International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

On T – Closed Submodules

E. A. Al-Dhaheri¹ , B. H. Al-Bahrani²

^{1, 2}University of Baghdad Department of Mathematics, College of Science, Baghdad, Iraq

Abstract: In this paper, we introduce $T - Closed$ Submodules. Let T, A and B be submodules of a module M. A is called a $T - closed$ submodule of M (denoted by $A \leq_{T_c} M$), whenever $A \leq_{T_c} B$ then $A = B + T$. We investigate the basic properties of a T- Closed *submodules.*

Keywords: closed submodules , T – essential submodules

1. Introduction

Throughout this paper , rings are associative with identity and modules are unitary left R-modules. Recall that a submodule A of an R-module M is essential (or large)in M, denoted by $A \leq_e M$, in case for every submodule B of M, A \cap B = 0 implies B = 0, see [1]. And Recall that a submodule A of a module M is said to be a closed submodule (briefly $A \leq_c M$) if A has no proper essential extension of M , that is , if the only solution of the relation A $\leq_e B \leq M$ is A = B, see [2]. More details about essential submodules and closed submodules can be found in [3]-[4]. Let A be a submodule of the R – module M .A submodule B of a module M is called a complement of A in M if it is maximal in the set of submodules B of M with $A \cap B = 0$, see [5] . In [6], the authors introduced the concept of essential submodules with respect to an arbitrary submodule. Recall that , let T be a proper submodule of a module M . A submodule A of M is called T-essential submodule denoted by $A \leq_{T-e} M$ provided that $A \not\leq T$ and for each submodule B of M, A \cap B \leq T implies that B \leq T . And introduced the definition of T – complement, as follows : Let T be a proper submodule of a module M , and let A be a submodule of M . A submodule B of M is called a T – complement to A in M if B is maximal with respect to the property that $A \cap B \leq T$. In section 2 ,we introduce the definition of T- closed submodule as follows : Let T, A and B be submodules of a module M. A is called a T– closed submodule of M denoted by $A \leq_{T-c} M$, whenever $A \leq_{T-c} B$ then $B = A + T$. And we give some properties about T - closed submodule of a module M, We show that If $A + T \leq M$ then M has a T – closed submodule B such that $A + T \leq_{T-e} B$, see proposition 2.12 . In section 3, we have presented more characteristics about $T - closed$ submodules. We prove that If B is $T-$ Complement to A in M then $B \leq T_c$. M, see theorem 2.18. Also we prove that , let T, A and N are submodules of a module M such that $T \leq A \cap N$. If $A \leq_{T-c} M$ and $N \leq_{T-c} M$ then A \cap N \leq $_{T-c}$ N, see Proposition 3.7.

2. The T- closed submodules

In this section we present a variety of characterizations around T - Closed submodules .We start this section by the following definition:

Definition 2.1.Let T,A and B be submodules of a module M. A is called a T–closed submodule of M (denoted by $A \leq_{T-c}$ M), whenever $A \leq_{T-e} B$ then $B = A + T$.

Let M be a module and let $T = 0$. For a submodule A of M. Clearly that A is a $T - closed$ in M if and only if A is closed in M**.**

