International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

On T – Closed Submodules

E. A. Al-Dhaheri¹, B. H. Al-Bahrani²

^{1, 2}University of Baghdad Department of Mathematics, College of Science, Baghdad, Iraq

Abstract: In this paper, we introduce T – Closed Submodules. Let T, A and B be submodules of a module M. A is called a T – closed submodule of M (denoted by $A \leq_{T_c} M$), whenever $A \leq_{T_e} B$ then A = B + T. We investigate the basic properties of a T- Closed submodules.

Keywords: closed submodules, T - essential submodules

1. Introduction

Throughout this paper, rings are associative with identity and modules are unitary left R-modules. Recall that a submodule A of an R-module M is essential (or large)in M, denoted by $A \leq_e M$, in case for every submodule B of M, A \cap B = 0 implies B = 0, see [1]. And Recall that a submodule A of a module M is said to be a closed submodule (briefly $A \leq_{c} M$) if A has no proper essential extension of M, that is, if the only solution of the relation A $\leq_e B \leq M$ is A = B, see [2]. More details about essential submodules and closed submodules can be found in [3]-[4]. Let A be a submodule of the R – module M .A submodule B of a module M is called a complement of A in M if it is maximal in the set of submodules B of M with $A \cap B = 0$, see [5]. In [6], the authors introduced the concept of essential submodules with respect to an arbitrary submodule. Recall that, let T be a proper submodule of a module M. A submodule A of M is called T-essential submodule denoted by $A \leq_{T-e} M$ provided that $A \not\leq T$ and for each submodule B of M, A \cap B \leq T implies that B \leq T . And introduced the definition of T – complement, as follows : Let T be a proper submodule of a module M, and let A be a submodule of M. A submodule B of M is called a T – complement to A in M if B is maximal with respect to the property that $A \cap B \leq T$. In section 2 ,we introduce the definition of T- closed submodule as follows : Let T, A and B be submodules of a module M. A is called a T- closed submodule of M denoted by $A{\leq}_{T{\text{-}}c}M$, whenever $A{\leq}_{T{\text{-}}e}B$ then B=A+T . And we give some properties about T - closed submodule of a module M ,We show that If $A + T \leq M$ then M has a T – closed submodule B such that $A + T \leq_{T-e} B$, see proposition 2.12 . In section 3, we have presented more characteristics about T - closed submodules. We prove that If B is T-Complement to A in M then $B \leq_{T-c} M$, see theorem 2.18. Also we prove that , let T, A and N are submodules of a module M such that $T \leq A \cap N.$ If $A \leq_{T^-c} M$ and $N \leq_{T^-e} M$ then $A \cap N \leq_{T-c} N$, see Proposition 3.7.

2. The T- closed submodules

In this section we present a variety of characterizations around T - Closed submodules .We start this section by the following definition:

Definition 2.1.Let T,A and B be submodules of a module M. A is called a T-closed submodule of M (denoted by $A \leq_{T-c} M$), whenever $A \leq_{T-c} B$ then B = A + T. Let M be a module and let T=0 . For a submodule A of M . Clearly that A is a T- closed in M if and only if A is closed in M.

Examples

- $\begin{array}{l} \mbox{1) Consider } Z \mbox{ as } Z \mbox{-module }. \mbox{ Let } K = mZ \mbox{ , } T = nZ \mbox{ and } Z = \\ mZ \mbox{+} nZ \mbox{ . Claim that } mZ \ensuremath{\leq_{nZ\mbox{-}e}} H \ensuremath{\leq} Z \mbox{. Since } nZ \mbox{ , } mZ \ensuremath{\leq} Z, \\ \mbox{ then } mZ \mbox{+} nZ = Z \ensuremath{\leq} H \mbox{ . But } H \ensuremath{\leq} Z \mbox{ , therefore } H = Z. \\ \mbox{ Thus } mZ \ensuremath{\leq_{nZ\mbox{-}c}} z. \end{array}$
- 2) Consider Z_6 as Z- module . Let $A = \{\overline{0},\overline{3}\}$ and $T = \{\overline{0}\}$, since A is not $\{\overline{0}\}$ - essential in Z_6 , then $\{\overline{0},\overline{3}\}$ is $\{\overline{0}\}$ closed in Z_6 . Since $\{\overline{0},\overline{3}\}$ is not essential in Z_6 Then $\{\overline{0},\overline{3}\}$ is closed in Z_6 .
- 3) Consider Z_6 as Z module . Let $A = \{\overline{0}, \overline{3}\}$ and $T = \{\overline{0}, \overline{2}, \overline{4}\}$, then $A \leq_{T-e} Z_6$ and $Z_6 = A + T$. Thus A is a T-closed in Z_6 . And since $\{\overline{0}, \overline{3}\}$ is not essential in Z_6 , then $\{\overline{0}, \overline{3}\}$ is closed in Z_6 .
- 4) Consider Z_8 as Z module. Let $A = \{\overline{0}, \overline{2}, \overline{4}, \overline{6}\}$ and $T = \{\overline{0}, \overline{4}\}$, then $\{\overline{0}, \overline{2}, \overline{4}, \overline{6}\}$ is $\{\overline{0}, \overline{4}\}$ essential in Z_8 . But $A + T \neq Z_8$, therefore $\{\overline{0}, \overline{2}, \overline{4}, \overline{6}\}$ is not $\{\overline{0}, \overline{4}\}$ closed in Z_8 .
- 5) Consider Z_{12} as Z module. Let $A = \{\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}\}$ and $T = \{\overline{0}, \overline{6}\}$ Since A is not T essential in Z_{12} . Then A is a T closed in Z_{12} . But A is essential in Z_{12} , therefore A is not closed in Z_{12} .

