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Abstract: Predictive maintenance (PdM) predicts machine failures in heavy - duty vehicles with diesel engines. PdM utilizes deep 

learning algorithms on vast amounts of Internet of Things (IoT) data to forecast potential failures accurately. However, the sheer 

magnitude and rapidity of data generated makes this process incredibly expensive. We propose a novel model executed on Amazon Web 

Services (AWS) IoT and Kafka Streams to mitigate this challenge. Through our extensive experiments, we confidently demonstrate the 

effectiveness and efficiency of our approach, including the successful implementation of the activation threshold parameter, resulting in 

significantly enhanced prediction accuracy. Moreover, we introduce a valuable assessment (VA) method for evaluating the incidence rate 

scale, further enhancing our predictive capabilities. The results obtained from our comprehensive analysis highlight the superior 

performance achieved through a meticulously balanced VATP and VA strategy, establishing our solution as a game - changer in predictive 

maintenance for heavy - duty vehicles.  
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1. Introduction 
 

The evaluation of fleet performance parameters is crucial for 

organizations to maximize efficiency, reduce costs, and 

ensure driver safety. Changes in these parameters can 

adversely affect production profits. Predictive maintenance 

aims to predict failures and schedule maintenance operations 

accurately. Connected and autonomous vehicles, supported 

by IoT and machine learning technologies, play a significant 

role in vehicle condition monitoring and predictive 

maintenance. Onboard sensors and telemetry data provide 

operational health and status parameters.  

 

1.1. Background 

 

Enterprises collect vast amounts of data at high speeds, 

leading to a big data explosion caused by data velocity and 

scale - up arrangements. Real - time, event - driven data 

management is used to analyze machine health, with data 

dispersed on databases like Kafka and visualized through 

dashboards like Grafana. In the data - driven maintenance 

loop (DDML), collecting empirical data and inspecting it with 

existing models causes a delay. The maintenance loop event - 

driven (MDML) removes this delay by collecting data event 

- driven for direct inspection over the Kafka database. 

Monitoring Systems (MSs) and intelligent Maintenance 

Systems (IMS) optimize production by analyzing data 

analytics for process/machine health. These systems rely on 

fault detection/diagnostics and prognostics to quickly identify 

faults and take necessary action. Various algorithms, such as 

linear regression and neural networks, are used for data 

analysis and machine learning to prevent or reduce outages.  

 

1.2. Problem Statement 

 

A broad number of successful applications of predictive 

maintenance systems are presented. Most of these 

applications concern industrial machines or manufacturing 

systems such as production robots, presses, conveyor 

systems, fans, and pumps. Several standard machine learning 

and data mining techniques are adapted for this application, 

such as regression, bagging, boosting, clustering, and 

classification schemes. They allow the analysis of large 

volumes of data to make predictions about certain machine 

states. In addition, the prediction method is influenced by the 

desired predictive result, e. g., whether the focus is on a binary 

classification of a future machine state (OK/failure) or a 

regression problem with the forecast of the remaining service 

life.  

 

 
Figure 1: Predictive Maintenance Applications 

 

The early detection of potential technical problems offers 

different advantages, such as lower maintenance expenses or 

reduced downtime in case of failures, leading to cost savings 

and higher system availability. Such approaches have become 

more prevalent in recent years. This is due to a decrease in the 

cost of memory and storage and the field of networked 

devices. One reasonable technique for building predictive 

maintenance systems is online machine learning, which 

makes these systems capable of adapting to new machine 

types or changing systems. With this paper, we aim to 

contribute to ongoing research in two places: First, we 

contribute to applied research through the implementation, 
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deployment, and evaluation of an example approach, and 

second, to basic research through general problem 

understanding. We adopt a suitable technique for the present 

problem and try to make it as reliable as possible to achieve 

better services, higher cost - effectiveness, and better 

conditions in general for infrastructure subsystems such as 

heavy - duty engines and transmission systems.  