Examples

- 1) Consider Z as Z module . Let $K = mZ$, $T = nZ$ and $Z =$ $mZ + nZ$. Claim that $mZ \leq_{nZ-e} H \leq Z$. Since nZ , $mZ \leq Z$, then $mZ + nZ = Z \leq H$. But $H \leq Z$, therefore $H = Z$. Thus $mZ \leq_{nZ-c} Z$.
- 2) Consider Z_6 as Z module . Let $A = {\overline{0}, \overline{3}}$ and $T = {\overline{0}}$, since A is not $\{\overline{0}\}$ – essential in Z_6 , then $\{\overline{0},\overline{3}\}$ is $\{\overline{0}\}$ – closed in Z_6 . Since { $\overline{0}, \overline{3}$ } is not essential in Z_6 Then { $\overline{0}, \overline{3}$ } is closed in Z_6 .
- 3) Consider Z_6 as Z module . Let $A = \{\overline{0},\overline{3}\}\$ and T = $\{\overline{0}, \overline{2}, \overline{4}\}$, then A $\leq_{T-e} Z_6$ and $Z_6 = A + T$. Thus A is a Tclosed in Z_6 . And since $\{\overline{0},\overline{3}\}$ is not essential in Z_6 , then $\{\overline{0},\overline{3}\}$ is closed in Z_6 .
- 4) Consider Z_8 as Z module . Let $A = \{\overline{0}, \overline{2}, \overline{4}, \overline{6}\}$ and $T =$ $\{\overline{0}, \overline{4}\}\$, then $\{\overline{0}, \overline{2}, \overline{4}, \overline{6}\}\$ is $\{\overline{0}, \overline{4}\}\$ - essential in Z_8 . But A+ $T \neq Z_8$, therefore $\{\overline{0}, \overline{2}, \overline{4}, \overline{6}\}$ is not $\{\overline{0}, \overline{4}\}$ -closed in Z_8 .
- 5) Consider Z_{12} as Z module. Let $A = \{0, 2, \overline{4}, 6, 8\}$ and T $= \{\overline{0}, \overline{6}\}$ Since A is not T – essential in Z_{12} . Then A is a T – closed in Z_{12} . But A is essential in Z_{12} , therefore A is not closed in Z_{12} .

Proposition 2.2. [6]

- Let T , A and B be submodules of a module M . Then
- 1) If $A \leq_{T-e} M$ then $(A+T)/T \leq_e M/T$.
- 2) If $T \leq A$ then $A \leq_{T-e} M$ if and only if $A / T \leq_e M / T$.
- 3) K \leq_{T-e} M if and only if for each m \in M –T, there exist r R such that r m \in K $-$ T.
- 4) If A and B are T essential submodules of M, then A \cap B is T – essential too.
- 5) Let $A \leq B \leq M$ and $T \leq B$. Then $A \leq_{T-e} M$ if and only if $\mathbf{A}\leq_{\mathrm{T-e}}\mathbf{B}$ and $\mathbf{B}\leq_{\mathrm{T-e}}\mathbf{M}$.
- 6) Let $f: N \to M$ be a epimorphism . If $A \leq_{T-e} M$, then f^{-1} $(K) \leq f^{-1}(T) - e N$.
- 7) If $T \leq A$ then there exists a submodules B of M such that $A + B \leq_{T-e} M$ and $(A + B) / T = (A / T) \bigoplus (B + T) / T$ T)
- 8) We prove the following

Remark 2.3. Let T and A be submodules of a module M , if there exist a submodule B of M such that $T \le A \not\le B$ and A $\leq_{\text{T-e}} B \leq M$ then A is not a T – closed in M.

Proof: suppose that $A \not\leq B$ and $A \leq_{T-e} B \leq M$. Assume that A is a T – closed in M. Then $A + T = A = B$, but $A + T \neq B$

<www.ijsr.net>

[Licensed Under Creative Commons Attribution CC BY](http://creativecommons.org/licenses/by/4.0/)

Paper ID: ART20183384 DOI: 10.21275/ART20183384 1683

therefore which is a contradiction. Thus A is not a T closed in M.

Remark 2.4. Let T and A be submodules of a module M such that $T \leq A$, then $A \leq T - c$ M if and only if whenever A $\leq_{T-e} B \leq M$ then $A = B$.

Proof: Clear that by definition.

Remark 2.5. For each T and A be submodules of a module M such that $A \leq T$ then $A \leq_{T-c} M$

Proof: Assume that $A \leq T$, then by definition of $T - T$ essential submodules , M has not T – essential submodules A of M. Thus $A \leq_{T-c} M$.

Example 2.6: Z as Z – module . Let $K = 4Z$ and $T = 2Z$, since $4Z \leq 2Z$. Then $4Z$ is not $2Z$ – essential in Z. Thus $4Z$ is 2Z – closed in Z.

Proposition 2.7: Let T and A be submodules of a module M. If ($A + T$) / $T \leq_c M$ / T then $A \leq_{T-c} M$. **Proof** : Let A $\leq_{T-e} B \leq M$, to show $A + T = B$. By proposition 2.2-2, then $(A + T)/T \leq_{e} B/T \leq M/T$. But $(A + T)/T \leq_{c} M/T$, therefore $(A + T) / T = B / T$. Thus $A + T = B$.