Proposition 2.2. [6]

- Let T , A and B be submodules of a module M . Then
- 1) If $A \leq_{T-e} M$ then $(A+T) / T \leq_{e} M / T$.
- 2) If $T \le A$ then $A \le_{T-e} M$ if and only if $A / T \le_e M / T$.
- 3) $K \leq_{T-e} M$ if and only if for each $m \in M T$, there exist $r \in R$ such that $r m \in K T$.
- 4) If A and B are T-essential submodules of M , then A \cap B is T-essential too .
- 5) Let $A \le B \le M$ and $T \le B$. Then $A \le_{T-e} M$ if and only if $A \le_{T-e} B$ and $B \le_{T-e} M$.
- 6) Let $f: N \to M$ be a epimorphism . If $A \leq_{T-e} M$, then $f^{-1}(K) \leq_{f} f^{-1}(T) e N$.
- 7) If $T \le A$ then there exists a submodules B of M such that $A + B \le_{T-e} M$ and $(A + B) / T = (A / T) \bigoplus ((B + T) / T)$
- 8) We prove the following

Remark 2.3. Let T and A be submodules of a module M, if there exist a submodule B of M such that $T \le A \leqq B$ and A $\le_{T-e} B \le M$ then A is not a T – closed in M.

Proof: suppose that $A \gneqq B$ and $A \leq_{T-e} B \leq M$. Assume that A is a T – closed in M. Then A + T = A = B, but $A + T \neq B$

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY

DOI: 10.21275/ART20183384

therefore which is a contradiction. Thus A is not a $T- \mbox{closed}$ in M.

Remark 2.4. Let T and A be submodules of a module M such that $T \le A$, then $A \le _{T-c} M$ if and only if whenever A $\le_{T-e} B \le M$ then A = B.

Proof: Clear that by definition.

Remark 2.5. For each T and A be submodules of a module M such that $A \le T$ then $A \le T_{-c} M$

Proof: Assume that $A \leq T$, then by definition of T – essential submodules , M has not T – essential submodules A of M . Thus $A \leq_{T-c} M$.

Example 2.6: Z as Z – module . Let K=4Z and T=2Z , since $4Z\leq 2Z$. Then 4Z is not 2Z – essential in Z .Thus 4Z is 2Z – closed in Z.

Proposition 2.7: Let T and A be submodules of a module M. If $(A + T) / T \leq_{c} M / T$ then $A \leq_{T-c} M$. **Proof :** Let $A \leq_{T-e} B \leq M$, to show A + T = B. By proposition 2.2-2, then $(A + T) / T \leq_{e} B / T \leq M / T$. But $(A + T) / T \leq_{c} M / T$, therefore (A + T) / T = B / T. Thus A + T = B.

Note: The converse of proposition 2.7, is not true, show that by example

Example 2.8.Consider Z as Z – module . Let T = 12Z and A = 6Z ,(A + T) / T = (6Z + 12Z) / 12Z = 6Z / 12Z , M / T = Z / 12Z . To show 6Z / 12Z is not closed submodule in Z / 12Z. Then by (6,example 2.9), 6Z / 12Z \leq_e Z / 12 . Thus 6Z / 12Z is not closed submodule in Z / 12Z. But 6Z is not 12Z – essential of Z, see (6,example 2.9), therefore 6Z is 12Z – closed of Z .