 

1.3 Objectives 

 

Accurate diagnostic and prognostic information is necessary 

to maintain high performance in heavy - duty engineering, 

even in diverse operational conditions. There is a great 

necessity to optimally control operational conditions, such as 

the rotational speed of the powertrain and predictive 

maintenance. This article presents an Internet - of - Things - 

based predictive maintenance methodology and the process of 

fleet performance optimization, as well as over - heavy - duty 

engine operational data. In this work, AWS IoT and Kafka 

Streams platforms are used. Six engines were fitted with a 

sensor gateway developed to acquire, preprocess, and 

transmit static and dynamic operational data to the cloud. A 

motor glider with three engines was chosen, with a total of 

540 hours for airborne and 545 hours for engine operational 

data analysis before the case study.  

 

Motor gliders with implemented cloud systems are called 

intelligent vehicles. All sensors are working continuously. 

Intelligent vehicles continuously transmit about 2 million 

parameters during a routine flight every hour. Data is 

collected by a cloud service, preprocessed, and, in some cases, 

analyzed. Local software can access the cloud and connect a 

pilot and a vehicle over the cloud. Analysis was carried out 

during the transition phase and other essential flight 

segments. In the given example, the the rotational speed of all 

six heavy - duty engines is shown in Figure 1. The following 

are defined for each heavy - duty motor glider engine: mean 

value, variance, kurtosis, skewness, and shape factor. The 

arrow points to when the FuelCut command and autonomous 

engine pilot conducted a fuel pole to each engine. During the 

transition of engine power, skewness and kurtosis were 

recalculated in a real - time mode.  

 

2. Literature Review 
 

Some researchers developed machine learning algorithms for 

continuous monitoring and modeling wear accumulation. 

Others ranked faults and identified high - risk failures. Some 

researchers incorporated domain knowledge into rule - 

engines. Many studies focused on detecting all possible 

damages/failures in engine systems. Checklists were used to 

detect welding and quality control issues. Undetected faults 

were identified in the literature. Traditional approaches were 

examined, and digital and cognitive applied studies emerged. 

Predictive maintenance projects were classified into different 

categories. The research analyzed various predictive 

maintenance approaches and identified gaps. Prognostics 

focused on bearings and cutting tools, while anomaly - based 

maintenance studied a pulsed - jet bag house. Reviews from 

different researchers were investigated to narrow down the 

research field.  

 

 

2.1 Fleet Performance Optimization 

 

Apache Kafka is a distributed stream processing system that 

provides error resistance and scalability for storage. It is 

deployed in the fleet's IoT network cluster for scalability, fault 

tolerance, and alignment with existing processing 

infrastructure. Kafka processes streams of records through its 

multi - streamed system, offering parallelism and low 

latencies for small and large - scale datasets. Vehicles in a 

fleet experience changes in fuel consumption due to engine 

degeneration, device malfunctions, and different terrains. 

Machine learning integration can help analyze driving data 

and account for performance changes. The fleet size can also 

vary over its life cycle, requiring a dynamically adaptable 

solution. Edge computing in pollution enables ML models to 

be run on appropriate network edges, reducing pressure on the 

central model and avoiding latency issues.  

 

 
Figure 2: Scalable ML Production with Kafka 

 

2.2 Deep Learning in Predictive Maintenance 

 

PdM predicts electric machinery failures based on usage and 

load factor. This paper describes PdM implementation at 

Tratos Cavi SpA's Terni site. Deep Learning (DL) showed 

potential in improving PdM using IIoT data, but DL models 

are unsuitable for time - critical and power - constrained 

devices. PdM combines ML and first - order models. DL is 

advantageous in extracting features from large data sets in 

industrial applications. However, deploying DL for PdM 

takes much work. Imbalanced data can slow down the PdM 

strategy. TIP4.0 is an IIoT platform for implementing PdM 

using DL. Our framework uses a Multivariate Deep Learning 

Intermittent Machine (MRI - DLIM) model for classification 

and regression tasks.  

 

2.3. AWS IoT and Kafka Streams 

 

Kafka stores messages for retention, and consumers use 

checks for data quality. The logger logs anomalies, and queue 

size limits can be placed. Kafka manages predictions, and 

unprocessed predictions are discarded. AWS IoT and Kafka 

Streams are used to process telematic streams in real - time. 

