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Abstract: In this paper a recommended method based on shrinkage estimation technique has been implemented to estimate the shape 

parameter (α) of the power function distribution. The proposed approach will be involving the optimal region of prior estimation with 

new constant weight factor as well as including all the required statistical process. The statistical analyzing of the pattern behavior of the 

proposed estimator, equations of bias , mean squared error in addition to the relative efficiency expressions of the mentioned estimator 

were derived. The obtained outcomes were depending on the suggested data and including all of the analytical expressions. 
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1. Introduction 
 

In several applications, such as applied mathematics, 

engineering, natural sciences, and economics, many 

statistical distributions have been developed and used as a 

subjective description in the assessment of reliability 

prediction. "The power function distribution can be 

considered as a statistical mythology that was used in a 

sample category for which there is only limited data and in 

cases that only the relationship between variables is known 

but data is scare";[1] ."many of researchers concluded that 

the Power function distribution is preferred over than a lot of 

statistical distributions such as Exponential, Lognormal and 

Weibull in the reason that it provides a better fit for failure 

data and gives more proper information about reliability and 

hazard rates"; [2] ,[3].Although Bayesian estimates method 

of parameters have been used by several statisticians and 

mathematical analysts ,but they have been introduced the 

estimate for scale parameter named as blue estimate and they 

have location parameter from Log-gamma distribution. 

Many of others were presented estimations of normal 

distribution parameters by using likelihood function; [4]. The 

power function distribution or it is also common to 

abbreviate as (PFD) can be considered as a flexible 

distribution that has the ability to model the different types of 

data. It is frequently used for the reliability process, life time 

parameter and income distribution data. "The (PFD) is 

favored over exponential, lognormal and Weibull because it 

provides a better fit for failure data and more appropriate 

information about reliability and hazard rates"; [1]- [5]. 

 

Similarly many probability models are also used to assess the 

pattern of the income distribution but these models are 

mathematically more complex to handle. 

 

The probability density function of a random variable X 

which is follows the Power function distribution (PD (α, θ)) 

is given as below 

 

 

𝑓 𝑥; Ɵ, 𝛼 = 𝛼Ɵ𝛼𝑥𝛼−1               0 ≤ 𝑥 ≤ Ɵ−1 (1) 

 

Here,  refer to the shape parameter and θ   refer to the scale 

parameter. 

 

The following table characterizes some properties for power 

function distribution and graph of its probability density 

function. 

 

Table (1): Properties of Power Function Distribution 

Notation P(,𝜃) 

parameters 𝛼>0 ,θ>0 

support 0 ≤ 𝑥 ≤ Ɵ−1 

PDF 𝑓 𝑥; Ɵ, 𝛼 = 𝛼Ɵ𝛼𝑥𝛼−1 

CDF 𝐹 𝑥; Ɵ, 𝛼 = Ɵ𝛼𝑥𝛼  

 

Mean=E(x) 

𝛼

(𝛼 + 1)𝜃
 

 

E(𝑥2) 

𝛼

(𝛼 + 2)𝜃
 

 

Var(x) 

 

 
𝛼

(𝛼 + 1)(𝛼 + 2)𝜃2 

Figure 1: Probability Density Function of the Power 

Distribution 

The problem for estimating the unknown shape parameter 

() of the Power function distribution with known scale 

parameter (θ=1) has been considered when some prior 

knowledge (𝛼0) concerning the real value () is on hand 
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depends on pretest shrinkage procedure, through suggested 

an optimal region R and new weight shrinkage factor  (). 

As well known in Thompson (1968), shrinkage estimator has 

the following form 

1 1 0
ˆ ˆ ˆ( ) (1 ( ))     

                         
(2) 

And the pretest shrinkage estimator (PT) is an estimator for 

test the hypothesesH0: = 0   against. HA:  with of 

level of significance (). 

 

If the null hypothesis (H0)holds, then we use the shrinkage 

estimator distinct in (2). 

 

While, when H0 rejected, recall the PT through changed 

shrinkage weight factor 2 (); 0 2()  1 as below 

  2 2 0
ˆ ˆ ˆ( ) (1 ( ))     

                        
(3) 

 

Thus, the common pretest shrinkage estimator (PT) became 

as below: 

1 1 0

2 2 0

ˆ ˆ ˆ ˆ( ) (1 ( )) , if R

ˆ ˆ ˆ ˆ( ) (1 ( )) , if R

       
  

       


               

(4) 

Note that  i i
ˆ ˆ( ),0 ( ) 1      , i = 1, 2 is a shrinkage 

weight factor identifying confidence of ̂  and i
ˆ(1 ( ))   

agreeing the confidence of 0 and i
ˆ( )   may well be a 

function of ̂  or possibly will be fixed , while (R) suggested 

to be an optimal pretest region for receipt the prior 

knowledge by means of level of significance . 

