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Abstract: In this paper, the SEIR epidemic compartment model was explored. The model showed two equilibria namely the disease - 

free equilibrium point (DFEP) and the endemic equilibrium point (EEP). The stability of these points was investigated into. It was 

shown that whenever the basic reproduction number was greater than unity ( ) then the endemic equilibrium point is stable but 

if otherwise that is  then the disease –free equilibrium point is stable. Sensitivity analysis was employed to investigate into the 

effect of the various parameters used in the model on the model output and it was revealed that the infection rate (α) and the recovery 

rate (ɗ) has the most significant effect on the SEIR epidemic model output in relation to the rate at which the latent individual moves to 

the infectious class. This was evidenced by the value of the basic reproduction number and the proportions of the classes at the endemic 

equilibrium point when the parameters: infection rate(α), rate at which the latent individual moves to the infectious class(β) and the 

recovery rate were varied(ɗ). 
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1. Introduction 
 

The transmission of infectious disease has always been of 

concerns and public health threat. As a result of this several 

authors have investigated the epidemic models in many ways. 

Many mathematicians (authors) focus their attention on the 

dynamics of the infectious diseases transmission in order to 

find condition to eradicate them [1]. For example, 

Greenhalgh considered the SEIR epidemic model that 

included density incidence in the rate of death [2]. Castillo – 

Chavez and Feng, also looked into global stability of an age 

– structure SEIR model for infectious disease and it 

application to optimal vaccination strategies by formulating 

an age – structure model for infectious disease transmission 

dynamics in a population subjected to a vaccination program 

[3]. In addition to the examples by the authors above sever 

mathematical models have been developed to study the 

spread of infectious disease such as measles, influenza, 

rubeola, and chicken pox[4]-[10].These infectious diseases 

cause recurrent epidemic out- breaks, and their associated 

transmission rates depend strongly on age-specific contact 

rates.  

 

Very little or no work has been done to find out the effect of 

the parameters they used in their respective epidemic models, 

hence this paper seeks to employ a one way sensitivity 

analysis to investigate into the effect these parameters have 

on the output of the SEIR epidemic compartment model. 

 

2. Methodology  
 

SEIR compartment model is developed by dividing the host 

population into four (4) subgroups: Susceptible (S), Exposed 

(E), Infectious (I) and Recovery (R). Hence the total 

population in mathematical terms is: N = S + E+I+R. 

 

 

 
Figure 2.1: Flow chart of the SEIR model. 

 

“λ” is the birth rate, “μ” is the death rate, “α” is the infection 

rate, “β” is the rate at which an individual moves from the 

exposed class to the infection class and “ɗ” is the recovery 

rate of the infectious individual. Assumptions of constant 

population (λ= μ) and permanent immunity was considered 

which resulted in the following ordinary differential 

equation:   

 

                      (2.1) 

 

 
 Re-scale the equation above by representing                 

    s =  where  

s = susceptible proportion of the population, e= exposed 

proportion, i = infectious proportion and r= recovery 

proportion. The scaled equations are given below: 

 

                    (2.2) 
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Where iesr  1 hence it is 

ok to study the system below instead of the systems in (2.2) 

[1].  

 

                    (2.3) 

 
 

2.1 Basic Reproduction Number ( )   

 

Basic reproduction number ( ) is the average number of 

secondary infections produce by one infective individual in a 

completely susceptible population at the disease – free 

equilibrium point. That is: 

= (Rate of secondary infections) × (Duration of 

infection) [11], [12]. Employing the next generation matrix 

approach resulted in the matrix below: 

 
“H” represents the matrix of infection rates and “K” also the 

matrix of transition rates. 

  and  

But =  

 

 

Hence  

Multiplying the inverse of “K” above by the matrix “H” 

result in: 

 

 
Basic reproduction number ) is defined as the spectral 

radius of  [1]. We denote this by ) hence: 

 
 

2.2 The Equilibrium Point 

 

Two equilibrium points are considered in the study: the 

disease – free equilibrium (DFEP) where “ i” = 0 and the 

endemic equilibrium (EEP) also i≠0. . To achieve this set the 

system of differential equations in (2.3) to zero and then 

solve for the values of s, e and i. 

