
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 7, July 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Managing the Data Effectively Using Object

Relational Data Store

T. Sivagamasundari

Research Scholar, Department of Computer Science, Prist University

Abstract: The collection of interrelated data, usually referred to as the database, contains information relevant to an enterprise. The

primary goal of Database Management System is to provide a way to store and retrieve database information that is both convenient and

efficient. Management of data involves both defining structures for storage of information and providing mechanisms for the

manipulation of information. A relational database consists of a collection of relations, each of which is assigned a unique name. The

relational database contains a set of objects used to store, access, and manage data. The set of objects includes tables, views, indexes,

aliases, distinct types, functions, procedures, sequences, and packages. Managing the data effectively using Object Relational Data

Store (ORDS) is a Object Oriented Relational Database. It provides object oriented enabled features. It ensures the safety of information

stored, despite system crashes or attempts at unauthorized access. If data to be shared among several users, the system will avoid possible

anomalous results. It is designed to perform very well with most typical SQL operations.

Keywords: Relational Embeddable Database, object-relational database, Object Oriented Relational Database, applications programming

interfaces

1. Introduction

ORDS is designed to support the SQL standard, and

provides a very full-featured implementation. It supports

strong encryption. It doesn't require a database administrator

or any external configuration files. Create a database by

connecting to it. It's as simple as that. We have to just

include the qed.jar file in your class path and use the

standard JDBC interfaces. ORDS provides robust data

protection and data recovery features. Committed

transactions won't be lost, even if your application crashes at

an "inopportune" time. Furthermore, ORDS makes it easy to

perform online backups of your database, either based on a

schedule, or at a time of your choosing.

1.1 Importance Choosing

ORDS is proven as a high-performance, easy-to-use, and

affordable database that gives you more flexibility than

proprietary solutions. The embedded server library makes

ideally suited for object oriented database needs. ORDS

provides robust data protection and data recovery features.

Committed transactions won't be lost, even if your

application crashes at an "inopportune" time. Furthermore,

ORDS makes it easy to perform online

Backups of your database either based on a schedule, or at a

time of your choosing. ORDS supports strong encryption.

ORDS is designed to support the SQL standard, and

provides a very full-featured ORDS implementation. The

embedded server library makes ideally suited for embedded

database needs.

1.2 Scope of the Present Work

Object relational systems are complex data types and it

needs powerful query languages and high protection for the

data. This is general but some database systems blur the

boundaries. For example, some object oriented database

systems built around a persistent programming language are

implemented on top of a relational database system. Such

systems may provide lower performance than object

oriented database systems built directly on a storage system,

but provides some of the stronger protection guarantees of

relational systems. Many object-relational database systems

are built on top of existing relational database systems.

Joins:

ORDS has a very simple join plan. Tables are joined left to

right, with the left table being the outer, the right table being

the inner table, in a series of nested inner loop INNER

JOINs wherever possible. Any kind of equijoin or join on

columns will use this approach. Failing a common column,

we'll resort to a cross join, which is a full cartesian product.

The inner table in the cross join is iterated for every row of

the outer, leading to possibly very long run times.

Concurrency:

ORDS fully supports concurrent access, while maintaining

SERIALIZABLE isolation and ACID properties. ORDS's

Lock Manager supports a hierarchical lock tree which uses

multiple lock modes to permit multiple readers and a single

writer to each database structure. Locking is performed at

the table level. Table locking implies that sometimes

programs will block, waiting for a table lock, if it's in use by

other transactions in an "inconsistent" mode. Table locking

is also (as with any two-phase locking approach) subject to

deadlock. ORDS inelegantly resolves this using a

configurable "lock timeout" parameter.

In general, these limitations related to concurrency are the

result of a conscious design compromise: ORDS's target

architecture isn't designed to maximize concurrent

performance. Rather, the objective is to be small and fast for

typical (i.e., single user).

