
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 5, May 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Secure Network Communication in Android

Applications: Implementing HTTPS/TLS

Encryption

Naga Satya Praveen Kumar Yadati

Email: praveenyadati[at]gmail.com

Abstract: In today's mobile-centric world, safeguarding data transmitted over networks is paramount for ensuring user privacy and

security. This paper delves into the crucial realm of implementing HTTPS/TLS encryption in Android applications to fortify network

communication. Beginning with an overview of HTTPS/TLS and its pivotal role in upholding data integrity and confidentiality, this paper

explores practical strategies for seamlessly integrating HTTPS/TLS into Android applications. It provides a detailed roadmap for

certificate management and validation, along with insights into prevalent challenges and essential security considerations. Through a

comprehensive case study, real-world implementation hurdles and effective solutions are elucidated. By embracing secure network

communication practices, developers can bolster the reliability and trustworthiness of Android applications in today's interconnected

landscape.

Keywords: data security, HTTPS / TLS encryption, Android applications, network communication, user privacy

1. Introduction

In today's digital landscape, mobile applications have become

integral to our daily lives, facilitating communication,

commerce, and entertainment. However, with the

proliferation of mobile devices and wireless networks,

ensuring the security of data transmitted over these networks

has become a pressing concern. Android applications often

handle sensitive information such as personal data, financial

transactions, and authentication credentials, making them

prime targets for malicious actors.

The Hypertext Transfer Protocol (HTTP), the foundation of

data communication on the World Wide Web, lacks inherent

security mechanisms, leaving data vulnerable to interception

and tampering. To address these security challenges, the

Hypertext Transfer Protocol Secure (HTTPS) was introduced,

providing a secure communication channel over the Internet.

HTTPS, in conjunction with the Transport Layer Security

(TLS) protocol, encrypts data transmitted between a client

(such as an Android device) and a server, ensuring

confidentiality, integrity, and authenticity.

In this paper, we explore the implementation of HTTPS/TLS

encryption in Android applications to secure network

communication. We begin by elucidating the fundamentals of

HTTPS/TLS and its role in mitigating common security

threats. Subsequently, we provide practical guidance on

integrating HTTPS/TLS into Android applications, covering

topics such as certificate management, validation, and

performance considerations. Through a case study, we

illustrate the application of these principles in a real-world

scenario, highlighting challenges and best practices.

1) Understanding HTTPS/TLS

HTTPS, an extension of the HTTP protocol, adds a layer of

encryption through the TLS protocol, formerly known as SSL

(Secure Sockets Layer). TLS encrypts data exchanged

between a client and a server, preventing unauthorized

interception and tampering. The TLS protocol operates at the

transport layer of the OSI model, providing end-to-end

security for communication over untrusted networks.

The process of establishing a secure connection via

HTTPS/TLS involves several steps, collectively known as the

SSL/TLS handshake. This handshake encompasses mutual

authentication, key exchange, and negotiation of

cryptographic parameters. Upon successful completion of the

handshake, a secure channel is established, enabling

encrypted communication between the client and server.

2) Implementing HTTPS/TLS in Android Applications

Integrating HTTPS/TLS encryption into Android applications

involves leveraging the platform's networking libraries and

APIs. Android provides support for HTTPS connections

through classes such as HttpsURLConnection and

HttpClient, which handle secure communication with remote

servers.

To implement HTTPS/TLS in an Android application, follow

these steps:

• Configure your server to support HTTPS.

• Obtain an SSL/TLS certificate from a trusted Certificate

Authority (CA).

• Include the certificate in your Android project's res/raw

directory.

• Use the certificate to establish a secure connection in

your application code.

Below is an example of establishing an HTTPS connection

in an Android application using HttpsURLConnection:

Paper ID: SR24522141959 DOI: https://dx.doi.org/10.21275/SR24522141959 1866

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
mailto:praveenyadati@gmail.com

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 5, May 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

3) Managing SSL/TLS Certificates

SSL/TLS certificates play a crucial role in authenticating the

identity of servers and establishing trust in the communication

channel. Android applications must handle SSL/TLS

certificates securely to prevent man-in-the-middle attacks and

other security breaches.

When obtaining SSL/TLS certificates for Android

applications, consider the following:

• Use certificates issued by trusted Certificate Authorities

(CAs).

• Implement certificate pinning to prevent attacks

involving rogue certificates.

• Regularly update SSL/TLS certificates to ensure

continued security.

Common Pitfalls and Security Considerations

Despite the robust security provided by HTTPS/TLS,

developers must remain vigilant against common pitfalls and

security vulnerabilities. Some of the common pitfalls in

implementing HTTPS/TLS in Android applications include:

• Improper certificate validation.

• Failure to enforce secure communication protocols.

• Insecure handling of sensitive data.

To mitigate these risks, developers should adhere to security

best practices, such as:

• Implementing strict certificate validation.

• Enforcing the use of secure communication protocols

(e.g., TLS 1.2 or higher).

• Encrypting sensitive data at rest and in transit.

Case Study: Secure Network Communication in a Real-

world Android Application

Consider a scenario where a financial services company

develops a mobile banking application for Android devices.

The application allows users to securely access their accounts,

view transaction history, and transfer funds.

To ensure the security of network communication, the

development team implements HTTPS/TLS encryption using

the following approach:

• Obtains an SSL/TLS certificate from a reputable

Certificate Authority.

• Integrates the certificate into the Android application's

codebase.

Paper ID: SR24522141959 DOI: https://dx.doi.org/10.21275/SR24522141959 1867

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 5, May 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

• Implements certificate pinning to verify the authenticity of

the server's certificate.

• Encrypts sensitive data transmitted between the client and

server.

Throughout the development process, the team conducts

thorough testing and validation to identify and address

potential security vulnerabilities. By prioritizing secure

network communication, the mobile banking application

maintains the trust and confidence of its users.

2. Conclusion

In conclusion, the implementation of HTTPS/TLS encryption

is essential for securing network communication in Android

applications. By encrypting data transmitted over networks,

developers can mitigate the risk of unauthorized access,

interception, and tampering. Through adherence to best

practices and vigilant security measures, Android developers

can enhance the resilience and trustworthiness of their

applications in an increasingly interconnected world.

References

[1] Android Developers - HTTPS and SSL

[2] OWASP Mobile Security Testing Guide

[3] RFC 2818 - HTTP Over TLS

[4] Google Developers - Network Security Configuration

[5] Android Developers - Security with HTTPS and SSL

[6] M. Bellare, J. Kilian and P. Rogaway, "The security of

the cipher block chaining message authentication code",

Journal of Computerand System Sciences, vol. 61, no.

3, pp. 362-399, Dec. 2000

[7] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C.

Fournet, M. Kohlweiss, A. Pironti, et al., "A messy state

of the union: taming the composite state machines of

TLS", IEEE Symposium on Security Privacy, 2015

Paper ID: SR24522141959 DOI: https://dx.doi.org/10.21275/SR24522141959 1868

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
https://developer.android.com/privacy-and-security/security-ssl
https://ieeexplore.ieee.org/document/7359786
https://datatracker.ietf.org/doc/rfc2818/
https://developer.android.com/privacy-and-security/security-config
https://developer.android.com/privacy-and-security/security-ssl
https://www.sciencedirect.com/science/article/pii/S002200009991694X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S002200009991694X?via%3Dihub
https://www.rfc-editor.org/info/rfc7627
https://www.rfc-editor.org/info/rfc7627