 

Numerous of scholars have been considered pretest 

shrinkage estimator (PT) defined in (4), see for example; [1], 

[6], [7] and [8].The aim of this paper is to estimation the 

shape parameter ()  power function distribution with known 

scale parameter (θ = 1) by proposed pretest shrinkage 

estimator (PT)  which is defined in (5) through study the 

indicators ; Bias, Mean squared error and Relative Efficiency 

of this estimator besides display the numerical  results for 

mentioned  expressions in  annexed tables.  Also, study the 

performance of the consider estimator and make 

comparisons with the ML estimator as well as with some 

studies introduced by some authors. 

 

2. Maximum Likelihood Estimator of α 
 

The maximum likelihood estimator (MLE) of Power 

function distribution (,θ) has been derived as the following 

procedure. 

        

Let x1, x2… xn be random sample of size n follows PD (,𝜃), 

the log- likelihood function be able as below: 

 L= log L (,𝜃) 

 =n ln (α) +n αln (θ) + (α-1) ∑lnxi                              (5) 

 

As we mentioned above, we assume that θ  is known (θ = 1). 

The partial derivative of L in equation (5) and equating the 

result to the zero  

 

n

i

i 1

L n
ln x 0




  

 


                               

(6) 

We obtain the MLE̂  as below 

MLE n

i

i 1

n n
ˆ

y
ln(x )




   



                                       (7) 

Noted that, y =−α 𝑙𝑛𝑥𝑖
𝑛
𝑖=1 ~𝐺(𝑛, 1) 

 

3. Pretest Shrinkage Estimator (PT) of 𝛼 (  ) 
 

Recall the pretest (PT) which is defined in (3) and 

putΨ1(∝ ) = 0  and Ψ2(∝ ) = 𝑘 for estimate the shape 

parameter  of power function distribution. 

The equation for Bias of   is  

0 0 0

R R

Bias( / ,R) E( )

ˆ ˆ ˆ ˆ ˆ( )f ( )d (k( ) ( ))f ( )d

   

           

 

 

Where, R  refer to complement of R and f ( ̂ ) refer to 

P.d.f. of ̂  with the following form 
n 1 n

ˆ
n

e
ˆ

ˆˆ for 0, 0f ( )
(n)n

0 o.w.

  


 

         
 

                  (8)  

We conclude, 

0 1

0 0

k
Bias( / ,R) {( 1)J (a*,b*) (1 k)( 1) nkJ (a*,b*)

n 1

kJ (a*,b*) ( 1)(1 k)J (a*,b*)} (9)

           


    

  

Where 
b* n 1 y

a*

y e
J (a*,b*) y dy; 0,1,2

(n)

 
 




 

                   

(10) 

Also, 10 (n 1)
, y ,a* a

ˆ

  
     

 
 

And 1b* b                                       (11) 

Thus, the expression of bias ratio [B ()] of   is well-

defined as below:- 

Bias( / ,R)
B( )

 
 






                                

 (12) 

The equation of Mean squared error (MSE) of   can be 

deriving as below:  

 

2

2 2 2

2 2

2 1 0

2

1 0

MSE( / ,R) E( )

n 2 2( 1)
k ( 1)

(n 1)(n 2) n 1

n J (a*,b*) 2n J (a*,b*) J (a*,b*)

1
2k( 1) ( 1) ( 1)

n 1

1
2kn( 1) J (a*,b*) J (a*,b*)

n

    

   
     

  

    

 
          

 
     

  

 

         

(13) 

The Relative Efficiency of   w.r.t. to the ̂  symbolized by 

R.Eff ( /, R) clear as 
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ˆMSE( )
R.Eff ( / ,R)

MSE( / ,R)


  

 


                      

(14) 

See for example; [7] and [8].  

 

 

4. Discussions Numerical Results 
 

The calculations of [B ()] and [R.Eff ()] expressions in 

equations (12) and (14) were used for the measured 

estimators . These calculations were achieved for the 

constants   = 0.05, 0.01, n = 4, 8, 16, 20, 𝑘 = 𝑛. ⧍4and  = 

0.25(0.25), 2. Some of these calculations are displayed in 

tables (2), (3), (4) and (5) for some models of these 

constants.  

 

Table 2: Shown the Ref of   w.r.t.( =0.05), n and 

(=0.25, 0.5, 0.75 and 1) when 𝑘 = 𝑛. ⧍4 

    

 n Ref. 0.25 0.5 0.75 1 

0.05 

4 Ref (.) 1.78 4.005 16.029 5.865x105 

8 Ref (.) 0.423 0 .952 3.809 1.562x1014 

16 Ref (.) 0.153 0.344 1.377 3.906x105 

20 Ref (.) 0.114 0.257 1.03 6.4x10−9 

0.05 

4 B() 0.749 0.5 0.25 1.304x10−4 

8 B() 0.75 0.5 0.25 1.142x10−8 

16 B() 0.749 0.499 0.249 1.067x10−4 

20 B() 0.75 0.5 0.25 6.579x10−6 

 

Table 3: Shown the Reef of   w.r.t.(=0.05), n and 

(=1.25, 1.5, 1.75 and 2) when 𝑘 = 𝑛. ⧍4 

    

 n Ref. 1.25 1,5 1.75 2 

0.05 

4 Ref (.) 15.996 4.001 1.779 1.1001 

8 Ref (.) 3.809 0.953 0.423 0.238 

16 Ref (.) 1.375 0.344 0.153 0.086 

20 Ref (.) 0.062 0.25 0.562 0.089 

0.05 

4 B() 0.25 0.5 0.749 0.999 

8 B() 0,25 0.5 0.15             1 

16 B() 0.75 0.499 0.749 0.999 

20 B() 0.25 0.5 0.75 1 

 

Table 4: Shown the Ref of   w.r.t.( =0.01), n and 

(=0.25, 0.5, 0.75 and 1) when 𝑘 = 𝑛. ⧍4 

    

 n Ref. 0.25 0.5 0.75 1 

0.01 

4 Ref (.) 1.778 4.005 16.029 5.865x106 

8 Ref (.) 0.423 0 .954 3.819 562x106 

16 Ref (.) 0.152 0.344 1.377 3.906x105 

20 Ref (.) 0.114 0.258 1.034 2.5x105 

0.01 

4 B() 0.75 -0.5 -0.25 11.304x10−4 

8 B() -0.75 0.499 -0.25 1.143x10−4 

16 B() -0.75 0.499 -0.249 1.0.67x10−4 

20 B() 0.75 0.499 -0.249 1.053x10−4 

 

Table 5: Shown the Ref of   w.r.t.( =0.01), n and 

(=1.25, 1.5, 1.75 and 2)when 𝑘 = 𝑛. ⧍4 

    

 n Ref. 1.25 1,5 1.75 2 

0.01 

4 Ref (.) 15.996 4.001 1.779 1.1001 

8 Ref (.) 3.812 0.953 0.424 0.238 

16 Ref (.) 1.375 0.344 0.153 0.086 

20 Ref (.) 1.032 0.258 0.115 0.065 

0.01 

4 B() 0.25 0.5 0.749 0.999 

8 B() 0.25 0.5 0.749 0.999 

16 B() 0.25 0.499 0.749 0.999 

20 B() 0.25 0.499 0.749 0.998 

 

The remark mentioned in the tables leads to the following 

results: 

i. The [R.Eff ()] of   are adversely proportional with 

small value of, i.e.  = 0.01 produce maximum 

efficiency. 

ii. The [R.Eff ()] of  are increasing function with 

increasing value of k. 

iii.  [R.Eff ()] of   determine maximum value when 

=0(=1), for all k, n, , and decreasing else (1).  

iv.  [B()] of   increasing when  increases. 

v.  [B()] of   are practically small when  = 0 and 

increases otherwise for all n and  .  

vi.  [R.Eff ()] of   decreasing function with increases 

value of k and n, for each,.  

vii. The Effective Interval [the value of  that makes 

R.Eff.() greater than one] using the estimator   is 

[0.5,1.5]. Here the pretest criterion is very important for 

guarantee that prior information is very closely to the 

actual value and prevent it far away from it, which get 

optimal effect of the considered estimator to obtain high 

efficiency. 

viii.  An estimator do better that the MLE exclusively 

when 0, which is given the effective of   when 

given significant weight of 0. And the augmentation of 

effectiveness may be reach to ten times. 

ix.  An estimator    has small MSE relative to some 

estimators presented by authors, see for instances [1]. 

 

5. Conclusions 
 

After the discussions overhead, it’s clearly that when using 

prior knowledge improved the MLE. It can be distinguished 

that if the prior knowledge 0 is very close to the true value 

of the  (i.e.; =1), the estimator accomplished better than 

MLE. If one has no assurance of 0, then proposed pretest 

shrinkage estimators (PT) will not recommended. We can 

carefully use the planned estimator for small n at standard  

and reasonable value of i
ˆ( )  . 
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