2. Review of Literature

2.1 Object Relational Database

Paper ID: ART20174900 669

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 7, July 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Database is a collection of information organized in such a

way that a computer program can quickly select desired

pieces of data. We can think of a database as an electronic

filing system. Traditional databases are organized by fields,

records, and files. a field is a single piece of information; a

record is one complete set of fields; and a file is a collection

of records.

A relational database is a database that can be perceived as

a set of tables and can be manipulated in accordance with

the relational model of data. The relational database contains

a set of objects used to store, access, and manage data. The

set of objects includes tables, views, indexes, aliases, distinct

types, functions, procedures, sequences, and packages In

object relational models extend the relational data model by

providing a richer type system including complex data types

and object orientation. Relational query languages, in

particular sql, need to be correspondingly extended to deal

with the richer type system. Such extensions attempt to

preserve the relational foundations, in particular, the

declarative access to data- while extending the modeling

power.

2.2 Key Consideration

1) Delivering a Better "Out-of-the Box" Experience

2) Full Relational Database Functionality

3) Lower Price & Total Cost of Ownership

4) Cross-platform Portability

5) Shorter Time to Market

6) Shorter Sales Cycle

7) Superior Performance, Scalability and Reliability

8) Small Footprint

9) Ease of Use

10) Administration

3. Methodology

ORDS consists of various processing stages. Each stage

represents a level of processing the database. The Relational

Embeddable Database implements SQL and JDBC 2.0.

3.1 Linking to Storage System

In order to access a database, you need to obtain a JDBC

Connection object. There are two basic ways to get a

database connection: Using the JDBC Driver Manager

interface, you can directly obtain a JDBC Connection, if we

know, the name of the JDBC Driver class

(com.quadcap.jdbc.JdbcDriver). The database URL

(jdbc:ORDS:database-name). Overallserver configuration

information is also managed through the Config "service".

ORDBMSs possess storage manager facilities similar to

RDBMSs. Disk space is taken under the control of the

RDBMS, and data is written into it according to whatever

administrative rules are specified. All the indexing, query

processing, and cache management techniques that are part

of an RDBMS are also used in an ORDBMS. Further,

distributed database techniques can be adapted to

incorporate user-defined types and functions. However, all

of these mechanisms must be re-implemented to generalize

them so that they can work for user-defined types. For

example, page management is generalized to cope with

variable length OPAQUE type objects. You can also

integrate code into the engine to implement an entirely new

storage manager.

3.1 Extensible Storage Management

Performance & Administration
ORDS is designed to perform very well with most typical

SQL operations. It requires zero administration. Still,

sometimes you want to administer your data with ORDS,

the database is simply a directory in the file system

containing files accessed via a JDBC url using the ORDS

JDBC driver.

3.2 Connection

The Relational Embeddable Database implements SQL92

and JDBC 2.0. Connecting to the database in order to access

a database, you need to obtain a JDBC Connection object.

There are two basic ways to get a database connection:

1) The name of the JDBC Driver class

(com.quadcap.jdbc.JdbcDriver)

2) The database URL (jdbc:qed:database-name)

3) Any connection parameters.

3.3 Design of the Object-Relational Database

The object-oriented methods used for the design of the

systems with object-relational databases are based on the

concepts of object and classes of objects and allow the use

of three different models for designing an object-

relational database: the static model by which are modeled

objects and the relations between them; the dynamic model

by which are described interactions between objects; the

functional model by which are transformed data values using

operations and processes.

