
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

Volume 7 Issue 3, March 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Data Synchronization Techniques in Offline-First

Android Applications

Jagadeesh Duggirala

Software Engineer, Rakuten, Japan

Email: jag4364u[at]gmail.com

Abstract: In the era of pervasive mobile computing, providing a seamless user experience in areas with intermittent or no internet

connectivity has become a critical requirement. Offline-first applications address this need by ensuring that essential functionalities are

available without network access and synchronizing data when connectivity is restored. This paper delves into the data synchronization

techniques employed in offline-first Android applications, exploring various strategies, their implementation, challenges, and best

practices. Through a comprehensive analysis, this paper aims to guide developers in designing robust offline-first applications that provide

consistent and reliable user experiences.

Keywords: android applications, data sync, memory cache, network loading, memory management, offline support, conflict resolution,

room db, sqlite.

1. Introduction

With the increasing reliance on mobile applications in

everyday life, ensuring their functionality in varying network

conditions has become imperative. Offline-first applications

are designed to provide core features and access to data even

without internet connectivity, enhancing usability and user

satisfaction. Data synchronization, a critical component of

offline-first design, ensures that local data changes are

eventually reflected in the remote database when the device

reconnects to the internet. This paper examines the various

techniques used to achieve data synchronization in offline-

first Android applications, highlighting their advantages,

challenges, and implementation considerations.

2. Background

Offline-first applications prioritize local data storage and

operations, deferring network interactions until connectivity

is available. This approach contrasts with traditional online-

first applications, which rely on constant internet access for

data access and updates. Key components of offline-first

applications include local databases, background

synchronization services, and conflict resolution

mechanisms.

Importance of Offline-First Applications

1) User Experience: Provides uninterrupted access to

application features, enhancing user satisfaction.

2) Performance: Reduces latency by performing

operations locally.

3) Reliability: Ensures data availability in areas with poor

or no network coverage.

4) Cost Efficiency: Minimizes data usage by reducing the

need for constant internet connectivity.

Data Synchronization Techniques

Data synchronization in offline-first applications involves

several techniques, each with its own set of trade-offs and

implementation challenges. This section explores the most

commonly used techniques.

1) Periodic Synchronization

Periodic synchronization involves syncing data at regular

intervals, ensuring that local changes are eventually

propagated to the remote server.

Implementation: Utilize Android's WorkManager or

JobScheduler to schedule periodic sync tasks.

Advantages:

• Simple to implement.

• Ensures regular data updates.

Challenges:

• Potential data inconsistency between sync intervals.

• Increased battery consumption due to periodic

background tasks.

2) Event-Driven Synchronization

Event-driven synchronization triggers data sync based on

specific events, such as user actions or network availability

changes.

Implementation: Leverage Android’s BroadcastReceiver to

listen for network connectivity changes and initiate sync

operations.

Advantages:

• More efficient as it syncs only when necessary.

• Reduces unnecessary background operations.

Challenges:

• Complexity in handling multiple triggering events.

• Potential for missing events, leading to data inconsistency.

3) Conflict Resolution Strategies

Conflict resolution is crucial in scenarios where local and

remote changes occur simultaneously. Common strategies

include:

A) Last Write Wins (LWW)

• The most recent change is considered authoritative.

• Advantages: Simple and easy to implement.

Paper ID: SR24724162525 DOI: https://dx.doi.org/10.21275/SR24724162525 1968

file:///C:/Users/bsvk/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/JKFR8NMF/www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
mailto:jag4364u@gmail.com

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

Volume 7 Issue 3, March 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

• Challenges: May result in data loss if not carefully

managed.

B) Merge-Based Conflict Resolution

• Merges changes from both local and remote sources.

• Advantages: Preserves all changes, minimizing data loss.

• Challenges: Complexity in defining merge rules and

handling edge cases.

C) Operational Transformation (OT)

• Transforms conflicting operations to achieve consistency.