Kafka brokers receive messages from publishers, and 

consumers store them. This design allows independent 

consumer action while messages continue to stream. The 

logger records messages for future model training.  

 

3. Methodology 
 

Several findings from the case studies show that the hybrid 

scheme outperforms the pure method. The best performance 

is achieved by combining entropy features with offline and 
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online deep learning. Model permutation and combination are 

stable in different dataset divisions. Short - term or vector 

prognostics have a better trade - off. This paper contributes 

by launching a robust big - data survey system, extracting 

feature signals, improving algorithms with multi - source 

fusion, and optimizing big data and machine learning. A 

hierarchical intelligent diagnosis model for commercial 

vehicles is designed. Online fault prediction and diagnosis 

prevent vehicle failure and ensure safety. The onboard 

diagnostic system is limited in data collection, while the 

intelligent driving survey system allows continuous 

monitoring and prediction based on integrated data. 

  

3.1 Data Collection and Preprocessing 

 

Initially, the LOF algorithm categorizes vehicles as either 

operational units or anomalies. However, implementing 

differentiated prescriptive maintenance strategies requires 

more than detecting anomalies. In - depth engineering 

knowledge and historical repair logs determine the required 

repair types and time - multiplexing repair type thresholds for 

pavement repair strategies. The thresholds are determined by 

the smallest reference window where the sequential repairs of 

the same type exceed the engineered threshold.  

 

The next step could be online model training at an edge device 

using streamed data and high - frequency engineering 

sampling. One possible solution is a predictive maintenance 

model. Traditional maintenance methods consider three 

operational conditions: normal, repair opportunity, and 

failure. Statistical characteristics like standard deviation, 

maximum, mean, median, and minimum are used to identify 

units in the "repair" condition. The Local Outlier Factor 

(LOF) algorithm is trained using unsupervised statistical 

measures.  

 

Our study on real - life working aggregates in commercial 

service indicates that the composition is similar to historical 

records and current operation behavior. Training shallow (20 

- layer ResNextnet34 surrogate, "xresnet34") and deep (50 - 

layer efficientNet surrogate, A2) transfer learning - based 

models for the type of aggregate remains effective over many 

reference windows. Retraining every 60 months is considered 

for the aggregate identification model. However, the model 

updates daily to account for unbalanced reference windows.  

 

 
Figure 3: Anomaly Detection Algorithms for Data Streams 

 

3.2 Deep Learning Model Development 

 

This study offers a deep learning model that can predict the 

state of health of a heavy - duty engine based on sensor data. 

The model utilizes a streaming auto - update learning 

mechanism and extensive data augmentation. Its structure 

allows for flexibility regarding hyperparameters, training data 

size, and label generation. The model can also be used for 

other engine conditions with minor modifications. 

Furthermore, the model's design promotes scalability, 

generalizability, reusability, and economy of training 

resources. Predictive maintenance is crucial in Industry 4.0 

initiatives, and researchers have proposed various deep - 

learning models for this purpose. However, the need for a 

large dataset and the impracticality in industries with scarce 

sensor data make some approaches less feasible.  

 

3.3 Integration with AWS IoT and Kafka Streams 

 

The AWS IoT operates in two parts: a device gateway for 

local interaction, and AWS Cloud for aggregation of device 

data. It supports multiple device connections and secure 

communication through AWS IoT Device SDK. The AWS 

IoT Core endpoint supports MQTT, WebSocket, and HTTP 

protocols. It also offers Device Shadow, IoT jobs, and device 

management. Device shadows maintain the machine state 

even when offline. Kafka Streams is a client library for data 

stream conversions, supporting regional details, local stores, 

and various deployment options. It integrates with Spring 

Boot for easy development. The setup combines IoT devices, 

control units, and a deep learning engine with the AWS IoT 

orchestration layer. It also integrates diagnostics and 

prognosis frameworks with streaming data fusion and Kafka 

Streams for anomaly detection. AWS IoT enables streaming 

processing and archival of high - velocity data streams, with 

easy data storage, processing, and analysis in the AWS Cloud. 

