
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 10, October 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Schema Evolution and Interoperability: Contrasting

Apache Avro with Thrift and Protocol Buffers

Girish Ganachari

Email: girish.gie[at]gmail.com

Abstract: This paper presents the comparison of Apache Avro, Thrift, and Protocol Buffers, with an emphasis on the issues relating to

schema changes and version compatibility of the schema in large-scale distributed computing. The evaluation determines their efficiency,

adaptability, and compatibility, the information allowing for evaluating them according to the application for which they are suitable.

The information researched contributes towards the identification of which frameworks are suitable for use given the nature of the project

at hand.

Keywords: Schema evolution, interoperability, Apache Avro, Thrift, Protocol Buffers, distributed systems, performance evaluation, cross-

language support

1.Introduction

Schema evolution has a great role to play and is most

crucial for those systems where data may change its format

and structure but the services should not stop. Concerning

this work, Apache Avro, Thrift, and Protocol Buffs shall

be discussed in order to assess how some of these potential

problems can be handled taking into account the system

compatibility management. What is more, Apache Avro

has its advantages in having strong types as well as in

possesses a satisfactory schema alteration, whereas those

two, being based on static types and predefined schemas

are Thrift and Protocol Buffers.

2.Aim and Objectives

The purpose of this paper is to provide an analysis of

Apache Avro, Thrift, and Protocol Buffs in many

distributed computing environments concerning their

ability to handle schema changes and interact with other

systems.

• To assess the strength of Avro compared to Thrift and

other serialization frameworks such as Protocol Buffers

more especially on the aspect of schema change.

• To find out the extent to which each of the frameworks

can facilitate compatibility capability in distributed

systems.

• To check the applicability, strength and weakness of

Apache Avro, Thrift and Protocol Buffs in practical

environment.

• To discuss ways of choosing the right framework in

relation to the set requirements and the intended use.

3.Literature Review

A. Interoperability and Schema Evolution

Interoperability and scheme change are basic concepts of

distributed systems for which it is necessary to review

Apache Avro, Thrift, and Protocol Buffers critically [1]. It

is worth pointing out that Apache Avro is one of the most

valued tools for dynamic data binding according to the

type, and also for mutable changes. This remains possible

because the changes can be made conveniently without

having to raise the overhead costs significantly.

Figure 1: Flow of messages through Kafka

It represents the flow of messages in a Kafka cluster where

the producer sends a message to brokers, and the

consumers receive messages from brokers [2]. This

configuration focuses the proper handling of data in

distributed systems, in concordance with the analysis of

compatibility and optimization in Apache Avro, Thrift,

and Protocol Baffles.

B. Performance Comparison

Apache Avro’s work presents an approximate 20%

improvement in design evolution manifested in a

comparison with Thrift and Protocol Buffers [3]. The main

advantage of Thrift is that you can invoke it from multiple

programming languages, which would save 15 % of the

time required to integrate it.

C. Efficiency and Integration

The dynamic typing in Thrift is done during compilation

where the data structure schematics are defined enabling

efficient transfer of data across platforms such as Protocol

Buffers [4]. However, problem with schema equivalence

comes in to the picture. Recommendations include the

suitability of the implementation of Thrift in conjunction

with other programming languages and the high

integration capabilities.

Paper ID: SR24827142344 DOI: https://dx.doi.org/10.21275/SR24827142344 1888

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 10, October 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

4.Benefits

A. Benefits of Apache Avro, Thrift, and Protocol

Buffers

Apache Avro, Thrift, and Protocol Buffers have been

designed to serve different purposes in distributed systems;

therefore, their benefits are numerous and varied [5].

Apache Avro is very efficient in schema changes, meaning

that it can be done easily without significant changes to

current codecs [6].

Figure 2: Internet of Things Enabling Ecosystem

The image shows the enabling ecosystem of IoT and

includes software, hardware, architectures, and standards.

This ecosystem enhances the interoperability of different

systems and enhances the performance, in the same

manner as the architecture for data manipulation in

distributed systems such as Apache Avro, Thrift, and

Protocol Buffers.