3.4 Object-Relational Database Technology

The object-relational database technology occurrence can be

traced back to the middle of 1990s after emergence of

object-oriented database (OODB). In their book “Object-

relational DBMSs: the Next Great Wave”, define their four-

quadrant view (two by two matrix) of the data processing

world: relational database, object-relational database, data

file processing, and object-oriented database. Practically,

ORDBMS bridges the gap between OODBMS and RDBMS

by allowing users to take advantage of OODB'MSs great

productivity and complex data type without losing their

existing investment in relational data. In fact, an ORDBMS

Paper ID: ART20174900 670

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 7, July 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

engine supports both relational and object-relational features

in an integrated fashion. The u0nderlying ORDB data model

is relational because object data is stored in tables or

columns. ORDB designers can work with familiar tabular

structures and data definition languages (DDLs) while

assimilating new object-oriented features. It is essentially a

relational data model with object-oriented extensions. In

response to the evolutional change of ORDB technology,

SQL:1999 started supporting object-relational data modeling

features in database management standardization and

SQL:2003 continues this evolution. Currently, all the major

database vendors have upgraded their relational database

products to object-relational database management systems

to reflect the new SQL standards [9] and ready to be used by

industrial practitioners.

3.5 ORDBMS for Object Integration

The beauty of ORDBMSs is reusability and sharing.

Reusability mainly comes from storing data and methods

together in object types and performing their functionality

on the ORDBMS server, rather than have the methods coded

separately in each application. Sharing comes from using

user-defined standard data types to make the database

structure more standardized.

3.6 Database Stored Procedures

Almost all RDBMSs allow you to create database

procedures that implement business processes. This allows

developers to move considerable portions of an information

system’s total functionality into the DBMS. Although

centralizing CPU and memory requirements on a single

machine can limit scalability, in many situations it can

improve the system’s overall throughput and simplify its

management.

ORDBMS as the Object Server Architecture

3.7 Desing and Implementation Tools

UML is used as a tool for ORDBMS design. UML is a new

modeling tool developed by the Object Management Group.

UML development was spearheaded by Rational Software

Corp. Although the UML technology was developed mainly

for software design, the important part of this technology,

classes and methods, are roughly equivalent to ORDBMS

types and methods. In UML class diagrams, a class is

displayed as a box (see figure 1) that include three sections:

the top section gives the class name; the middle section

includes the attributes for individual objects of the class; and

the last section includes methods that can be applied to these

objects.

UML Class Diagram

4. Results and Discussions

ORDBMSs possess storage manager facilities similar to

RDBMSs. Disk space is taken under the control of the

ORDBMS, and data is written into it according to whatever

administrative rules are specified. All the indexing, query

processing, and cache management techniques that are part

of an RDBMS are also used in an ORDBMS. Further,

distributed database techniques can be adapted to

incorporate user-defined types and functions. However, all

of these mechanisms must be re-implemented to generalize

them so that they can work for user-defined types. For

example, page management is generalized to cope with

variable length OPAQUE type objects. You can also

integrate code into the engine to implement an entirely new

storage manager..

Development flow of the applications with object-

relational databases

Paper ID: ART20174900 671

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 7, July 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

4.1 Distributed Deployment

Often the volume of data in a single information system, or

the workload imposed by its users, is too much for any one

computer. Storing shared data, and providing efficient

access to it, requires that the system be partitioned or

distributed across several machines. Combining extensibility

with distributed database features makes new system

architectures possible. A large central machine contains

canonical copies of all data. Surrounding it is a cloud of

other, smaller installations.

An ORDBMS’s system catalogs become a metadata

repository that records information about the modules of

programming logic integrated into the ORDBMS. Over

time, as new functionality is added to the application and as

the programming staff changes, the system’s catalogs can be

used to determine the extent of the current system’s

functionality and how it all fits together.

Distributed Information System Deployment

5. Summary and Conclusions

5.1 Summary

In spite of many advantages, ORDBMSs also had

drawbacks. The architecture of object-relational model is not

appropriate for high-speed web applications. However, with

advantages like large storage capacity, access speed, and

manipulation power of object databases, ORDBMSs are set

to conquer the database market. In summary, relational and

object-oriented database systems each have certain strengths

as well as certain weaknesses. In general, the weakness of

one type of system tends to be strength of the other.