Proposition 2.9: Let T and A be submodules of a module M then $(A + T) / T \leq_c M / T$ if and only if $A + T \leq_{T-c} M$.

Proof: \Rightarrow) Suppose that A + T $\leq_{T-e} B \leq M$. To show A+ T = B. By proposition 2.2-2, then (A + T) / T $\leq_e B$ / T $\leq M$ /T. But (A + T) / T $\leq_c M$ /T, therefore (A + T) / T = B / T. Thus A + T = B.

 $\label{eq:eq:stars} \begin{array}{l} \Leftarrow \end{array}) \ Let \ (\ A + T \) \ / \ T \leq_e B \ / \ T \leq M \ / \ T \ . \ To \ show \ (\ A + T \) \ / \ T \\ = B \ / \ T \ . \ By \ proposition \ 2.2-2, \ then \ A + T \leq_{T-e} B \leq M \ . \ But \ A \\ + T \leq_{T-c} M, \ therefore \ A + T = B \ . \ Thus \ (A+T \) \ / \ T = B \ / \ T \ . \end{array}$

Corollary 2.10. Let T and A be submodules of a module M such that $T \le A$ then $A / T \le_c M / T$ if and only if $A \le_{T-c} M$.

Proof : Clear by proposition 2.9.

Proposition 2.11. Let T and A be submodules of a module M . If A \leq_{T-c} M and A \leq_{T-e} A + T \leq M then (A + T) / T \leq_c M / T .

 $\begin{array}{l} \textbf{Proof:} \ - \ Assume \ that \ A \leq_{T\ c} M \ and \ A \leq_{T\ e} A + T \leq M \ , \ to \\ show \ (A+T) \ / \ T \leq_c M \ / \ T \ . \ Let \ (A+T) \ / \ T \leq_e B \ / \ T \leq M \ / \\ T, \ to \ show \ (A+T) \ / \ T = B \ / \ T \ . \ By \ proposition \ 2.2\ -2, \ then \ A \\ +T \leq_{T\ e} B, \ and \ since \ A \leq_{T\ e} A + T \ . \ By \ proposition \ 2.2\ -2, \ then \ A \\ +T \leq_{T\ e} B, \ and \ since \ A \leq_{T\ e} A + T \ . \ By \ proposition \ 2.2\ -2, \ then \ A \\ +T \leq_{T\ e} B. \ But \ A \leq_{T\ c} M \ , \ therefore \ A + T = B \ . \ Hence \ (A + T) \ / \ T = B \ / \ T \ . \ T \ M \ , \ T \ A \\ +T \ M \ , \ M \$

Proposition 2.12. If T + A be a submodule of a module M then M has a T- closed submodule B such that $A + T \leq_{T-e} B$.

Proof :- Let $A + T \leq M$ and $F = \{ D \leq M | A + T \leq_{T-e} D \}$. Clearly that $A + T \in F$, and hence $F \neq \phi$. Let $\{ C_{\alpha} \}_{\alpha \in A}$ be a chain in F. To show that $\bigcup_{\alpha \in A} \{ C_{\alpha} \}$ in F. Clearly $\bigcup \{ C_{\alpha} \}_{\alpha \in A}$ is a submodule of M, now to show $A + T \leq_{T-e} \bigcup_{\alpha \in A} \{ C_{\alpha} \}$. Let $x \in \bigcup_{\alpha \in A} \{ C_{\alpha} \} - T$. To show there exist $r \in R$ such that $rx \in (A + T) - T$, let $x \in C_{\alpha}$, then $x \in C_{\alpha} - T$. Since $A + T \leq_{T-e} C_{\alpha}$, then there exist $r \in R$ such that $rx \in (A + T) - T$, let $x \in C_{\alpha}$, then $x \in C_{\alpha} - T$. Since $A + T \leq_{T-e} C_{\alpha}$, then there exist $r \in R$ such that $rx \in (A + T) - T$. Thus $\bigcup_{\alpha \in A} \{ C_{\alpha} \} \in F$. By Zorn's lemma F has a maximal element say H, then $A + T \leq_{T-e} H$. Claim that $H \leq_{T-e} C_{T-e} H \leq_{T-e} L \leq M$. To show H + T = L. Since $A + T \leq_{T-e} H \leq_{T-e} L$. By proposition 2.2-5, then $A + T \leq_{T-e} L$, and hence $L \in F$. Which is a contradiction by a maximal element, hence H = L. Thus H + T = L.