• Advantages: Provides high consistency and minimal data

loss.

• Challenges: Complex to implement and requires a deep

understanding of the data model.

4) Delta Sync

Delta sync involves synchronizing only the changes (deltas)

rather than the entire dataset, reducing data transfer and

improving efficiency.

Implementation: Track changes locally and send only the

modified data during synchronization.

Advantages:

• Efficient in terms of data transfer and battery usage.

• Reduces the time required for synchronization.

Challenges:

• Requires robust change tracking mechanisms.

• Increased complexity in implementation.

5) Data Versioning

Data versioning involves maintaining versions of data items

to manage changes and resolve conflicts.

Implementation: Use version numbers or timestamps to

track changes and resolve conflicts.

Advantages:

• Provides a clear history of changes.

• Facilitates conflict resolution.

Challenges:

• Overhead in managing versions.

• Potential for version conflicts requiring complex

resolution logic.

Implementation of Offline-First Applications in Android

Developing offline-first applications in Android involves

several steps, from selecting the appropriate local storage

mechanism to implementing robust synchronization logic.

This section outlines the key implementation steps.

1) Choosing a Local Database

Android provides various options for local data storage,

including SQLite, Room, and Realm. Selecting the

appropriate database depends on factors such as ease of use,

performance, and support for advanced features like change

tracking and conflict resolution.

SQLite:

• Lightweight and widely used.

• Direct access to SQL for complex queries.

• Requires manual management of schema and versioning.

Room:

• Abstraction layer over SQLite.

• Provides compile-time verification of SQL queries.

• Simplifies database management and supports LiveData

and RxJava.

Realm:

• Object-oriented database.

• Provides automatic change tracking and easy-to-use APIs.

• Higher memory usage compared to SQLite and Room.

2) Implementing Local Data Storage

Room Database Example:

@Entity

data class User(

 @PrimaryKey val id: Int,

 val name: String,

 val email: String,

 val lastUpdated: Long

)

@Dao

interface UserDao {

 @Query("SELECT * FROM user")

 fun getAllUsers(): List<User>

 @Insert(onConflict = OnConflictStrategy.REPLACE)

 fun insertUser(user: User)

 @Update

 fun updateUser(user: User)

}

@Database(entities = [User::class], version = 1)

abstract class AppDatabase : RoomDatabase() {

 abstract fun userDao(): UserDao

}

3) Syncing Data with the Remote Server

Network Synchronization Example:

class SyncManager(private val userDao: UserDao, private val apiService: ApiService) {

 fun syncData() {

 CoroutineScope(Dispatchers.IO).launch {

 val localUsers = userDao.getAllUsers()

 val remoteUsers = apiService.getUsers()

Paper ID: SR24724162525 DOI: https://dx.doi.org/10.21275/SR24724162525 1969

file:///C:/Users/bsvk/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/JKFR8NMF/www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

Volume 7 Issue 3, March 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 // Example of a simple merge strategy

 val mergedUsers = mergeUsers(localUsers, remoteUsers)

 userDao.insertUsers(mergedUsers)

 apiService.updateUsers(mergedUsers)

 }

 }

 private fun mergeUsers(local: List<User>, remote: List<User>): List<User> {

 val merged = mutableListOf<User>()

 // Implement merge logic here

 return merged

 }

}

4. Handling Network Connectivity

Network Connectivity Example:

class NetworkReceiver : BroadcastReceiver() {

 override fun onReceive(context: Context, intent: Intent) {

 if (isConnected(context)) {

 // Trigger data synchronization

 SyncManager.syncData()

 }

 }

 private fun isConnected(context: Context): Boolean {

 val connectivityManager = context.getSystemService(Context.CONNECTIVITY_SERVICE) as

ConnectivityManager

 val activeNetwork = connectivityManager.activeNetworkInfo

 return activeNetwork != null && activeNetwork.isConnected

 }

}

3. Challenges in Data Synchronization

Despite the benefits of offline-first applications, developers

face several challenges in implementing effective data

synchronization.