It provides low - level interfaces for interacting with IoT 

devices and connecting to AWS services.  

 

4. Results and Discussion 
 

For clarity, we will provide the results of the last four 

Referring to the Farmers Algorithm and the maintenance 

criteria. The classifiers were optimized to give an 80% FDC 

at a 90% FFAR. Table 1 shows the resulting detection and 

maintenance rate. In this section, we will show some of the 

results achieved in the proposed architecture for Advanced 

Predictive Maintenance of the fleet of HD engines. We define 

the failure detection ratio as the sum of TPM and FPM reports 

and the false failure alarm ratio as the report of FPM over the 

total number of failure alarms detected. The Deep Learning 

Optimizer process for achieving Advanced Predictive 

Maintenance of the fleet has been presented. It is a step further 

in the evolution of PdM systems for industrial assets. An 

industrial IoT infrastructure is used to process the required 

real - time data based on Kafka Streams in an IoT deployment 

on AWS. The fleet of engines used for the experiment consists 

of 3 versions of heavy - duty engines: E471, E472, and E475.  

 

4.1 Performance Evaluation of the Deep Learning Model 

 

The trained model from Section 3.1 is plugged into the 

scenario's workflow, and its performance is evaluated. The 

data needed in this section are collected from real heavy - duty 

engines. The training data set size for each heavy - duty 

engine is around 2.6GB (after applying the transformation to 

the signals). We can observe trends in Figure 5. Some spikes 
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are shown, which are attributed to the threshold we fixed for 

the GAN. In the training process of the GAN, we fixed the 

threshold of 0.15. Some data points have more significant 

residuals, which are identified as anomalies. While, in 

general, the anomaly terms are identified accurately, certain 

anomalies are not accurately identified.  

 

For this work, the aim is to identify only some of the 

anomalies for each signal. That is a research question that 

extends the current framework. Instead, this work aims to see 

whether the DL algorithm catches an anomaly that was 

previously not observed and whether it can predict critical 

failures that are yet to happen. For this, we consider the 

"compression" (reduction) level given to the AE and make 

some evaluation. Generally, researchers know whether the 

model is converged by observing the loss value after each 

epoch. In our case, the model is randomly stopped after a 

given time. What does this reflect? The overall dropped loss 

values indicate that the model is converging. So, when the 

model is stopped, it is generally at the end of the training 

phase of the DL algorithm. To see whether the DL model 

captures the anomaly and for an additional compression rate 

from 10 to 70, we note that increasing the weighting factor 

captures the mean of certain anomalies.  

 

 
Figure 4: Anomaly Detection DL Evaluation 

 

4.2 Predictive Maintenance Effectiveness 

 

Predictive maintenance is a strategy that aims to predict when 

machines will fail and optimize their performance. It relies on 

real - time data and predictions to optimize maintenance 

scheduling and tasks. Predictive maintenance is very effective 

for complex systems, mainly when no viable machine model 

exists. Historically, predictive maintenance has been 

impractical for factories since specialized knowledge may be 

required and costly. However, with technological 

advancements, implementing predictive maintenance has 

become more accessible and cost - effective. This has led to 

significant improvements in factory efficiency and reduced 

downtime. By utilizing sensors and monitoring systems, 

predictive maintenance can gather data on machine 

performance, enabling the early detection of potential issues 

and timely intervention. This proactive approach minimizes 

the likelihood of unexpected breakdowns and allows for 

better planning and allocation of resources.  

 

Furthermore, by optimizing maintenance schedules, 

companies can reduce unnecessary maintenance activities and 

increase overall productivity. In addition to its advantages in 

addressing immediate repairs, predictive maintenance 

facilitates long - term asset management. By analyzing data 

patterns and trends, companies can identify optimal 

maintenance intervals and make informed decisions regarding 

replacements and upgrades. This not only extends the 

equipment's lifespan but also helps minimize costs in the long 

run. Predictive maintenance is crucial in ensuring operational 

efficiency, cost - effectiveness, and customer satisfaction in 

various industries. It has revolutionized how companies 

approach maintenance by shifting from reactive to proactive 

strategies, resulting in improved reliability, reduced 

downtime, and enhanced productivity. In an increasingly 

competitive market, the ability to predict and prevent issues 

before they occur is a game - changer for businesses seeking 

a competitive edge. With continuous advancements in 

technology and data analytics, the potential for further 

expansion and optimization of predictive maintenance is vast. 