Corollary 2.13. Let T and A be submodules of a module M such that $T \leq A$, then M has a T – closed submodule B such that $A \leq_{T-e} B$.

Proof :- clearly by proposition 2.12.

Theorem 2.14. Let T , A and B be submodules of a module M and $A+T\leq_{T-c}B+T\leq_{T-c}M$ then $A+T\leq_{T-c}M$.

Proof: - Let $A+T\leq_{T-c}B+T\leq_{T-c}M$, by proposition 2.9, then (A+T) / T \leq_c (B+T) / T \leq_cM / T. [7, proposition.1.5,p.18] (A+T) / T \leq_cM / T, by proposition 2.9, then $A+T\leq_{T-c}M$.

Corollary 2.15. Let T, A and B be submodules of a module M such that $T \leq A \cap B$. If $A \leq_{T-c} B \leq_{T-c} M$ then $A \leq_{T-c} M$.

Proof : - clear by theorem 2.14.

Corollary 2.16. Let T, A and B be submodules of a module M such that $A \le B \le M$ and $T \le B$, if $A \le_{T-c} M$ then $A \le_{T-c} B$.

Proof:- Assume that $A\leq_{T\ \cdot\ e}N\leq B\leq M.$ To show A+T=N , since $A\leq_{T\ \cdot\ e}N\leq M$ and $A\leq_{T\ \cdot\ c}M,$ then A+T=N . Thus $A\leq_{T\ -\ c}B$.

 $\begin{array}{l} \textbf{Theorem 2.17. Let } T \mbox{ and } A \mbox{ be submodules of a module } M \mbox{.} \\ Then A \mbox{ is a } T \mbox{ - Closed in } M \mbox{ if and only if for each } B \le M \\ \mbox{ such that } A \le B + T \mbox{ then } A \mbox{ is a } T \mbox{ - Closed in } B + T \mbox{ .} \\ \textbf{Proof} \\ \textbf{:=)} \mbox{) Suppose } A \le_{T_c} M \mbox{ , to show } A \le_{T-c} B + T \mbox{ Let } A \le_{T-e} N \\ \le B + T \mbox{ , to show } A + T = N \mbox{ . Since } A \le_{T-e} N \le B + T \le M \\ \mbox{ and } A \le_{T-c} M \mbox{ . Then } A + T = N \mbox{ . } \\ \textbf{ (c) } Clear \mbox{ .} \\ \end{array}$

Theorem 2.18. Let T, A and B be submodules of a module M. If B is T- Complement to A in M then $B\leq_{T-c}M$. **Proof**: Let $B\leq_{T-e}N\leq M$. To show B+T=N, since $A\cap B\leq T$, then $B\cap (A\cap N)\leq T$. Since $B\leq_{T-e}N$, then $A\cap N\leq T$. But B is maximal with respect to the property that $A\cap B\leq T$, therefore B=N. Thus B+T=N.

Note. The converse of theorm2.18 is not true for example: Consider Z_{12} as Z –module .Let $A=\{\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}\}$, $B=\{\overline{0}, \overline{4}, \overline{8}\}$ and $T = \{\overline{0}, \overline{6}\}$. Since B is not T –essential in Z_{12} , then B is T – closed in Z_{12} . We want to show B is not a T- complement

Volume 7 Issue 6, June 2018

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

to A in Z_{12} . Since A \cap B ={ $\overline{0}, \overline{4}, \overline{8}$ } $\leq T$, then B is not T-complement to A in Z_{12} .

3. Characterizations of T – Closed Submodules

In this section we give various characterizations. of T-Closed submodules. The following tow theorems gives a characterization of T – closed submodules.

Theorem 3.1. Let A + T be a submodule of a module M. Then the following statement are equivalent:

 $1 - A + T \leq_{T - c} M$

2- If $A+T \leq B+T \leq_{T\text{-}e} M$ then B .+ T $\leq_{(A+T)\text{-}e} M$.

3- If B+T is a $T-complement \ to \ A+T \ in \ M$ then A+T is a $T-complement \ to \ B+T \ in \ M$.

4- A + T is a T – complement for some B + T submodule of M .