1) Data Consistency

Ensuring data consistency between local and remote

databases is a significant challenge, especially in the

presence of conflicts and concurrent updates.

Solution: Implement robust conflict resolution

strategies and ensure atomic operations during

synchronization.

2) Performance

Synchronization operations can be resource-intensive,

impacting battery life and performance.

Solution: Optimize sync intervals, use delta sync, and

leverage background processing frameworks like

WorkManager.

3) Error Handling

Network failures, server errors, and data corruption can

disrupt synchronization processes.

Solution: Implement comprehensive error handling and

retry mechanisms to ensure reliable synchronization.

4) Scalability

As the amount of data grows, managing and syncing

large datasets efficiently becomes challenging.

Solution: Use efficient data structures, compress data

transfers, and implement pagination for large datasets.

Best Practices for Offline-First Development

To successfully develop offline-first applications, consider

the following best practices:

1) Prioritize Critical Data

Identify and prioritize data that needs to be available

offline, focusing on essential features and user

workflows.

2) Optimize Data Storage

Choose the appropriate local storage mechanism and

optimize data structures for performance and efficiency.

3) Implement Robust Sync Logic

Design and implement robust synchronization logic,

considering factors like network conditions, data

conflicts, and error handling.

4) Test Extensively

Conduct extensive testing under various network

conditions to ensure that the application behaves

correctly and efficiently in offline and online scenarios.

5) Educate Users

Provide clear communication to users about the

application's offline capabilities and synchronization

behavior, enhancing their understanding and trust.

4. Case Studies

Paper ID: SR24724162525 DOI: https://dx.doi.org/10.21275/SR24724162525 1970

file:///C:/Users/bsvk/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/JKFR8NMF/www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

Volume 7 Issue 3, March 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Case Study 1: Google Drive

Google Drive's offline mode allows users to access and edit

documents without an internet connection. Changes made

offline are synchronized when connectivity is restored, using

a combination of delta sync and conflict resolution strategies.

Case Study 2: Evernote

Evernote provides offline access to notes and notebooks,

synchronizing changes seamlessly when the device

reconnects to the internet. The application uses a combination

of event-driven sync and periodic background tasks to ensure

data consistency.

5. Conclusion

Data synchronization is a crucial aspect of offline-first

Android applications, enabling seamless user experiences in

varying network conditions. By understanding and

implementing effective synchronization techniques,

developers can create robust and reliable applications that

meet the needs of modern users. This paper has explored

various data synchronization techniques, their

implementation, challenges, and best practices, providing a

comprehensive guide for developers in the offline-first

application domain.

References

[1] Burns, J., & Pilato, C. M. (2019). Version Control with

Git. O'Reilly Media.

[2] Richards, M. (2018). Software Architecture Patterns.

O'Reilly Media.

[3] Google Developers. (n.d.). WorkManager: Background

processing library. Retrieved from

https://developer.android.com/topic/libraries/architectur

e/workmanager

[4] Firebase. (n.d.). Cloud Firestore: Flexible, scalable

database for mobile, web, and server development from

Firebase and Google Cloud Platform. Retrieved from

https://firebase.google.com/docs/firestore

[5] Real, M. (2019). Android Room Persistence Library.

Packt Publishing.

[6] Vogels, W. (2009). Eventually Consistent.

Communications of the ACM, 52(1), 40-44.

Paper ID: SR24724162525 DOI: https://dx.doi.org/10.21275/SR24724162525 1971

file:///C:/Users/bsvk/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/JKFR8NMF/www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
https://developer.android.com/topic/libraries/architecture/workmanager
https://developer.android.com/topic/libraries/architecture/workmanager
https://developer.android.com/topic/libraries/architecture/workmanager
https://developer.android.com/topic/libraries/architecture/workmanager