Note: The converse of proposition 2.7, is not true , show that by example

Example 2.8.Consider Z as Z – module . Let $T = 12Z$ and A $= 6Z$, $(A + T)/T = (6Z + 12Z)/12Z = 6Z/12Z$, M/T = Z / 12Z . To show 6Z / 12Z is not closed submodule in Z / 12Z. Then by (6,example 2.9), $6Z / 12Z \leq E Z / 12$. Thus 6Z / 12Z is not closed submodule in Z / 12Z. But 6Z is not $12Z$ – essential of Z, see (6, example 2.9), therefore 6Z is 12Z – closed of Z .

Proposition 2.9: Let T and A be submodules of a module M then $(A + T) / T \leq_c M / T$ if and only if $A + T \leq_{T-c} M$.

Proof: \Rightarrow > Suppose that A + T $\leq_{T-e} B \leq M$. To show A+ T = B. By proposition 2.2-2, then $(A + T) / T \leq_e B / T \leq M / T$. But ($A + T$) / $T \leq_c M/T$, therefore ($A + T$) / $T = B/T$. Thus $A + T = B$.

 \Leftarrow) Let (A+T)/T \leq_e B/T \leq M/T. To show (A+T)/T $=$ B / T. By proposition 2.2-2, then A + T \leq_{T-e} B \leq M. But A $+T \leq_{T-c} M$, therefore $A + T = B$. Thus $(A + T) / T = B / T$.

Corollary 2.10. Let T and A be submodules of a module M such that $T \leq A$ then $A/T \leq_c M/T$ if and only if $A \leq_{T-c} M$.

Proof : Clear by proposition 2.9.

Proposition 2.11. Let T and A be submodules of a module M . If $A \leq_{T-c} M$ and $A \leq_{T-c} A + T \leq M$ then $(A + T) / T \leq_c$ M/T .

Proof : - Assume that $A \leq_{T-c} M$ and $A \leq_{T-e} A + T \leq M$, to show (A+ T) / T $\leq_c M/T$. Let (A+T) / T $\leq_c B/T \leq M$ / T, to show $(A + T) / T = B / T$. By proposition 2.2-2, then A $+T \leq_{T-e} B$, and since $A \leq_{T-e} A + T$. By proposition 2.2-5, then $A \leq_{T-e} B.$ But $A \leq_{T-e} M$, therefore $A+T=B$. Hence ($A + T$) / T = B / T .Thus $(A + T)$ / T $\leq_c M / T$.

Proposition 2.12.If $T + A$ be a submodule of a module M then M has a T– closed submodule B such that $A + T \leq_{T-e} B$.

Proof :- Let $A + T \leq M$ and $F = \{ D \leq M | A + T \leq_{T-e} D \}.$ Clearly that $A + T \in F$, and hence $F \neq \varphi$. Let $\{ C_{\alpha} \}_{\alpha \in \Lambda}$ be a chain in F. To show that $\bigcup_{\alpha \in \Lambda} \{ C_{\alpha} \}$ in F. Clearly $\bigcup \{ C_{\alpha} \}_\alpha$ ϵ_A is a submodule of M, now to show $A + T \leq_{T-e} U_{\alpha} \epsilon_A$ { C $_{\alpha}$ }. Let $x \in U_{\alpha \in \Lambda} \{ C_{\alpha} \} - T$. To show there exist r∈ R such that $rx \in (A + T) - T$, let $x \in C_\alpha$, then $x \in C_\alpha - T$. Since A + T $\leq_{T-e} C_\alpha$, then there exist r∈ R such that rx ∈ (A + T) – T . Thus $\bigcup_{\alpha \in \Lambda} \{ C_{\alpha} \} \in F$. By Zorn's lemma F has a maximal element say H, then $A + T \leq_{T-e} H$. Claim that $H \leq_T H$ – c M . Let $H \leq_{T-e} L \leq M$. To show $H + T = L$. Since $A + T$ $\leq_{T\text{-}e} H \leq_{T\text{-}e} L$. By proposition 2.2-5 , then A + T $\leq_{T\text{-}e} L$, and hence $L \in F$. Which is a contradiction by a maximal element, hence $H = L$. Thus $H + T = L$.