Proof :- 1⇒2) Assume that A + T ≤_{T - c} M and A + T ≤ B + T ≤_{T - e} M , to show B + T≤_{(A+T) -e} M . By proposition 2.9, then (A + T) / T ≤_c M / T , and by proposition 2.2-2, then (A + T) / T ≤ (B + T) / T ≤_e M / T. By [7,proposition 1.4,page 18] [((B + T) / T] / [(A + T) / T] ≤_e [M / T] / [(A + T) / T]. Then by the third isomorphism theorem [(B + T) / T] / [(A + T) / T] ≅ [(B + T) / (A + T)] and [M / T] / [(A + T) / T] ≅ [M / (A + T)]. Hence [(B + T) / (A + T)] ≤_e [M / [(A + T)]. Thus by proposition 2.2-2, B + T ≤_{(A+T) -e}M.

 $\begin{array}{l} \textbf{Proof:-} 2 \Rightarrow 3) \ Let \ B+T \ is \ a \ T- \ complement \ to \ A+T \ in \ M \ . \\ To \ show \ A+T \ is \ a \ T- \ complement \ to \ B+T \ in \ M \ . \ Let \ A+T \ T \le N \le M \ such \ that \ (\ B+T \) \ \cap \ N \le T, \ to \ show \ A+T = N \ . \\ Since \ B+T \ is \ a \ T- \ complement \ to \ A+T \ in \ M \ , \ then \ by \ proposition 2.2-7, \ then \ (\ A+T \) + (\ B+T \) \ \leq_{T-e} M \ , \ then \ by \ proposition 2.2-7, \ then \ (\ A+T \) + (\ B+T \) \ \leq_{T-e} M \ , \ thus \ (A+B+T) \ \leq_{T-e} M \ , \ thus \ (A+B+T) \ \leq_{T-e} M \ . \ Since \ A+T \ \leq (A+T) + B \ \leq_{T-e} M \ , \ then \ by \ (\ 2) \ A+B+T \ \leq_{(A+T) - e} M \ . \ Since \ A \le A+T \ \leq N \ , \ then \ (\ A+B+T) \ \cap \ N = (\ (B+T \) \ \cap \ N) + A \ \leq T + A \ by \ modular \ law \ . \ Since \ A+B+T \ \leq_{(A+T) - e} M \ , \ then \ N \ \leq A+T \ . \ But \ A+T \ T \ \leq N \ , \ therefore \ A+T \ = N \ . \ Thus \ A+T \ is \ a \ T \ - \ complement \ to \ B+T \ in \ M \ . \end{array}$

Proof :- $3\Rightarrow4$) To show A + T is a T- complement for some B + T submodule of M. Since A + T \leq M, then by Zorn's lemma A + T has a T - complement say B + T in M. By (3) A + T is a T - complement to B + T in M.

 $\begin{array}{l} \textbf{Proof:} - 4 {\Rightarrow} 1) \text{ Let } A + T \text{ is a } T - \text{complement for some } B + \\ T \text{ submodule of } M \text{ . To show } A + T \leq_{T-c} M \text{ . Let } A + T \leq_{T-c} \\ N \leq M, \text{ to show } A + T = N \text{ .Since } A + T \text{ is a } T \text{ -complement } \\ \text{for some } B + T \text{ submodule of } M. \text{ Then } [(A + T) \cap (B + T \leq T] \cap N. \text{ Hence } [(A + T) \cap (B + T)] \cap N \leq T \cap N = T. \\ \text{Since } A + T \leq_{T-c} N, \text{ then } (B + T) \cap N \leq T \text{ . But } B + T \text{ is } \\ \text{maximal with respect to the property } (A + T) \cap (B + T) \leq \\ T, \text{ therefore } A + T = N \text{ . Thus } A + T \leq_{T-c} M \text{ .} \end{array}$

Theorem 3.2. Let T and A be submodules of a module M such that $T \leq A$. The following statement are equivalent: 1- A is T – closed in M. 2- If $A \leq B + T \leq_{T-e} M$ then $B + T \leq_{A-e} M$. 3- If B + T is a T – complement to A in M then A is a T – complement to B + T in M. 4- A is a T – complement for some B + T submodule of M. **Proof :** $-1\Rightarrow 2$) Suppose that $A \leq_{T-e} M$. By Corollary 2.10, then A / T $\leq_c M / T$. Since $A \leq B + T \leq_{T-e} M$, then by proposition 2.2-2, $A \ / T \leq (B + T) \ / T \leq_e M \ / T$, [5, proposition 1.4 ,page18] then (($B + T) \ / T$) / ($A \ / T$) \leq_e ($M \ / T$) / ($A \ / T$). By third isomorphic (B + T) / $A \leq_e M \ / A$, then by proposition 2.2-2, then $B + T \leq_{A-e} M$.

