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Abstract: A fourth order accurate finite difference method is introduced to solve the governing equations of natural convection of 

viscoelastic fluid flow and heat transfer under the influences of and nonlinear radiation and dissipation. The fluid flows through non-

Darcy porous medium which lies between two heated vertical plates that are kept at constant, but different, temperatures. The coupled 

nonlinear differential equations are linearized and iterations are used to approximate that linearized terms. The finite difference method 

transforms the coupled linearized differential (momentum and energy) equations to a linear system of algebraic equations. Some 

comparisons are made to study the convergence and stability of the present results. Effects of parameters of fluid and heat on the 

velocity field, temperature, skin friction factor and Nusselt number are illustrated and discussed. The present results and their 

comparisons with available results are listed and shown in tables. The present results show that the numerical solution is of excellent 

agreement with previous analytical and numerical solution.  
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1. Introduction 
 

Numerical methods with high accuracy are very important 

tools to solve highly non-linear differential equations. 

Iterative techniques are required to solve the linearized 

differential equations to achieve an appropriate accuracy. 

The finite difference method (FDM) is widely used to solve 

the linear and non-linear differential equations because of 

simplicity of this method. The natural convection of non-

Newtonian fluids in porous medium has many engineering 

applications such as heat exchangers, fiber insulation, 

cooling of electronic equipments, nuclear reactors, solar 

devices, in polymer processing industries, food industries, 

and petroleum reservoirs. 

 

The natural convection of non-Newtonian fluids has been 

studied by many authors [1-11]. Rajagopal and Na [2] 

introduced a numerical solution for natural convection flow 

of Rivlin-Ericksen fluid and heat transfer between parallel 

plates. They studied and computed the skin friction and 

Nusselt number. Zibabakhsh and Domairy [3] used the 

homotopy analysis method for solving the natural convection 

flow of a non-Newtonian fluid between two vertical flat 

plates. Kargar, and Akbarzade [6] used the homotopy 

perturbation method (HPM) for the study of natural 

convection flow of a non-Newtonian fluid between two 

vertical flat plates. Rashidi et al. [7] used the differential 

transformation method (DTM) to solve the governing 

equations of natural convection flow of third grade non-

Newtonian fluids.  Murar [9] studied the natural convection 

flow in a vertical channel in the presence of non-linear 

radiation and viscous dissipation. He used the finite 

difference method (FDM) to solve the governing coupled 

equations. Siddiqa et al. [10] studied the natural convection 

flow of a two-phase dusty non-Newtonian power law fluid 

along a vertical surface. The continuity, momentum and 

energy equations are solved numerically with the aid of 

implicit finite difference method (FDM). They studied and 

computed the skin friction and Nusselt number. The natural 

convection flow in non-Darcy porous media past a vertical 

surface has been studied by Khani et al. [4]. They presented 

an analytic solution of governing equations of third grade 

viscoelastic fluid with Darcy-Forchheimer model. Jyoti [11] 

used the homotopy analysis method (HAM) to study the third 

grade fluid with natural heat convection between two vertical 

plates. 

 

The nonlinear radiation effect on Newtonian and non-

Newtonian fluids has been studied [12-13]. Mushtaq et al. 

[12] introduced a numerical of non-linear radiation heat 

transfer for the flow of an electrically conducting second 

grade fluid. Shooting method with fourth and fifth Runge-

Kutta integration has been used to solve the governing 

momentum and energy equations. Ahmed et al. [13] 

introduced a finite element investigation of the flow of a 

Newtonian fluid in dilating and squeezing porous channel 

under the influence of non-linear thermal radiation. 

 

The aim of present work is to study and compute the effects 

of nonlinear radiation and Forchiemer-Darcy resistance force 

on natural convection of viscoelastic (Rivlin-Ericksen) fluid 

and heat transfer between vertical plates. Fourth order 

accurate finite difference schemes are used to solve the 

coupled non-linear differential (momentum and energy) 

equations. Linearization technique is applied to transform the 

non-linear terms linearized ones. Iterations are used up 

required accuracy. An error analysis is made to achieve 

accuracy, convergence and stability of present results and 

their agreement with available previous works. Skin friction 

and Nusselt number are computed and tabulated.   
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2. Formulation of the Problem 
 

Consider a non-Newtonian fluid flows in a non-Darcy porous 

medium between two vertically parallel plates as shown in 

Fig. 1.  The two stationary plates are kept at constant but 

different temperatures T1 (for left plate) and T2 (for right 

plate) with T1 > T2.  The fluid particles, frequently, rise near 

left plate but they fall near right plate due to their difference 

in temperatures [2]. The flow is steady and laminar and 

viscous dissipation and radiation effects are taken into 

consideration. 