Corollary 2.13. Let T and A be submodules of a module M such that $T \leq A$, then M has a T – closed submodule B such that $A \leq_{T-e} B$.

Proof :- clearly by proposition 2 .12.

Theorem 2.14. Let T , A and B be submodules of a module M and $A + T \leq_{T-c} B + T \leq_{T-c} M$ then $A + T \leq_{T-c} M$.

Proof : \cdot Let A + T $\leq_{T-c} B + T \leq_{T-c} M$, by proposition 2.9, then (A+ T) / T \leq_c (B + T) / T \leq_c M / T . [7, proposition.1.5,p.18] ($A + T$) / $T \leq_c M / T$, by proposition 2.9, then $A + T \leq_{T-c} M$.

Corollary 2.15. Let T, A and B be submodules of a module M such that $T \leq A \cap B$. If $A \leq_{T-c} B \leq_{T-c} M$ then $A \leq_{T-c} M$.

Proof : - clear by theorem 2.14 .

Corollary 2.16. Let T, A and B be submodules of a module M such that $A \leq B \leq M$ and $T \leq B$, if $A \leq_{T-c} M$ then $A \leq_{T-c}$ B .

Proof :- Assume that $A \leq_{T \text{ -e}} N \leq B \leq M$. To show $A + T =$ N, since $A \leq_{T-e} N \leq M$ and $A \leq_{T-e} M$, then $A + T = N$. Thus $A \leq_{T-c} B$.

Theorem 2.17. Let T and A be submodules of a module M . Then A is a T - Closed in M if and only if for each $B \leq M$ such that $A \leq B + T$ then A is a T - Closed in $B + T$. **Proof :⇒**) Suppose $A \leq_T c M$, to show $A \leq_{T-c} B + T$. Let $A \leq_{T-c} N$ $\leq B + T$, to show $A + T = N$. Since $A \leq_{T-e} N \leq B + T \leq M$ and $A \leq_{T-c} M$. Then $A + T = N$. \Leftarrow) Clear.

Theorem 2.18. Let T , A and B be submodules of a module M. If B is T– Complement to A in M then $B \leq_{T-c} M$. **Proof** : Let B $\leq_{T-e} N \leq M$. To show B + T = N, since A ∩ B \leq T, then B \cap (A \cap N) \leq T. Since B \leq_{T-e} N, then A \cap N \leq T. But B is maximal with respect to the property that A \cap B \leq T, therefore $B = N$. Thus $B + T = N$.

Note. The converse of theorm2.18 is not true for example: Consider Z_{12} as Z –module .Let $A = {\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}}$, $B = {\overline{0}, \overline{4}, \overline{8}}$ and $T = {\overline{0}, \overline{6}}$. Since B is not T –essential in Z_{12} , then B is T – closed in Z_{12} . We want to show B is not a T- complement

Volume 7 Issue 6, June 2018 <www.ijsr.net>

[Licensed Under Creative Commons Attribution CC BY](http://creativecommons.org/licenses/by/4.0/)

to A in Z_{12} . Since A \cap B ={ $\overline{0}$, $\overline{4}$, $\overline{8}$ } \leq T, then B is not Tcomplement to A in Z_{12} .

3. Characterizations of T – Closed Submodules

In this section we give various characterizations. of T-Closed submodules. The following tow theorems gives a characterization of T – closed submodules.

Theorem 3.1. Let $A + T$ be a submodule of a module M. Then the following statement are equivalent:

1- A + T $\leq_{T-c} M$

2- If $A + T \leq B + T \leq_{T-e} M$ then $B + T \leq_{(A+T)-e} M$.

3- If $B + T$ is a T – complement to $A + T$ in M then $A + T$ is $a T$ – complement to $B + T$ in M.

4- $A + T$ is a T – complement for some $B + T$ submodule of M .