 $\begin{array}{l} \textbf{Proof:-} 2 \Rightarrow 3) \ Let \ B + T \ is \ a \ T-complement \ to \ A \ in \ M. \ To \ show \ A \ is \ a \ T-complement \ to \ B + T \ in \ M. \ Let \ A \le N \le M \ such \ that \ (B + T) \cap N \le T, \ to \ show \ A=N. \ Since \ B + T \ is \ a \ T-complement \ to \ A \ in \ M \ , \ by \ proposition \ 2.2-7, \ then \ (B + T) \ + \ A \ \leq_{T-e} M \ . \ Since \ A \le ((B + T) + A) \ \leq_{T-e} M \ . \ then \ by \ (2), \ (B + T) + A \ \leq_{A-e} M \ . \ Since \ A \le N \le M, \ then \ by \ modular \ law \ (B + T) \ + \ A) \ \cap N = (\ (B + T) \ \cap N) \ + \ A \le T \ + \ A = A \ . \ Since \ (B + T) \ + \ A \ \leq_{A-e} M \ , \ then \ N \ \le A. \ But \ A \le N, \ therefore \ N = A. \ Thus \ A \ is \ a \ T-complement \ to \ B + T \ in \ M. \end{array}$

Proof :- 3⇒4) To show A is a T– complement for some B + T submodule of M. Since A \leq M, then by Zorn's lemma A has a T – complement say B + T in M. Thus by (3) A is a T – complement to B + T in M.

 $\begin{array}{l} \textbf{Proof:} \textbf{-} 4 \Rightarrow 1) \ Let \ A \ is \ a \ T - complement \ for \ some \ B + T \\ submodule \ of \ M \ . \ To \ show \ A \leq_{T-e} M \ . \ Let \ A \leq_{T-e} N \leq M \ , \ to \\ show \ A + T = N \ . \ Since \ A \ is \ a \ T - complement \ to \ B + T \ in \ M \\ , \ then \ A \cap (B + T) \leq T \ , \ hence[\ A \cap (B + T)] \cap N \leq T \cap \\ N=T \ . \ Implies \ that \ A \cap [(B + T) \cap N] \leq T \ . \ Since \ A \leq_{T-e} \\ N, \ then \ (B + T) \cap N \leq T \ . \ But \ A \ is \ maximal \ with \ respect \ to \\ property \ that \ (B + T) \cap A \leq T \ , \ therefore \ A = N \ . \ Thus \ A + \\ T = N \ . \end{array}$

Proposition 3.3. Let T, A and N be submodules of a module M. Consider the following statement:

 $1 - A + T \leq_{T-c} N.$

2- A + T \leq B + T \leq_{T-e} N for each N \leq M then B + T $\leq_{(A+T)-e}$ N. Then 1=>2.

Proof : 1⇒2) Suppose that A + T ≤_{T - c} N ≤ M and A + T ≤ B + T ≤_{T-e} N, ∀ N ≤ M. To show B + T ≤_{(A+T) -e} N. Since A + T ≤_{T - c} N, then by proposition 2.9, (A+T) / T ≤_c N / T. And since A + T ≤ B + T ≤_{T-e} N, then by proposition 2.2-2, (A + T) / T ≤ (B + T) / T ≤_e N / T. By [7, proposition1.4, page18] then, [(B + T / T) / (A + T / T)] ≤_e [(N / T) / (A + T) / T]. By the third isomorphism theorem [(B+T / T) / ((A + T) / T)] ≅ [(B + T) / (A+T)] and [(N / T) / ((A + T) / T)] ≅ [(N / (A + T)]]. Hence (B + T) / (A+T) ≤_e N / (A + T). Thus by proposition 2.2-2, B + T ≤_{(A+T)-e}N.

Corollary 3 .4. Let T , A and N be submodules of a module M and $T \leq A$.

1- A + T ≤_{T-c} N. 2- A + T ≤ B + T ≤_{T-e} N for each N ≤ M then B + T ≤_{A-e} N. Then1⇒2.

Proof: Clear by proposition 3.3.

Proposition 3.5. Let T, A and B are submodules of a module M such that $A\leq B.$ If $B\leq_{(T+A)-c}M$. Then B / $A\leq_{[(T+A)/A]-c}M$ / A.

Proof :- Let B / A $\leq_{[(T+A)/A]-e} N / A \leq M / A$. To show [(B / A) + ((T + A) / A)] = N / A , implies that (B + T) / A = N / A . Let f : N \rightarrow N / A be a natural epimorphism. By

proposition 2.2-6 , then f⁻¹(B / A) \leq f⁻¹((T + A) / A)-e N. Hence B $\leq_{(T + A)-e} N \leq M$. But B $\leq_{T-c} M$, therefore B + T = N. Thus(B + T) / A = N / A.