 

According to above assumptions the governing (momentum 

and energy) equations are written, respectively, as [2, 4, 14]. 
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The boundary conditions are shown in Fig. 1 and they are 

written as 
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The radiative heat flux is approximated using Rosseland 

approximation [11] as 
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To introduce a general solution for any case of dimensions 

and scales, the following quantities are chosen [2, 4, 6]. 
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Under the above assumptions (eqns. 4 and 5) and quantities, 

the dimensionless forms of governing equations (1 and 2) 

with boundary conditions (3) are rewritten as 
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3. Numerical Solution 
 

The system of coupled non-linear ordinary differential 

equations (6, 7), with boundary conditions (8) are solved for 

the flow velocity and temperature using the finite difference 

method (FDM). The following linearized form should be 

applied because of nonlinearity in this system, 
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where, bar notation refers to the iterated terms which 

transform the system (6, 7) to a linearized one. 

 

The finite domain of solution (-1 < x < 1) is divided into m-

subintervals such that the mesh size is m/2 , with 

counter i=1, 2, 3, …, m+1. The linearized system of coupled 

non-linear ordinary differential equations (9 and 10) is 

transformed to system algebraic equations using the fourth 

order difference schemes. The following fourth order 

schemes are obtained by Taylor's expansions of the 

variable )(xf about point 1)1(  ixi
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The skin friction factor and Nusselt number factor are two 

important fluid flow and heat transfer parameters because of 

their very importance in the engineering applications, since, 

they can be used to improve the shape and efficiency of 

many equipments in aerodynamics. These quantities are 

computed after solution the governing equations.  

 

The skin friction factor at left plate is defined as [15] 
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Nusselt number is defined as the ratio of the convective 

conduction to the pure molecular thermal conductance [16]. 

Thus the Nusselt number at left plate may be written as  
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The dimensionless form of these factors are written as 
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Fourth order difference schemes should be applied on 

equations (19 and 20) to minimize round off errors in 

computations. These schemes can be deduced by Taylor's 

expansion of independent variables (v and ) about x=-1. 

Thus the dimensionless skin friction factor and Nusselt 

number are discretized as  
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4. Error Analysis  
 

The linearized terms in governing equations need iterations 

to achieve convergence of the present work. Thus, a good 

initial guess is required to reach, fast and accurate results.   

The trend of previous works is used as an initial guess for 

linearized terms. For number of subintervals m, we find that, 

the fourth order truncation error of the solution is O(2/m)
4
. 

Thus, the FDM is a good method to verify the convergence 

and stability of the analytical and experimental solutions. It 

is observed that, (5 to 80) iterations are required to achieve 

(10
-8  

to 10
-12

) round off error such that number of 

subintervals (20 ≤  m  ≤ 2000).  

 

Tables (1 and 2) illustrate convergence of present solution 

depending on the influences of v and θ by number of sub-

intervals (m=20, 200 and 2000) which give orders of 

truncation error (4
=10

-4
, 10

-8
, 10

-12
), respectively. Relatively 

small and large fluid and heat parameters are used (from 1 to 

1000) to illustrate the power of present method to solve the 

non-linear differential equations. It is observed that the 

present solution is convergent and accurate.  

 

Tables (3-6) illustrate good agreements of present results 

with earlier literature works ([6-8] and [11]). It is observed 

that the absolute difference between present results and 

differential transformation method, DTM [7] and homotopy 

analysis method, HAM [11] is less than 5.09*10
-7

.  

 

5. Results and Discussion 
 

Computations of dimensionless velocity v, temperature θ, 
skin friction factor 

LfC and Nusselt number 
LuN  are made for 

different values of flow and heat parameters (Tr, M, Fs, , Rd 

and Br) to illustrate their effects on dimensionless quantities. 

Certain values of these parameters are chosen to show 

variation and convergence of present results as they are 

plotted tabulated and compared with analytical and 

numerical available results.  

 

The effect of Brinkman numberBr=1, 50 and 100) on the 

variations of v and θ profiles are shown in Fig. 2. It is 

observed that increasing Brinkman number (Br) increases v 

and θ because of dissipation.  