Proof :- 1⇒2) Assume that $A + T \leq_{T \text{ - c}} M$ and $A + T \leq B + T$ $T \leq_{T-e} M$, to show $B + T \leq_{(A+T)-e} M$. By proposition 2.9, then ($A + T$) / $T \leq_c M / T$, and by proposition 2.2-2, then (A + T) / T \leq (B+ T) / T \leq_e M / T. By [7, proposition 1.4,page 18] [($(B + T)/T$] / [($A + T)/T$] \leq_e [M/T] / [($A + T$) / T]. Then by the third isomorphism theorem [($B +$ T) / T] / [(A + T) / T] \cong [(B + T) / (A+ T)] and [M / T] / $[(A + T)/T] \cong [M/(A + T)]$.Hence $[(B + T)/(A + T)]$ \leq_e [M / [(A + T)]. Thus by proposition 2.2-2, B + T $\leq_{(A+T)}$ $_{-e}$ M $.$

Proof :- $2 \Rightarrow 3$) Let B + T is a T– complement to A + T in M. To show $A + T$ is a T – complement to $B + T$ in M. Let $A + T$ $T \le N \le M$ such that $(B + T) \cap N \le T$, to show $A + T = N$. Since $B + T$ is a T – complement to $A + T$ in M, then by proposition 2.2-7, then $(A + T) + (B + T) \leq_{T-e} M$, thus $(A+B+T) \leq_{T-e} M$. Since $A + T \leq (A + T) + B \leq_{T-e} M$, then by (2) $A+B+T\leq_{(A+T)\text{-}e}M$. Since $A\leq A+T\leq N$, then ($A + B + T$) ∩ N = ($(B + T)$ ∩ N) + A $\leq T + A$ by modular law . Since $A + B + T \leq_{(A+T)-e} M$, then $N \leq A + T$. But $A +$ $T \leq N$, therefore $A + T = N$. Thus $A + T$ is a $T - T$ complement to $B + T$ in M.

Proof :- $3 \Rightarrow 4$) To show $A + T$ is a T– complement for some $B + T$ submodule of M. Since $A + T \leq M$, then by Zorn's lemma $A + T$ has a T – complement say $B + T$ in M. By (3) $A + T$ is a T – complement to $B + T$ in M.

Proof :- $4 \Rightarrow 1$) Let A + T is a T – complement for some B + T submodule of M. To show $A + T \leq_{T,\varepsilon} M$. Let $A + T \leq_{T,\varepsilon} M$ $N \leq M$, to show $A + T = N$. Since $A + T$ is a T-complement for some B+ T submodule of M. Then $[(A+T) \cap (B+T)$ T] \cap N. Hence $[(A + T) \cap (B + T)] \cap N \le T \cap N = T$. Since $A + T \leq_{T-e} N$, then $(B+T) \cap N \leq T$. But $B + T$ is maximal with respect to the property ($A + T$) \cap ($B + T$) \le T, therefore $A + T = N$. Thus $A + T \leq_{T-c} M$.

Theorem 3.2. Let T and A be submodules of a module M such that $T \leq A$. The following statement are equivalent: 1- A is T – closed in M . 2- If $A \leq B + T \leq_{T-e} M$ then $B + T$ $\leq_{A-e} M$. 3- If B + T is a T – complement to A in M then A is a T – complement to $B + T$ in M. 4- A is a T – complement for some $B + T$ submodule of M . **Proof :**- 1⇒2) Suppose that $A \leq_{T-c} M$. By Corollary 2.10, then $A / T \leq_c M / T$.

Since $A \leq B + T \leq_{T-e} M$, then by proposition 2.2-2, A / T \leq ($B + T$) / T $\leq_e M$ / T, [5, proposition 1.4, page18] then (($B +$ T) / T) / (A / T) \leq_e (M / T) / (A / T). By third isomorphic ($B + T$) / $A \leq_e M$ / A, then by proposition 2.2-2, then $B + T \leq_{A-e} M$.