Proposition 3.6. Let T and A be submodules of M 1- If $A \le B + T \le_{T-e} M$ then $B + T / A \le_{((A+T)/A)-e} M / A$. 2- If B + T is a T – complement to A + T in M then A + T is a T – complement to B+ T in M. Then $1 \Rightarrow 2$.

Proof :- 1⇒2) Let B + T is a T – complement to A + T in M. To show A + T is a T – complement to B + T in M . Since B + T is a T – complement to A + T in M , then (B + T) ∩ (A + T) ≤ T . Let A + T ≤ N ≤ M such that (B + T) ∩ N ≤ T, to show A+T = N . Since B + T is a T – complement to A + T in M . By proposition 2.2-7 , then (B + T) + (A + T) ≤_{T-e} M , implies that (B + A + T) ≤_{T-e} M . Since A ≤ B + A + T ≤_{T-e} M , then by (1) (B + A + T) / A ≤_{((A+T)/A)-e} M / A. Since N /A ≤ M /A , then ((B + T) ∩ N) + A / A] ≤ [(T + A) / A]. Since (B + A + T) / A ≤_{((A+T)/A)-e} M / A. Then N / A ≤ (T + A) / A , implies that N ≤ T + A . But A + T ≤ N , therefore A + T = N . Thus A + T is a T – complement to B + T in M .

Proposition 3.7. Let T, A and N be submodules of a module M such that $T \leq A \cap N$. If $A \leq_{T-c} M$ and $N \leq_{T-e} M$ then $A \cap N \leq_{T-c} N$.

Proof :- Suppose $A \leq_{T-c} M$ and $T \leq A$, then by Corollary 2.9, A / T \leq_{c} M / T . Hence by [5, proposition 1.4 ,page18] A / T is a complement to B / T in M / T. Claim that A is a T - complement to B in M .Since A / T is a complement to B / T in M / T, then A / T is maximal with respect to the property $(A / T) \cap (B / T) = 0$. Hence $A \cap B = T$, now let $A \le N \le M$ such that $B \cap N \le T$. Since $B \cap N \le T = A \cap$ B. But $A \leq N$, therefore $A \cap B \leq B \cap N$. Hence $A \cap B = A$ \cap N, then [(A / T) \cap (B / T)] = (A \cap B) / T = (A \cap N) /T = T / T = 0. But A / T is a complement for B / T in M / T , therefore N / T = A / T , so N = A .Thus A is a T – complement to B in M . Claim that A \cap N is a T complement to $B \cap N$ in N . Let $A \cap N \leq L \leq N$ such that ($B\,\cap\,N$) $\cap\,L\,\leq\,T$. To show $A\,\cap\,N$ = L . Since $N\,\leq_{T\text{-e}}M$, then $B \cap L \leq T$. Claim that $(A + L) \cap B \leq T$. Since $((A + L) \cap B) \leq T$. $) \cap B$ $) \cap N = ((A + L) \cap N) \cap B$ and since $L \leq N$, then by modular law ((A \cap N) + L) \cap B = L \cap B \leq T . Hence (A + L) $\cap B \leq T$. But A is a maximal with respect to the property $B \cap A \leq T$, therefore A + L = A. Hence $L \leq A$, implies that $L = L \cap N \le A \cap N$. But $A \cap N \le L$, therefore $A \cap N = L$. Thus by theorem 2.18, $A \cap N \leq_{T-c} N$.

Proposition 3.8. Let T and A be submodules of a module M 1- A is a T – closed in M. 2- If $A \le B \le_{(A+T)-e} M$ then $B/A \le_{[(T+A)/A]-e} M/A$. Then $1\Rightarrow 2$.

 $\begin{array}{l} \textbf{Proof: Let } A \leq_{T - c} M \text{ and } A \leq B \leq_{(A + T) - e} M \text{ . To show } B/A \\ \leq_{[(T + A)/A] - e} M/A \text{ . Let } C /A \leq M/A \text{ such that } (B/A) \cap (C /A) \\ \leq (T + A) /A. \text{ To show } (C / A) \leq (T + A) /A. \\ \textbf{Since } (B \cap C) / A \leq (T + A) /A \text{ , then } B \cap C \leq T + A \text{ . Since } \\ B \leq_{(A + T) - e} M \text{ . Then } C \leq T + A \text{ , then } (C / A) \leq (T + A) /A. \\ \textbf{Thus } B/A \leq_{[(T + A)/A] - e} M/A \text{ .} \end{array}$

Definition 3.9. Let M be an R – module. Recall that Z (M) = $\{x \in M ; ann (x) \leq_e R\}$ is called the singular submodule of M. If Z (M) = M, then M is called the singular module. If Z (M) = 0 then M is called nonsingular module, [7].