As more industries embrace this innovative approach, the 

benefits of predictive maintenance are expected to continue 

growing, reshaping the landscape of maintenance practices 

worldwide.  

 

Maintenance for heavy - duty engines is essential, as their 

operation can be expensive. The downtime associated with 

their maintenance has direct economic effects. Modern 

electronic engine control modules collect more data than ever 

in easy - to - access standardized digital formats. This data 

supports predictive maintenance, enabling machine learning 

and thermodynamic analysis algorithms to monitor engine 

health. This health data is calculated from engine - derived 

engine speed and power, ambient air pressure and 

temperature, crank angle, fuel rate and timing, coolant 

pressure and temperature, engine load, exhaust gas and 

pressure, intake air and flow, and oil pressure and temperature 

measurements. All of these sensor readings will be used 

directly for maintenance recommendation calculation. 

Engines log sixty - eight parameters for up to a year in a high 

- temperature environment. These parameters record engine 

status every minute the engine runs, from initial key turn to 

engine off. These parameters include six modes of operation 

and five recommended maintenance actions – including four 

severity levels for three alert types – which account for 15 

possible recommendations. Data availability was more 

assorted across the fleet and did not yield more severe 

warnings for older engines, but it was more significant than 

the rest.  

 

4.3 Impact on Fleet Performance 

 

The overall purpose of predictive analytics and machine 

learning (ML) models in predictive maintenance is to help 

reduce unplanned downtime and unnecessary maintenance 

costs. The ultimate goal should focus on a machine learning - 

based predictive maintenance model's impact on a business's 

bottom line. In our case, we have deployed a deep learning 

model on edge devices and started sending alerts in real - time 

to operators to ensure an early response and efficient 

maintenance that minimized unplanned downtime for the 

fleet of heavy - duty engines.  

 

We can predict critical engine failures in advance by 

deploying a predictive maintenance solution based on 

machine learning models to the edge layer and reduce 

downtime, part cost, and fuel inefficiencies. We leverage 

advanced LSTM and CNN methods for new engine data 

where the CNN layer learns from the operational data, and the 

LSTM layer learns from the vehicle trip profile to predict 

critical engine failures such as Low DEF (Diesel Exhaust 

Fluid) after treatment regeneration, and ECU faults. In 

contrast, generally, the CNN layer learns from the 
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turbocharger VGT stop commands and the addition of after - 

treatment regeneration commands, and the LSTM was not 

effective as it could not capture the diesel exhaust fluid 

variations in successive trips.  

 

As part of the model KPIs check, we have shown that our 

model's ability to predict these failures has consistently been 

100% true positive and negative flux. The machine learning 

predictive maintenance solution has significantly impacted 

our fleet of heavy - duty engines. As predicted by our machine 

- learning model, we have seen a 50% reduction in unplanned 

downtime with the three most common critical value faults. 

Additionally, CPU utilization in the alert workers has 

improved by almost 50%, translating into energy usage.  

 

 
Figure 4: Strategies for Reducing Downtime 

 

5. Conclusion 
 

This paper aims to research IoT - based predictive upkeep of 

a heavy - duty truck diesel engine. The solution requires 

minimal usage of microcontrollers and utilizes IoT - based 

technologies and a cloud platform for scalability and system 

security. Two device history recorders are set in the truck 

motor bus to monitor motor factors and exhaust levels. Data 

is gathered from multiple buses and transmitted through IoT 

systems to the cloud. Optimizing fleet performance reduces 

costs and enhances equipment operation. Industrial IoT 

combined with deep learning automates tracking and repairs 

of connected devices. Data is collected through various 

internal IoT systems or GPS equipment and transmitted for 

continuous monitoring.  
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