 

              (2.4) 

 
 

2.2.1 Disease – Free Equilibrium Point 

At the disease – free equilibrium point it is assumed that 

there is no infection or disease in the system hence . 

 

 

 
These equations at the DFE reduces to  

 

 

Hence at the DFEP  since 

the host population is constant and . 

 

2.2.2 The Endemic Equilibrium point 

The endemic equilibrium point shows that the disease will 

persist in the system in the steady state. Here solve the 

equations (3.4) to obtain s,e and i. But for easy identification 

s,e,i are represented by ( ) at the steady state of the 

endemic respectively. 

From  

Similarly from  

Putting i above into s above gives 

 

The e will cancel out to give  

Also from  

and putting this into  

 yields  

 

 
 

But since  then  

 

 
Dividing both sides by  gives 

 

Also since  and  above then 

  β and  will 

cancel out to result in  hence at the 

endemic equilibrium point we have: 
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2.3 Stability of the Equilibrium Points 

 

To study the stability of the equilibrium points obtained 

above consider the linearization of the system of equation 

(3.3) about the DFE by taking the Jacobian of them [1].  

 
 

2.3.1 Stability of the Disease – free Equilibrium Point 

Theorem 2.1: the disease – free equilibrium point of the 

system (3.3) is asymptotically stable if and only if 

and unstable if . 

 

Proof: 

We obtained the Jacobian at DFEP that is (s,e,i) = (1,0,0). 

 
We let  the Jacobian matrix at 

the disease – free equilibrium and solve the characteristics 

equation of . This can be achieved by solving 

the relation:  where “I” is a unit matrix 

and it has order 3 by 3 since  also has same 

order. 

 

 

 

=   

From this we obtained characteristics equation by finding the 

determinant of the above matrix and equate it to zero. 

 

 

 
 

But since  then  

  

 

Expanding the relation above results in: 

 
 

Expanding the above equation again and grouping like terms 

gives: 

 

 

Let Y, Z be the coefficients of ,  and   be the constant 

term hence  

  

Z=  

A=  

 

And the characteristic equation becomes: 

 

 

From Routh-Hurwitz Stability criterion analysis if 

and  holds then all the roots 

of the characteristic equation has negative real part and hence 

the equilibrium point (DFE) point is stable.    

 

2.3.2 Stability of the Endemic equilibrium 

Theorem 2.2: The endemic equilibrium of system (3.3) is 

also asymptotically stable when  and unstable when 

 

Proof: At the endemic equilibrium it has been shown that: 

 ,  and 

 hence the Jacobian matrix at the endemic 

equilibrium point is 

  

 

 Let ,  be the Jacobian matrix at the endemic 

equilibrium and then solved the characteristic equation of 

,  by finding the determinant of 

,  and setting the results to zero. I is a 

three by three unit matrix hence  and  

 
,  

 

 

 

 

 

 

 

Paper ID: ART20193330 10.21275/ART20193330 354 



International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296 

Volume 7 Issue 12, December 2018 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Expanding the equation above and setting it to zero gives: 

 

 
 

Let Y, Z represents the coefficient of  respectively 

and A is the constant term in the polynomial above.  

Then 

 

 
The polynomial (characteristics equation) above then 

becomes . 

 

Using the Routh-Hurwitz stability analysis if the conditions 

 holds then all the zeros 

of the characteristics equation have negative real part and 

hence the equilibrium (endemic) point is stable. 

 

3. Sensitivity Analysis 
 

This analysis helps to determine among which of the 

parameters used in the model is or are most responsible for 

generating the variability in the value of the mode’s outputs 

over time. One way sensitivity analysis was employed. That 

is each parameter is varied one at a time to investigate the 

impact on the results. But since we considered a closed 

system that is the vital dynamics (birth and death) were 

assumed to be the same we will not consider the two in the 

sensitivity analysis. Only the following parameters: α, β, ɗ 

were considered. 

 
Figure 1: SEIR curves with λ=μ= 0.03, α=0.2, β=2, ɗ=0.2, 

and 0R = 10 with 
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The initial values of the classes are: 

{S(0), E(0), I(0), R(0) }= {9990, 9, 1, 0}. 