Proof:- $2 \Rightarrow 3$) Let $B + T$ is a T–complement to A in M. To show A is a T–complement to $B + T$ in M. Let $A \le N \le M$ such that $(B + T)$ \cap $N \leq T$, to show A= N. Since B + T is a T – complement to A in M, by proposition 2.2-7, then $(B +$ T) + A $\leq_{T-e} M$. Since A \leq ((B+T) + A) $\leq_{T-e} M$.then by (2), $(B + T) + A \leq_{A-e} M$. Since $A \leq N \leq M$, then by modular law ((B + T) + A) ∩ N = ((B + T) ∩ N) + A \le T + A = A . Since $(B + T) + A \leq_{A-e} M$, then $N \leq A$. But $A \leq N$, therefore $N = A$. Thus A is a T – complement to $B + T$ in M.

Proof :- 3⇒4) To show A is a T– complement for some B + T submodule of M. Since $A \leq M$, then by Zorn's lemma A has a T – complement say $B + T$ in M. Thus by (3) A is a T – complement to $B + T$ in M.

Proof :- $4 \Rightarrow 1$) Let A is a T – complement for some B + T submodule of M. To show $A \leq_{T-c} M$. Let $A \leq_{T-e} N \leq M$, to show $A + T = N$. Since A is a T – complement to $B + T$ in M , then A \cap (B + T) \leq T, hence[A \cap (B + T)] \cap N \leq T \cap N= T. Implies that A ∩ [($B + T$) ∩ N] $\leq T$. Since A \leq_{T-e} N, then $(B + T)$ \cap N \leq T. But A is maximal with respect to property that ($B + T$) $\cap A \leq T$, therefore $A = N$. Thus $A +$ $T = N$.

Proposition 3.3. Let T, A and N be submodules of a module M. Consider the following statement:

1- $A + T \leq_{T-c} N$.

2- A + T \leq B + T \leq _{T-e} N for each N \leq M then B + T \leq (A+T) -e N. Then 1⇒2.

Proof : 1⇒2) Suppose that $A + T \leq_{T-c} N \leq M$ and $A + T \leq B$ $+ T \leq_{T-e} N$, $\forall N \leq M$. To show $B + T \leq_{(A+T)-e} N$. Since $A + T$ $\leq_{T-c} N$, then by proposition 2.9, (A+ T) / T $\leq_c N$ / T. And since $A + T \leq B + T \leq_{T-e} N$, then by proposition 2.2-2, ($A + T \leq B + T \leq_{T-e} N$) T) / T \leq (B + T) / T \leq_e N / T. By [7, proposition1.4, page18] then, $[(B + T / T) / (A + T / T)] \leq_e [(N / T) / (A$ $+$ T) / T]. By the third isomorphism theorem [(B+T/T) / $((A + T)/T) \cong [(B + T)/(A + T)]$ and $[(N/T)/(A +$ T) $/T$)] \cong [(N / (A + T)]. Hence (B + T) / (A + T) \leq_e N / (A + T). Thus by proposition 2.2-2, B + T $\leq_{(A+T) -e} N$.

Corollary 3 .**4**. Let T , A and N be submodules of a module M and $T \leq A$.

1- $A + T \leq_{T-c} N$. 2- A + T \leq B + T \leq _{T-e} N for each N \leq M then B + T \leq _{A-e} N. Then1⇒2**.**

Proof: Clear by proposition3.3.

Proposition 3.5. Let T , A and B are submodules of a module M such that $A \leq B$. If $B \leq_{(T+A)-c} M$. Then $B / A \leq$ $[(T+A)/A]$ - c M/A .

Proof :- Let B / A \leq _{[(T+A)/A]-e} N / A \leq M / A . To show [(B $/(A) + ((T + A) / A)$] = N / A, implies that (B + T) / A = N / A . Let $f : N \rightarrow N / A$ be a natural epimorphism. By

proposition 2.2-6, then $f^{-1}(B / A) \leq f^{-1}(T + A) / A$)-e N. Hence $B \leq_{(T+A)\text{-}e} N \leq M$. But $B \leq_{T-c} M$, therefore $B + T =$ N. Thus($B + T$) / $A = N / A$.

Proposition 3.6. Let T and A be submodules of M 1- If $A \leq$ $B + T \leq_{T-e} M$ then $B + T / A \leq (A + T) / A$) –e M / A . 2- If B + T is a T – complement to $A + T$ in M then $A + T$ is a T – complement to B+ T in M. Then $1\Rightarrow 2$.

Proof :- $1 \Rightarrow 2$) Let $B + T$ is a T – complement to $A + T$ in M. To show $A + T$ is a T – complement to $B + T$ in M. Since B + T is a T – complement to $A + T$ in M, then $(B + T) \cap ($ $A+T$) $\leq T$. Let $A+T \leq N \leq M$ such that ($B+T$) $\cap N \leq T$, to show $A+T = N$. Since $B + T$ is a T – complement to $A +$ T in M . By proposition 2.2-7, then $(B + T) + (A + T) \leq_{T-e}$ M, implies that $(B + A + T) \leq_{T-e} M$. Since $A \leq B + A + T$ $\leq_{T-e} M$, then by (1) (B + A + T) / A $\leq_{((A+T)/A)-e} M/A$. Since N /A \leq M /A, then ((B + A + T) / A) \cap (N / A) = (($B + A + T$) \cap N) \land A = [(($B + T$) \cap N) + A \land A] \le [($T + A$) / A]. Since (B + A + T) /A $\leq_{((A+T)/A) - e} M / A$. Then N / $A \leq (T + A) / A$, implies that $N \leq T + A$. But $A + T \leq N$, therefore $A + T = N$. Thus $A + T$ is a T – complement to B + T in M .

Proposition 3.7. Let T, A and N be submodules of a module M such that $T \leq A \cap N$. If $A \leq_{T-c} M$ and $N \leq_{T-c} M$ then A $\bigcap N \leq_{T-c} N$.

Proof :- Suppose $A \leq_{T-c} M$ and $T \leq A$, then by Corollary 2.9, A / T \leq \leq M / T. Hence by [5, proposition 1.4 , page18] A / T is a complement to B / T in M / T . Claim that A is a T - complement to B in M .Since A / T is a complement to B / T in M $/$ T, then A $/$ T is maximal with respect to the property (A/T) \cap (B/T) = 0. Hence $A \cap B = T$, now let $A \le N \le M$ such that $B \cap N \le T$. Since $B \cap N \le T = A \cap$ B . But $A \leq N$, therefore $A \cap B \leq B \cap N$. Hence $A \cap B = A$ $\bigcap N$, then $\big[(A/T) \bigcap (B/T) \big] = (A \bigcap B) / T = (A \bigcap N)$ $/T = T / T = 0$. But A $/T$ is a complement for B $/T$ in M $/T$, therefore N / T = A / T , so N = A . Thus A is a T – complement to B in M . Claim that $A \cap N$ is a T complement to B \cap N in N . Let A \cap N \leq L \leq N such that ($B \cap N$) \cap $L \leq T$. To show $A \cap N = L$. Since $N \leq_{T\text{-}e} M$, then B $\cap L \leq T$. Claim that $(A + L) \cap B \leq T$. Since $((A + L)$ $(AB \cap B) \cap N = ((A + L) \cap N) \cap B$ and since $L \leq N$, then by modular law ($(A \cap N) + L$) $\cap B = L \cap B \leq T$. Hence (A $+ L$) $\cap B \leq T$. But A is a maximal with respect to the property B \cap A \leq T, therefore A + L = A. Hence L \leq A, implies that $L = L \cap N \leq A \cap N$. But $A \cap N \leq L$, therefore A \cap N = L. Thus by theorem 2.18, A \cap N \leq _{T - c} N.

Proposition 3.8. Let T and A be submodules of a module M 1- A is a T – closed in M. 2- If $A \leq B \leq_{(A+T)-e} M$ then $B/A \leq_{[(T+A)/A]-e} M/A$. Then $1\Rightarrow 2$.

Proof : Let $A \leq_{T-c} M$ and $A \leq B \leq_{(A+T)-e} M$. To show B/A \leq [(T + A)/A]-e M/ A . Let C /A \leq M/A such that (B/A) \cap (C /A) \leq (T + A) /A. To show (C / A) \leq (T + A) /A. Since $(B \cap C) / A \le (T + A) / A$, then $B \cap C \le T + A$. Since $B \leq_{(A+T)-e} M$. Then $C \leq T + A$, then $(C / A) \leq (T + A) / A$. **Definition 3.9**. Let M be an R – module. Recall that Z (M) $= \{x \in M : \text{ann}(x) \leq_e R \}$ is called the singular submodule of M . If $Z(M) = M$, then M is called the singular module. If $Z(M) = 0$ then M is called nonsingular module , [7].

Proposition 3.10. Let T and A be submodules of a module M and M / (A+ T) is non singular then A+ $T \leq_{T-c} M$. **Proof** :- Let $A + T \leq_{T-e} N \leq M$, to show $A + T = N$. Since M / ($A + T$) is non singular and N / ($A + T$) $\leq M$ / $A + T$, then N / (A + T) is non singular. Since $A + T \leq_{T-e} N$, by proposition 2.2-2, then $(A + T) / T \leq_e N / T$. Hence by [7, page32], $(N / T) / ((A + T) / T)$ is singular. By third isomorphic theorem then(N / T) / ((A + T)/ T) \cong N/ (A+ T), hence $N/(A+T)$ is singular. But the only submodule which is singular and nonsingular is the zero submodule .Therefore $N / (A + T) = 0$, Thus $A + T = N$.

Note. The converse of above proposition is not true . For example: Consider Z_{12} as Z –module . Let N = ${\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}, \overline{10}}$ and $T = {\overline{0}, \overline{6}}$, $N + T = N$. Since N is not T - essential in Z_{12} , then $\{\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}, \overline{10}\}$ is $\{\overline{0}, \overline{6}\}$ - Closed in Z_{12} .And Z_{12} / (N + T) = Z_{12} / { $\overline{0}$, $\overline{2}$, $\overline{4}$, $\overline{6}$, $\overline{8}$, $\overline{10}$ } \cong Z_2 is singular .

Proposition 3.11. Let T and A be submodules of a module M such that $T \leq A$ and M / T be a non singular R – module. If $A \leq_{T-c} M$ then M / A is non singular.

Proof: We want to show Z $(M / A) = 0$, let $x + A \in M / A$ with ann $(x + A) \leq_e R$. To show $x + A = A$, let $(Rx + A)$ $A \leq M / A$. Claim that $(Rx + A) / A$ is singular, let w = (r x $+ a$) + A = r x + A . Since ann (x + A) \leq ann (r x + A) \leq R ,by [1, proposition5.16, page 74], then ann $(r x + A) \leq_e R$, thus ($R X + A$) / A is singular. Then by third isomorphic theorem, $[(R X + A) / A] \cong [(R X + A) / T) / (A / T)]$, then(($R X + A$) / T) / (A / T) is singular. By [7, proposition 1.21,page 32] then A / T \leq_e (R X + A) / T ,by proposition 2.2-2, $A \leq_{T-e} (RX + A)$. Since $A \leq_{T-e} M$. Then $A = RX +$ A. Since $x \in RX \leq A$, then $x + A = A$. Thus M / A is non singular.

References

- [1] F. W. Anderson and K. R. Fuller . Rings and categories of modules, New York: Springer-Verlag , 1974.
- [2] K. R. Goodearl "Ring theory", Marcel Dekker, New York, 1976.
- [3] F. Kasch. Modules and Rings, Academic press, London, 1982
- [4] S. H. Mohamed, and B. J. Muller. Continuous and Discrete Modules, London Mathematical Society Lecture Note Series 147, 1990.
- [5] R. Wisbauer. Foundations of Module and Ring Theory. Gordon and Breach, Philadelphia, 1991.
- [6] S. Safaeeyan, and N. Saboori Shirazi, Essential submodules with respect to an arbitrary submodule . Journal of Mathematical Extension, 7(3),pp. 15-27, 2013.
- [7] K. R.Goodearl . Ring Theory , Nonsingular Rings and Modules , Marcel Dekker , New York , 1976

Volume 7 Issue 6, June 2018

<www.ijsr.net>

[Licensed Under Creative Commons Attribution CC BY](http://creativecommons.org/licenses/by/4.0/)

Thus $B/A \leq (T + A)/A$]-e M/A .