 

The effect of temperature ratioTr=1.5, 2 and 2.5) on the 

variations of v and θ profiles are shown in Fig. 3. It is 

observed that increasing Tr increases v and θ because of 

radiation. It also is observed that velocity v is relatively 

affected by Tr more than θ. 

The effect of radiation parameter Rd=1, 2 and 3) on the 

variations of v and θ profiles are shown in Fig. 4. It is 

observed that increasing 1/Rd increases v and θ because of 

radiation. It also is observed that velocity v is relatively 

affected by Rd more than θ. 

 

The effect of viscoelastic parameter  on the variations of v 

and θ profiles is shown in Fig. 5. It is observed that 

increasing  decreases v and θ. It also is observed that 

velocity v is relatively affected by  more than θ. 

 

Tables (7 and 8) show effects of some fluid flow and heat 

transfer parameters  (r and Br) on the friction factor (CfL) 

and Nusselt number (NuL) when M=Fs=1 and Rd=100. It is 

observed that CfL increases with increasing r and Br   but, 

CfL decreases with increasing , It is also observed that NuL 

increases with increasing Tr and , but, NuL decreases with 

increasing Br.  

 

6. Conclusions 
 

The finite difference method with fourth order accurate is 

used to solve the nonlinear momentum and energy equations 

between heated vertical plates. The effects of: nonlinear 

radiation, dissipation and Forchiemer-Darcy resistance force 

on viscoelastic (Rivlin-Ericksen) fluid and heat transfer are 

taken into consideration. An error analysis is made to achieve 

accuracy, convergence and stability of present results and 

their agreement with available previous works. The fourth 

order difference schemes reduce the required number of sub-

intervals of the domain of solution. Hence, the storage 

memory and processing time are reduced in computers. The 

effects of fluid and heat parameters on velocity, temperature, 

skin friction factor and Nusselt number are studied and 

discussed. Samples of present results are listed and shown in 

tables and figures. It is observed that, increasing Brinkman 

number and temperature ratio increase velocity, skin friction 

factor and temperature because of dissipation.  It is also 

observed that, increasing viscoelastic parameter decreases 

velocity, skin friction factor and temperature because 

resistance to the flow.  The Nusselt number decreases with 

increasing Brinkman number, but, it increase with increasing 

both viscoelastic parameter and temperature ratio. The 

results which are introduced in tables are very useful in 

engineering design and comparisons with future analytical 

and experimental works.                        
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Table 1: Convergence of present results with relatively small parameters: 

M=Fs=Rd=Br==1, Tr=1.5 
 v(x)  (x) 

    m 

x 

20 

(4=10-4) 

200 

(4=10-8) 

2000 

(4=10-12) 

20 

(4=10-4) 

200 

(4=10-8) 

2000 

(4=10-12) 

-1  0  0  0  0.5  0.5  0.5 

-0.8  0.0163777112  0.0305706543  0.0306171305  0.4299799420  0.4307198914  0.4308045172 

-0.6  0.0216158119  0.0457975622  0.0458915209  0.3555444845  0.3571143442  0.3572938117 

-0.4  0.0206248826  0.0487315918  0.0488707276  0.2761503680  0.2786628267  0.2789499164 

-0.2  0.0160765142  0.0425595109  0.0427383069  0.1910468433  0.1946435806  0.1950543403 

 0  0.0094877557  0.0304154193  0.0306248834  0.0992574877  0.1041180250  0.1046727584 

0.2  0.0019485842  0.0154152899  0.0156420281 -0.0004615359  0.0058929016  0.0066175859 

0.4 -0.0053448137  0.0008325258  0.0010570365 -0.109695473 -0.1015477090 -0.1006193412 

0.6 -0.0105730848 -0.0096499014 -0.0094557831 -0.230492616 -0.2201547774 -0.2189780952 

0.8 -0.0106169347 -0.0116645499 -0.0115407593 -0.365483573 -0.3524997559 -0.3510143280 

1  0  0  0 -0.5 -0.5 -0.5 
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Table 2: Convergence of present results with relatively large parameters: 

M=10, Fs=10, Rd=1000, Br=10,=30, Tr=10 
 v(x)  (x) 

    m 

x 

20 

(4=10-4) 

200 

(4=10-8) 

2000 

(4=10-12) 