 
Figure 2: the SEIR curves with the infection rate increased 

from 0.2 to 0.5. That is λ=μ= 0.03, α=0.5, β=0.2, ɗ=2, and 

0R = 25 was presented 

with
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The initial values of the classes are: 

{S(0), E(0), I(0), R(0) }= {9990, 9, 1, 0}. 

 

 
Figure 3: this figure shows the SEIR epidemic curve when 

the infection rate was reduced from 0.2 to 0.1.  Parameter 

values for the curves above λ=μ= 0.03, α=0.5, β=0.2, ɗ=2, 

and 0R = 5. 
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The initial values of the classes are: 

{S(0), E(0), I(0), R(0) }= {9990, 9, 1, 0}.  

 

Using figure 1 as the basis for the sensitivity analysis it was 

observed that there was a significant change between figure 1 

and figure 2, 3. Hence figure 2 and 3 are compared in 

relation to figure 1. It was observed that increasing the 

infection rate reduces the proportion of the susceptible 

population as early as possible (figure 2) as compared to 

when it was increased (figure 3). The proportion of the 

infectious class peaks early and very steep when the infection 

rate was increased (figure 2) compared to when it was 

reduced (figure 3).Also the recovery proportion rosed early 

in figure 2 when the infection rate was increased in relation 

to figure 3 when the infection rate was reduced. 
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Figure 4: increasing the rate at which the latent individuals 

move to the infectious class. T hat is from 2 to 3.3. SEIR 

curves with λ=μ= 0.03, α=0.2, β=3.3, ɗ=0.2, and 0R = 10 

with 
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The initial values of the classes are: 

{S(0), E(0), I(0), R(0) }= {9990, 9, 1, 0}. 

 
Figure 5: reducing the rate at which the latent individuals 

move to the infectious class. T hat is from 2 to 1.4. SEIR 

curves with λ=μ= 0.03, α=0.2, β=1.4, ɗ=0.2, and 0R = 10 

with  
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Comparing figure 4 and 5 to figure 1, it was realized that 

there was no significant changes in the proportions of the 

classes. The basic reproduction number is an evidence of 

that. The only insignificant changes which occurred were the 

proportion of the infectious. It increased slightly when the 

rate at which the individual move from latent class to 

infectious class was increased and reduced when the rate was 

reduced. The proportions at the endemic equilibrium indicate 

that.  

 
Figure 6: increasing the rate at which the infectious 

individuals move to the recovery class. That is from o.2 to 

0.33 hence SEIR curves with λ=μ= 0.03, α=0.2, β=2, ɗ=0.33, 

and 
0R = 6 with  
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The initial values of the classes are: 

{S(0), E(0), I(0), R(0) }= {9990, 9, 1, 0}. 

 
Figure 7: reducing the rate at which the infectious 

individuals move to the recovery class. That is from 0.2 to 

0.125 hence SEIR curves with λ=μ= 0.03, α=0.2, β=2, 

ɗ=0.125, and 0R =1 6 with 

)869847.0,13015.0,26814.1,13909.9(
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The initial values of the classes are: 

{S(0), E(0), I(0), R(0) }= {9990, 9, 1, 0}. 

 

Comparing both figures (6 and 7) to the base figure (1), it is 

observed that increasing or decreasing the value of the 

recovery rate “ɗ” has a significant impact on the output of the 

model. This impact is shown both in the population size of 

the infectious class and the value of the basic reproduction 

number 0R (6 and 16 respectively). When the recovery rate 

was increased the proportion of the infectious class reduced 

(compare figure 6 to figure 1) and when decreased it was the 

proportion of the infectious class increased (compare figure 7 

to figure 1). 

 

4. Conclusion  
 

From this study it can be concluded that both the infection 

rate “α” and the recovery rate “ɗ” have the most significant 

effect on the output of the SEIR compartment epidemic 

model whiles the rate at which the individual move from the 

latent class to the infectious class do not have that much 

effect on the output of the model. This is evidence by both 

the value of the basic reproduction number and the 

proportions of the classes at the endemic equilibrium point 

when 25 years was considered as the time frame. 
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