
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 7, July 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The Road to Modernization: Upgrading Legacy

Applications for Modern Browsers

Vijayasekhar Duvvur

Email: vijay.duvur[at]gmail.com

Abstract: Legacy web applications, the backbone of many organizations, often struggle to function seamlessly in modern browsers due

to evolving web standards and browser advancements. This can lead to a negative user experience and hinder business operations. This

article equips software engineers with the key steps to modernize their legacy web applications, ensuring compatibility with modern

browsers and paving the way for a revitalized user experience. It explores various strategies and best practices, along with the tools and

technologies that can aid in this modernization process. By following these steps, software engineers can breathe new life into legacy

applications and ensure they continue to function effectively in the ever - changing digital landscape.

Keywords: Legacy web application modernization, modern browser compatibility, legacy code refactoring, frontend frameworks, web

standards compliance, enhanced security, enhanced user experience

1. Introduction

In the relentless march of technological progress, web

applications, once cutting - edge solutions, can become

casualties of time. Built with the standards of a bygone era,

these legacy applications often struggle to function

seamlessly in the modern web landscape dominated by

constantly evolving browsers. Incompatibility issues can

manifest as visual inconsistencies, broken functionalities, or

cryptic error messages, leading to a frustrating user

experience and potentially impacting business operations.

The good news for software engineers facing this challenge is

that modernization is not just possible, it's a strategic

investment in the future. This article serves as a

comprehensive guide, outlining the key steps involved in

modernizing legacy web applications for compatibility with

modern browsers. We'll delve into strategies for identifying

compatibility issues, explore various modernization

approaches, and equip you with the tools and technologies to

navigate this process effectively. By embracing these

modernization techniques, you can transform your legacy

application from a relic of the past into a revitalized and user

- friendly solution, ensuring its continued success in the ever

- changing digital world.

Key Steps for Modernizing Legacy Web Applications for

Modern Browsers

Legacy web applications, the valiant warriors of a bygone

web era, often struggle to function seamlessly in the ever -

evolving landscape of modern browsers. Incompatibility

issues can lead to a frustrating user experience, hindering

functionality and potentially impacting business operations.

Fear not, software engineers! This article equips you with the

key steps to modernize your legacy web application, ensuring

compatibility with modern browsers and paving the way for a

revitalized user experience.

1) Unearthing the Beasts: Identifying Compatibility

Issues

• To begin, a thorough diagnosis must be conducted to

understand the full extent of the issues at hand:

• Modern Browser Testing: Use the latest browser versions

for key players like Chrome, Firefox, and Edge to test your

application [3]. Tools like Selenium or Cypress are

invaluable for automating these tests, allowing you to

identify issues such as rendering inconsistencies or

JavaScript errors systematically [4].

• Standards Compliance Review: Utilize tools such as the

W3C validator to ensure your application adheres to

modern web standards including HTML5, CSS3, and

ECMAScript 6+. This will help pinpoint areas where your

application falls short and guide necessary upgrades [2].

• Dependency Audit: Examine all third - party libraries and

frameworks. Outdated components can severely hinder

compatibility. Upgrading to the latest versions or

replacing deprecated libraries with modern alternatives is

often necessary.

2) Choosing Your Weapons: Modernization Strategies

• With a clear understanding of the compatibility issues,

select the most appropriate modernization strategy [5]:

• Incremental Refactoring: This strategy involves making

gradual improvements to your codebase to align with

modern standards. Suitable for applications that are large

Paper ID: SR24517155743 DOI: https://dx.doi.org/10.21275/SR24517155743 1553

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
mailto:vijay.duvur@gmail.com

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 7, July 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

and complex, it minimizes disruption but requires

continuous effort.

• Partial Rewrites: Target the most problematic

components for a rewrite. This focused approach can yield

significant improvements without the resource intensity of

a full rewrite.

• Full Rewrite: In cases where the legacy system is

extensively outdated, a complete overhaul may be the only

viable option. This strategy allows for the incorporation of

current best practices and technologies but involves

substantial investment in terms of time and resources.

3) The Modern Arsenal: Tools and Technologies for

Success

• Leveraging the right tools and technologies is crucial for

effective modernization:

• Modern Build Tools: Implement tools like Webpack or

Gulp to handle tasks such as code compilation,

minification, and bundling. These tools help automate and

streamline the development process, ensuring consistency

across builds.

• Frontend Frameworks: Adopting a modern frontend

framework (e. g., React, Angular, Vue. js) can

significantly enhance the structure and maintainability of

your application. These frameworks are designed to work

well with modern browsers and can help address many

compatibility issues [1, 5].

• Polyfills: Use polyfills to provide modern functionality in

older browsers for features not universally supported, such

as the Fetch API or ES6 features.

• Testing Frameworks: Incorporate testing frameworks like

Jest or Mocha to conduct thorough unit and integration

testing. This ensures that your application functions

correctly across all targeted browsers.

4) Continuous Vigilance: Maintaining Compatibility

• Modernization is an ongoing process, requiring

continuous monitoring and adaptation [6]:

• Stay Updated on Browser Trends: Regularly update your

knowledge of browser updates and deprecated features.

Regular testing against new browser versions can help

catch emerging issues early.