20 

(4=10-4) 

200 

(4=10-8) 

2000 

(4=10-12) 

-1  0  0  0  0.5  0.5  0.5 

-0.8  0.0140675932  0.0140767801  0.0140771269  0.4394277338  0.4395086246  0.4395125925 

-0.6  0.0200916466  0.0201110886  0.0201119796  0.3720398947  0.3722182261  0.3722269398 

-0.4  0.0196959988  0.0197289568  0.0197305020  0.2971954479  0.2974928529  0.2975073466 

-0.2  0.0154694903  0.0155145565  0.0155167656  0.2136113091  0.2140552428  0.2140768387 

 0  0.0091984395  0.0092551410  0.0092579953  0.1198014480  0.1204245426  0.1204548177 

0.2  0.0020365902  0.0021027664  0.0021061918  0.0145472519  0.0153835416  0.0154241349 

0.4 -0.0048912329 -0.0048217027 -0.0048179141 -0.1024140462 -0.1013381930 -0.1012860332 

0.6 -0.0098678881 -0.0098089637 -0.0098053259 -0.2296223620 -0.2283005685 -0.2282365764 

0.8 -0.0095969901 -0.0095716177 -0.0095692732 -0.3638345357 -0.3622932829 -0.3622183346 

1  0  0  0 -0.50 -0.5 -0.50 

 

Table 3: Comparison of velocity v with earlier literature works at =0.5: 

M=Fs=0, Rd=∞, Br=1, m=500 
x HPM [6] RVIM [8] HAM [11] Present results  (4=2.56*10-10) Absolute difference [11] 

-1 0 0 0 0 0 

-0.8 0.0239 0.02356863 0.02392391 0.023919349 4.56*10-6 

-0.6 0.0322 0.03153540 0.03217724 0.032172691 4.55*10-6 

-0.4 0.0284 0.02756369 0.02841114 0.028406873 4.27*10-6 

-0.2 0.0166 0.01565187 0.01662161 0.016617647 3.96*10-6 

0 0.0008 0.00019888 0.00081131 0.000807629 3.68*10-6 

0.2 -0.0151 -0.01604876 -0.01507910 -0.015082460 3.36*10-6 

0.4 -0.0271 -0.02794788 -0.0271006 -0.027103713 3.11*10-6 

0.6 -0.0312 -0.03186690 -0.0312274 -0.031230148 2.75*10-6 

0.8 -0.0234 -0.02378185 -0.0234270 -0.023429061 2.06*10-6 

1 0 0 0 0 0 

 

Table 4: Comparison of temperature  with earlier literature works at =0.5: 

M=Fs=0, Rd=∞, Br=1m=500 

x HPM [6] RVIM [8] HAM [11] Present results (4=2.56*10-10) Absolute difference [11] 

-1 0.5 0.49794410 0.5 0.5 0 

-0.8 0.4008 0.39866980 0.4007343 0.400735882 1.56*10-6 

-0.6 0.3012 0.29911352 0.30117607 0.301177385 1.32*10-6 

-0.4 0.2016 0.19953058 0.20158997 0.201590907 9.37*10-7 

-0.2 0.1019 0.09986820 0.1019269 0.101927502 6.02*10-7 

0 0.0021 0.00126049 0.00206022 0.002060513 2.93*10-7 

0.2 -0.0981 -0.1001317 -0.09807 -0.098070049 4.93*10-8 

0.4 -0.1984 -0.2004692 -0.1984082 -0.19840851 3.10*10-7 

0.6 -0.2988 -0.3008857 -0.2988279 -0.298828518 6.18*10-7 

0.8 -0.3993 -0.4013296 -0.399274 -0.399274732 7.32*10-7 

1 -0.5 -0.5 -0.5 -0.5 0 

 

Table 5: Comparison of velocity with earlier literature works at =1 and 10: 

M=Fs=0, Rd=∞, Br=1, m=500 
 =1 =10 

x MDTM [7] Present results 

(4=2.56*10-10) 

Absolute 

difference 

MDTM [7] Present results 

(4=2.56*10-10) 

