

replica placement algorithm reduce theseeking time when

reading or writing huge number of small files.

The merging and Replica placement proposed in existing

system typically optimizes the storage efficiency and

minimizes the seeking time when file requested by clients. In

Future work using catching technique in accessing small files

helps in improving access efficiency more than the existing

strategies.

References

[1] T. Sivashakthi and N. Prabakaran, “A survey on storage

techniquesin cloud computing,” International Journal of

EmergingTechnology and Advanced Engineering, vol.

3, no. 12, pp. 125–128,2013.

[2] X. Liu, J. Han, Y. Zhong, C. Han, and X. He,

“ImplementingWebGIS on hadoop: a case study of

improving small file I/Operformance onHDFS,” in

Proceedings of the IEEE InternationalConference on

Cluster Computing and Workshops.

[3] Optimized Data Replication for Small Files in Cloud

Storage Systems Volume 2016, Research Article.

Article ID 4837894,2016

[4] An Efficient Approach for Storing and Accessing Small

Files in HDFS Volume No.: II, Special Issue on IEEE

Sponsored International Conference on Intelligent

Systems and Control (ISCO’15).

[5] An optimized approach for storing and accessing small

files on cloud storage, Journal of Network and Computer

Applications,2012.

[6] Optimization Scheme for Small Files Storage Based on

Hadoop Distributed File System.Yingchi Mao1, 2,

Bicong Jia1, Wei Min1 and Jiulong Wang1 Vol.8, No.5

(2015), pp.241-254.International Journal of Database

Theory and Application.

[7] An effective strategy for improving small file problem

in distributed file systemTao Wang, Shihong Yao,

Zhengquan Xu*, LianXiong, Xin Gu, XipingYang

International Conference on Information Science and

Control Engineering,2015.

[8] Optimization strategy of Hadoop small file storagefor

big data in healthcareHui He1 · Zhonghui Du1 Weizhe

Zhang1Allen Chen,2015.

[9] International Journal of Computer Science and

Information Technologies, Vol. 5 (5), 2014, 6436-

6439.Improving the Performance of Processing for

Small Files in Hadoop: A Case Study of Weather Data

Analytics.

Paper ID: ART20174185 405