• Version Control and Branching: Use a robust version

control system like Git to manage changes effectively.

Employ branching strategies to keep modernization

efforts organized and maintain a stable production

environment.

• Automation is Key: Develop CI/CD pipelines to automate

testing and deployment processes. This not only saves

time but also helps maintain high standards of quality and

compatibility [4].

Benefits of Modernizing Web application browsers

Modernizing the browsers used to access web applications is

not just about keeping up with technological advances but

also about providing a secure, efficient, and accessible

environment for users. This modernization effort translates

into tangible benefits, including operational efficiencies,

enhanced security, and better user experiences, all of which

are crucial for maintaining competitive advantage in the

digital age. Here's a detailed look at these advantages:

1) Performance Enhancement

• Faster Load Times: Modern browsers are optimized for

speed, reducing the time it takes to load and render web

pages. This is crucial for user retention, as slow - loading

websites can drive users away. Technologies like HTTP/2

and modern JavaScript engines in browsers like Chrome

and Firefox allow for faster data transfer and processing,

making web applications quicker and more responsive

[10].

• Improved Responsiveness: With better CSS standards and

HTML5, modern browsers can handle dynamic content

that adjusts seamlessly to different devices and screen

sizes. This adaptability enhances user experience,

particularly on mobile devices where users expect a

desktop - like experience [7, 8, 10].

• Resource Optimization: Modern browsers handle memory

and power better, which is especially important for users

on mobile devices. They optimize the use of resources,

which can prolong battery life and improve the overall

performance of the device [10].

2) Enhanced Cybersecurity

• Regular Updates: Modern browsers are regularly updated

to address security vulnerabilities. These updates protect

against the latest threats and ensure safer browsing

experiences. For instance, browsers like Chrome and

Safari frequently release updates that patch existing

security loopholes [5, 9].

• Advanced Security Features: Modern browsers

incorporate advanced security protocols like Content

Security Policy (CSP), Subresource Integrity (SRI), and

HTTPS, which enhance the security of web applications

by preventing cross - site scripting (XSS) and data

interception by malicious entities [5, 9].

• Isolation Techniques: Techniques such as site isolation in

Chrome help protect against malicious websites by

running each webpage in its own process. This

containment strategy limits the damage that a harmful site

can cause, providing a robust defense mechanism against

browser - based attacks [5, 9].

Paper ID: SR24517155743 DOI: https://dx.doi.org/10.21275/SR24517155743 1554

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 7, July 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

3) Improved Compliance and Accessibility

• Accessibility Features: Modern browsers support web

standards that improve accessibility, making web content

more accessible to people with disabilities. This includes

better screen reader support, keyboard navigation, and

color contrast, which align with web accessibility

guidelines such as WCAG.

• Regulatory Compliance: By supporting the latest web

standards and security protocols, modern browsers help

organizations comply with data protection regulations like

GDPR and CCPA. This compliance is crucial for avoiding

legal penalties and maintaining customer trust.

4) Future - Proof Technology

• Support for Latest Web Technologies: Modern browsers

are continuously updated to support the latest web

technologies like CSS Grid, Flexbox, and ES6 modules.

This ensures that web applications can leverage the most

advanced and efficient coding practices available.

• Innovation Opportunities: With features like

WebAssembly, which allows code written in languages

other than JavaScript to run in the browser at near - native

speed, businesses can create more complex, powerful web

applications than ever before.

2. Conclusion

By following these steps and leveraging modern tools and

strategies, you can successfully modernize your legacy web

application, ensuring compatibility with modern browsers

and revitalizing its user experience. Remember, a well -

maintained and compatible application not only enhances

user satisfaction but also empowers your organization to stay

competitive in the ever - changing digital landscape. So, take

up your metaphorical tools, software engineers, and embark

on this modernization quest! Let's breathe new life into these

legacy warriors and ensure they continue to serve your users

effectively.

References

[1] Delcev, S. (2018). Modern JavaScript frameworks: A

survey study. IEEE.

[2] Enterprise Web Development: Building HTML5

Applications: From Desktop to Mobile. (2016). O'Reilly

Media.

[3] Keith, J. Web Performance Optimization.

[4] BrowserStack. Selenium. Retrieved from https:

//www.browserstack. com/selenium

[5] Mueller, J. (2015). Security for Web Developers: Using

JavaScript, HTML, and CSS.

[6] Continuous Delivery and DevOps: A Quickstart Guide.

(2016). Packt Publishing.

[7] Ben Nadel. A Book Apart: HTML5 for Web Designers

by Jeremy Keith. Retrieved from https:

//www.bennadel. com/blog/2013 - a - book - apart -

html5 - for - web - designers - by - jeremy - keith. htm

[8] Techopedia. HTML5 for the Future Web. Retrieved

from https: //www.techopedia.

com/2/28656/development/web - development/html5 -

for - the - future - web

[9] Arunagiri, J., & Rakhi, S. (2016). A systematic review

of security measures for web browser extension

vulnerabilities. Retrieved from researchgate. net

[10] Wingerath, W. (2018). Rethinking web performance

with service workers. Medium.

Paper ID: SR24517155743 DOI: https://dx.doi.org/10.21275/SR24517155743 1555

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