The contribution Object relational data store uniquely

provides guidelines on how to use ORDBMS to overcome

relational database existing problems and improve database

performance in the database development using ORDBMS

features. There is some research that has been done in

ORDBMS technology as ORDBMSs have become

commonplace in recent years.

So far very little research has been done in using ORDBMS

to overcome relational database weaknesses and solve some

existing normalization problems. This paper provides the

guidelines for the traditional relational database practitioners

to solve existing problems using ORDB technology. Many

traditional database practitioners consider the ORDBMS

technology as complex results in the loss of the essential

simplicity and purity of the relational database model and

stay away from it. There is a need to provide these

professionals with the guidelines for their specific use for

their future database development. This paper presents the

script templates for them to implement ORDB technology in

their career.

We find that the benefits of the object-oriented methods in

comparison with the structured one, recommend the object-

oriented approach in the case of object-relational databases

design. Since object-oriented methodologies and methods

have some limitations as well as many differences (in terms

of symbols, notations or types of diagrams), it was needed a

standard for modeling that can be widely applied in creating

new systems or the maintenance of systems.

5.2 Conclusion

ORDS provides object oriented features, robust data

protection and data recovery features. Committed

transactions won't be lost, even if your application crashes at

an "inopportune" time. Furthermore, ORDS makes it easy to

perform online backups of your database, either based on a

schedule, or at a time of your choosing. ORDS is proven as a

high-performance, easy-to-use, and affordable database that

gives you more flexibility than proprietary solutions. The

embedded server library makes ideally suited for embedded

database needs.

Although the user-defined methods are defined with object

data within the object type, they can be shared and reused in

multiple database application programs. This can result in

improved operational efficiency for the IT department, as

well, by improving communication and cooperation between

applications. An object-relational database schema consists

of a number of related tables that forms connected user-

defined object-types. Object-types possess all the properties

of a class, data abstraction, encapsulation, inheritance and

polymorphism. These traits of object-types are embedded in

the relational nature of the database; data model, security,

concurrency, normalization. In more precise words, the

underlying ORDB data model is relational because object

data is stored in tables or columns.

The Destination Sequenced Distance Vector (DSDV)

protocol is a proactive routing protocol based upon the

distributed Bellman Ford algorithm . In this routing protocol,

each mobile host maintains a table consisting of the next-

hop neighbor and the distance to the destination in terms of

number of hops. It uses sequence numbers for the

destination nodes to determine “freshness” of a particular

route, in order to avoid any short or longlived routing loops.

If two routes have the same sequence number, the one with

smaller distance metric is advertised. The sequence number

is incremented upon every update sent by the host. All the

Paper ID: ART20174900 672

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 7, July 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

hosts periodically broadcast their tables to their neighboring

nodes in order to maintain an updated view of the network.

References

Book References

[1] Almeida, V.T., Güting, R.H., & Behr, T. (2006).

Querying moving objects in secondo. In Proceedings of

the 7th International Conference on Mobile Data

Management.

[2] Becker, L., Blunck, H., Hinrichs, K., & Vahrenhold., J.

(2004). A framework for representing moving objects.

In Proceedings of DEXA, (pp. 854-863).

[3] Cattel, R.G.G., & Barry, D.K. (eds.). (1997, 05) The

object database Standard: ODMG 2.0. Morgan

Kaufmann Publishers.

[4] Dieker S., & Güting, R.H. (2000). Plug and play with

query algebras: Secondo. A generic dbms development

environment. In Proceedings of Int’l Symp. on

Database Engineering and Applications (IDEAS), (pp.

380-390).

[5] Düntgen, C., Behr, T., & Güting, R.H. (2009).

Berlinmod: a benchmark for moving object databases.

The VLDB Journal, 18(6), 1335-1368.

[6] Frentzos, E., Pelekis, N., Ntoutsi, I, & Theodoridis, Y.

(2008). Trajectory database systems, In F. Giannotti

and D. Pedreschi (eds), Mobility, Data Mining and

Privacy. Springer.

Paper ID: ART20174900 673