Absolute 

difference 

-1 0 0 0 0 0 0 

-0.8 0.0236092 0.023609239 3.89*10-8 0.020283 0.020283005 5.09*10-9 

-0.6 0.0318811 0.031881105 5.42*10-9 0.0285755 0.028575363 1.37*10-7 

-0.4 0.0281619 0.028161945 4.49*10-8 0.0253301 0.025330107 6.58*10-9 

-0.2 0.0164583 0.016458249 5.07*10-8 0.014624 0.014624039 3.88*10-8 

0 0.000786885 0.000786881 4.48*10-9 0.000588807 0.000588806 6.20*10-10 

0.2 -0.0149624 -0.014962397 3.07*10-9 -0.0135018 -0.013501849 4.88*10-8 

0.4 -0.0268935 -0.026893492 8.30*10-9 -0.0243835 -0.02438353 3.01*10-8 

0.6 -0.030969 -0.030969047 4.71*10-8 -0.0279372 -0.027937167 3.28*10-8 

0.8 -0.0231422 -0.02314216 3.98*10-8 -0.0200027 -0.020002731 3.14*10-8 

1 0 0 0 0 0 0 
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Table 6: Comparison of temperature with earlier literature works at =1 and 10: 

M=Fs=0, Rd=∞, Br=1, m=500 
 =1 =10 

x MDTM [7] Present results 

(4=2.56*10-10) 

Absolute 

difference 

MDTM [7] Present results 

(4=2.56*10-10) 

Absolute 

difference 

-1 0.5 0.5 0 0.5 0.5 0 

-0.8 0.400729 0.400729468 4.68*10-7 0.400654 0.4006544381 4.38*10-7 

-0.6 0.301166 0.301166314 3.14*10-7 0.30104 0.3010401445 1.45*10-7 

-0.4 0.201575 0.201575071 7.10*10-8 0.201397 0.2013969491 5.09*10-8 

-0.2 0.101908 0.101907808 1.92*10-7 0.101687 0.1016871657 1.66*10-7 

0 0.00203924 0.002039242 1.63*10-9 0.00180116 0.0018011602 2.37*10-10 

0.2 -0.0980898 -0.098089808 7.65*10-9 -0.0983111 -0.0983111117 1.17*10-8 

0.4 -0.198424 -0.198424379 3.79*10-7 -0.198603 -0.1986028017 1.98*10-7 

0.6 -0.298840 -0.298839497 5.03*10-7 -0.298965 -0.2989646242 3.76*10-7 

0.8 -0.399281 -0.399280916 8.35*10-8 -0.399354 -0.3993535644 4.36*10-7 

1 -0.5 -0.5 0 -0.5 -0.5 0 

 

Table 7: Effects of flow and heat parameters on the friction factor 
LfC : 

M=Fs=1, Rd=100, m=2000 (4
=10

-12
) 

Tr 
=1 =5 

Br =1                     5                10                   1                    5                10 

1.5 0.152336641 0.154962100 0.158282977 0.135990374 0.137878375 0.140253316 

3.0 0.166702886 0.169107640 0.172183969 0.146714922 0.148403910 0.150552516 

6.0 0.217015267 0.218673157 0.220818815 0.182725509 0.183816722 0.185223145 

9.0 0.245931562 0.246780633 0.247861169 0.202630062 0.203172941 0.203862450 

 

Table 8: Effects of flow and heat parameters on the Nusselt number 
LuN : 

M=Fs=1, Rd=100, m=2000 (4
=10

-12
) 

Tr 
=1 =5 

Br =1                     5                10                   1                    5                10 

1.5 4.071065139 3.91663411 3.710515086 4.072953482 3.926727634 3.732534428 

3.0 4.489192193 4.305931409 4.061065274 4.491639876 4.318989697 4.089461579 

6.0 7.368059791 7.016670110 6.555116975 7.373888607 7.047033018 6.619141710 

9.0 14.80883288 14.30101864 13.65079190 14.81762304 14.34582897 13.74264531 

 

 
Figure 1: Channel Geometry and boundary conditions.  
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Figure 2: Variation of v and θ profiles with Brinkman number (Br) when M=1, Fs=1, =5, Rd =5 and Tr=3 
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Figure 3: Variation of v and θ profiles with relative temperature (Tr) when M=1, Fs=1, =5, Rd =5 and Br=5. 
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Figure 4: Variation of v and θ profiles with radiation parameter (Rd) when M=1, Fs=1, =5, and Br=5, Tr=3. 
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Figure 5: Variation of v and θ profiles with viscoelastic parameter () when M=1, Fs=1, Rd =1000 and Br=50, Tr=10. 
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