 $\begin{array}{l} \label{eq:proposition 3.10. Let T and A be submodules of a module M and M / (A+T) is non singular then A+ T <math display="inline">\leq_{T-e} M$. $\begin{array}{l} \mbox{Proof:-Let } A+T \leq_{T-e} N \leq M \ , to \ show \ A+T=N \ . \ Since M \ / (A+T) \ is \ non \ singular \ and \ N / (A+T) \leq M / A+T \ , then N / (A+T) \ is \ non \ singular \ and \ N / (A+T) \leq M / A+T \ , then N / (A+T) \ is \ non \ singular \ . \ Since \ A + T \leq_{T-e} N \ , \ by \ proposition \ 2.2-2, \ then \ (A+T) / T \leq_e N / T. \ Hence \ by \ [7, \ page32], \ (N / T) / ((A+T) / T) \ is \ singular \ . \ By \ third \ isomorphic \ theorem \ then(N / T) / ((A+T) / T) \cong N / \ (A+T), \ hence \ N / \ (A+T) \ is \ singular \ . \ But \ the \ only \ submodule \ which \ is \ singular \ and \ nonsingular \ is \ the \ zero \ submodule \ . \ Therefore \ N / \ (A+T) = 0 \ , \ Thus \ A+T = N \ . \end{array}$

Note. The converse of above proposition is not true . For example: Consider Z_{12} as Z -module . Let $N=\{\overline{0},\overline{2},\overline{4},\overline{6},\overline{8},\overline{10}\}$ and $T=\{\overline{0},\overline{6}\}$, N+T=N. Since N is not T - essential in Z_{12} , then $\{\overline{0},\overline{2},\overline{4},\overline{6},\overline{8},\overline{10}\}$ is $\{\overline{0},\overline{6}\}$ - Closed in Z_{12} . And $Z_{12}/(N+T)=Z_{12}/\{\overline{0},\overline{2},\overline{4},\overline{6},\overline{8},\overline{10}\}\cong Z_2$ is singular .

Proposition 3.11. Let T and A be submodules of a module M such that $T \le A$ and M / T be a non singular R – module . If $A \le_{T-c} M$ then M / A is non singular.

Proof: We want to show Z (M / A) = 0, let x + A ∈ M / A with ann (x + A) ≤_e R. To show x + A = A, let (Rx + A) / A ≤ M / A. Claim that (Rx + A) / A is singular, let w = (r x + a) + A = r x + A. Since ann (x + A) ≤ ann (r x + A) ≤ R, by [1, proposition5.16, page 74], then ann (r x + A) ≤_e R, thus (R X + A) / A is singular. Then by third isomorphic theorem, [(R X + A) / A] ≅[((R X + A) / T) / (A / T)], then((R X + A) / T) / (A / T) is singular. By [7, proposition 1.21,page 32] then A / T ≤_e (R X + A) / T, by proposition 2.2-2, A ≤_{T-e} (R X + A). Since A ≤_{T-c} M. Then A = R X + A. Since x ∈ RX ≤ A, then x + A = A. Thus M / A is non singular.

References

- [1] F. W. Anderson and K. R. Fuller . Rings and categories of modules, New York: Springer-Verlag , 1974.
- [2] K. R. Goodearl "Ring theory", Marcel Dekker, New York, 1976.
- [3] F. Kasch. Modules and Rings, Academic press, London, 1982
- [4] S. H. Mohamed, and B. J. Muller. Continuous and Discrete Modules, London Mathematical Society Lecture Note Series 147, 1990.
- [5] R. Wisbauer. Foundations of Module and Ring Theory. Gordon and Breach, Philadelphia, 1991.
- [6] S. Safaeeyan, and N. Saboori Shirazi, Essential submodules with respect to an arbitrary submodule . Journal of Mathematical Extension, 7(3), pp. 15-27, 2013.
- [7] K. R.Goodearl . Ring Theory , Nonsingular Rings and Modules , Marcel Dekker , New York , 1976

Volume 7 Issue 6, June 2018

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY