
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

Volume 7 Issue 1, January 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Energy - Saving Design Patterns for Mobile

Applications

Jagadeesh Duggirala

Software Engineer, Rakuten, Japan

Email: jag4364u[at]gmail.com

Abstract: In the rapidly evolving landscape of mobile applications, energy efficiency has become a critical concern for developers, users,

and device manufacturers. Mobile devices are powered by batteries with finite capacity, and the demand for energy - efficient applications

is increasing as users seek to maximize the battery life of their devices. This paper explores various energy - saving design patterns for

mobile applications, aiming to provide developers with actionable insights and best practices to optimize their applications for energy

efficiency.

Keywords: android applications, battery, energy saving, batching requests, work manager, background services

1. Introduction

The significance of energy efficiency in mobile applications

cannot be overstated. With the proliferation of smartphones

and mobile applications, the demand for longer battery life

has surged. Energy - hungry applications can lead to frequent

recharging, reduced device performance, and user

dissatisfaction. Understanding the factors that contribute to

energy consumption in mobile applications is essential for

designing energy - efficient solutions.

Key Factors Influencing Energy Consumption

1) Display: The screen is one of the most significant energy

consumers in a mobile device. Brightness levels, screen

resolution, and usage duration all impact battery life.

2) Processing: CPU and GPU usage for running

applications and rendering graphics can drain the battery

quickly.

3) Networking: Wireless communication (Wi - Fi, cellular

data, Bluetooth) consumes a considerable amount of

energy, especially during data transfer.

4) Sensors: GPS, accelerometer, gyroscope, and other

sensors continuously collect data, which can lead to

increased energy consumption.

5) Background Services: Applications running in the

background can consume energy without the user’s

awareness.

Energy - Saving Design Patterns

1) Lazy Initialization Pattern

• Concept: Initialize objects only when they are needed

rather than at the start of the application.

• Implementation: Use lazy properties in Kotlin (Lazy or

lateinit) and similar mechanisms in other languages.

• Benefit: Reduces initial load time and saves energy by

avoiding unnecessary object creation.

2) Observer Pattern

• Concept: Use observer or listener mechanisms to update

UI components only when there is a change in data.

• Implementation: Utilize LiveData or Flow in Android

to observe data changes and update the UI accordingly.

• Benefit: Minimizes the number of UI refreshes and

reduces CPU usage.

3) Batch Processing Pattern

• Concept: Accumulate multiple operations and process

them in a batch rather than individually.

• Implementation: Group network requests or database

transactions and execute them together.

• Benefit: Reduces the frequency of resource - intensive

operations like network access and I/O operations.

4) Adaptive Rate Pattern

• Concept: Adjust the rate of operations based on the

current context such as battery level, network conditions,

or user activity.

• Implementation: Use adaptive algorithms to change the

polling rate or update frequency.

• Benefit: Saves energy by reducing the intensity of

operations during low power conditions.

5) Resource Pooling Pattern

• Concept: Reuse expensive resources such as database

connections, threads, and objects instead of creating new

ones.

• Implementation: Implement object pools, connection

pools, and thread pools.

• Benefit: Reduces the overhead of creating and destroying

resources, leading to energy savings.

6) Geofencing Pattern

• Concept: Use geofencing to perform location - based

tasks only when the user enters or exits specified areas.

• Implementation: Use geofencing APIs provided by

platforms like Android and iOS.

• Benefit: Reduces the need for continuous location

tracking, saving energy.

7) Data Caching Pattern

• Concept: Store frequently accessed data locally to

minimize repetitive network requests.

• Implementation: Use caching mechanisms provided by

libraries such as Glide for images and Room for

databases.

• Benefit: Reduces network usage and speeds up data

access, saving energy.

8) Deferred Work Pattern

• Concept: Postpone non - critical work to a later time

when the device is plugged in or has sufficient battery.

• Implementation: Use job scheduling APIs like

WorkManager in Android to defer tasks.

Paper ID: SR24724152720 DOI: https://dx.doi.org/10.21275/SR24724152720 2106

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
mailto:jag4364u@gmail.com

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

Volume 7 Issue 1, January 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

• Benefit: Ensures that energy - intensive tasks are

performed only when appropriate, conserving battery

life.

9) Dark Mode Pattern

• Concept: Provide a dark theme option to reduce the

energy consumption of devices with OLED screens.

• Implementation: Design and implement themes for both

dark and light modes.

• Benefit: Saves energy on OLED screens where black

pixels consume less power.

10) Event Throttling/Debouncing Pattern

• Concept: Limit the rate at which event handlers are

called to avoid excessive processing.

• Implementation: Implement throttling and debouncing

techniques using libraries like RxJava or custom

implementations.

• Benefit: Reduces the number of operations performed in

response to rapid events, saving CPU cycles and energy.

11) Sensor Fusion Pattern

• Concept: Combine data from multiple sensors to reduce

the frequency and complexity of sensor readings.

• Implementation: Use sensor fusion APIs to integrate

accelerometer, gyroscope, and other sensor data.

• Benefit: Improves accuracy while reducing the overall

energy consumption of sensor operations.

12) Efficient Bitmap Handling Pattern

• Concept: Optimize the loading and processing of images

to reduce memory and CPU usage.

• Implementation: Use image loading libraries like Glide

or Picasso and resize images appropriately.

• Benefit: Reduces the energy required for image

processing and memory management.

13) Idle Detection Pattern

• Concept: Detect periods of user inactivity to reduce the

frequency of updates and background operations.

• Implementation: Monitor user interactions and adjust

the activity of background tasks accordingly.

• Benefit: Saves energy by minimizing unnecessary

operations during idle periods.

14) Efficient Navigation Pattern

• Concept: Optimize navigation flow to reduce the

creation of unnecessary activities or fragments.

• Implementation: Use single - activity architecture with

navigation components.

• Benefit: Reduces memory usage and improves

performance, leading to energy savings.

15) Incremental Data Loading Pattern

• Concept: Load data in chunks or pages instead of all at

once to minimize memory usage and processing time.

• Implementation: Implement pagination for lists and

other large data sets.

• Benefit: Saves energy by reducing the amount of data

processed at a time and the frequency of data loading

operations.

By employing these energy - saving design patterns,

developers can create mobile applications that are both

efficient and user - friendly, leading to longer battery life and

better overall performance.

2. Conclusion

Energy efficiency is a crucial aspect of modern mobile

application development. By implementing the design

patterns and best practices discussed in this paper, developers

can create applications that are not only functional and user -

friendly but also optimized for energy efficiency. As

technology continues to advance, the importance of energy -

saving design patterns will only grow, making it essential for

developers to stay informed and proactive in their approach

to energy - efficient mobile app development.

References

[1] Abed, S., Ferzli, R., & Abed, F. (2016). Energy -

efficient mobile applications design: Theoretical

overview and practical recommendations. Journal of

Mobile Networks and Applications, 21 (5), 765 - 780.

[2] Carroll, A., & Heiser, G. (2010). An analysis of power

consumption in a smartphone. Proceedings of the 2010

USENIX Annual Technical Conference.

[3] Ding, Y., Zheng, H., & Kanhere, S. S. (2013). Energy -

efficient scheduling for mobile cloud computing.

Proceedings of the 12th ACM International Conference

on Mobile and Ubiquitous Systems.

[4] Ferreira, D., Dey, A. K., & Kostakos, V. (2011).

Understanding human - smartphone concerns: A study

of battery life. Proceedings of the 9th International

Conference on Pervasive Computing.

[5] Google. (n. d.). Battery Historian. Retrieved from https:

//developer. android. com/studio/profile/battery -

historian

[6] Kountios, G., & Prevelakis, V. (2019). Energy -

efficient mobile application development. IEEE

Transactions on Mobile Computing, 18 (1), 29 - 43.

Paper ID: SR24724152720 DOI: https://dx.doi.org/10.21275/SR24724152720 2107

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
https://developer.android.com/studio/profile/battery-historian
https://developer.android.com/studio/profile/battery-historian
https://developer.android.com/studio/profile/battery-historian
https://developer.android.com/studio/profile/battery-historian