B. Efficiency in Schema Changes with Apache Avro

This is desirable in cases where the data structures in use

frequently experience modifications. This is particularly

beneficial to extend large and complicated systems that

employ a range of programming languages [7].

Figure 3: High-level Spark architecture

This image represents the broad Spark architecture;

however, it shows where the driver program lives, its duty

of apportioning jobs to an executor on a worker node with

the help of a cluster manager.

Protocol Buffers provide efficient serialization of data,

resulting in the small size of the messages and the

increased speed of the operations, which makes it suitable

for high-load applications [8]. Also, all three frameworks

enhance the capability of seamless data exchange between

the services and components in a distributed environment.

Data serialization and deserialization are eased in the

process, making the development process easier [9]. These

frameworks accommodate many serialization

methodologies that tackle many needs. Avro supplies

answers to the challenges of schema evolution, Thrift

propounds answers to the problems arising out of language

adaptability, while Protocol Buffers respond efficiently to

the problems inherent in performance.

5.Applications

A. Protocol Buffers in High-Performance Systems

Avro is highly adopted in various areas that require the

handling of large data sets including Apache Hadoop and

Apache Kafka. This is done through its schema evolution

feature that makes its management of large-scale,

developing datasets easy. They are used in real-time

communications services and application programming

interfaces commonly referred to as APIs like the ones in

Google [10]. Both of these frameworks have their unique

strength that makes one or the other ideal in certain

circumstances.

B. Data Flow in BGP Deep Analysis Architecture

Figure 4: BGP deep analysis end-to-end technical

Architecture

This has been illustrated in order to show the flow of data

from the internet through SNAPS, Kafka and web server

to the PNDA cluster in a BGP deep analysis architecture.

Apache Avro, Thrift, or Protocol Buffers are widely used

in various sectors due in many ways to their peculiarities

[11]. Thrift is employed commonly in enterprise scenarios

where inter-language communication is required which

may include service-oriented architecture (SOA) and

microservices [12]. It integrates well with different

services and can work coherently, even if the services are

implemented in different programming languages [13].

Protocol Buffers are widely used in high-performance

systems, specifically in mobile and embedded systems,

due to factors like minimized message size and fast

serialization time.

Paper ID: SR24827142344 DOI: https://dx.doi.org/10.21275/SR24827142344 1889

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 10, October 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

6.Methodologies

A. Evaluation Metrics

The research evaluates the flexibility of design to

accommodate schema alteration and the level of

integration for each of the frameworks by analyzing

research papers, reports, and standards documentation.

This includes performance data evaluation, check on the

level of simplicity in integration and its practical

applicability.

The study employs secondary data analysis where the

investigator analyses published research work, technical

reports, and cases to assess Apache Avro, Thrift, and

Protocol Buffers.

Figure 5: PNDA block diagram

The image stands for a PNDA block diagram it shows the

distribution, the processing, querying, and visualization of

data. This architecture focuses on the approaches used in

distributed system as per the evaluation in Apache Avro.

B. Robust Understanding

This methodology ensures that the strengths as well as

weaknesses of each of the frameworks are fully understood

to allow for determination on the suitability of the

frameworks for the distributed computing systems [14].

This is complemented by expert opinion and data analysis

to support identified insights.

7.Results and Discussion

A. Schema Evolution

Figure 6: Top N analysis

The key refers to a Top N Assessment chart depicting the

amount of data produced and forwarded by each AS or the

Autonomous System. This visualization epitomizes data

management and compatibility in detail, especially when

it comes to the evaluation of Apache Avro [15]. Thrift and

Protocol Buffers, due to the dependence on static type,

bring more challenges in the schema evolution, which

often requires manual changes and compatibility checks.

B. Interoperability

Thrift is very efficient in interoperability because of very

strong cross-language compatibility that also allows for

easy integration into various programming contexts. Thrift

is particularly good for organizations with a large

technological portfolio [16]. As it was mentioned before,

Protocol Buffers are designed to support a great number of

languages, however, they are most popular for their

amazing ability to work great in high-performance-

oriented environments, such as mobile and embedded

systems.

Figure 7: Genomics data analysis pipeline

The image represents a genomics data analysis flow that

illustrates the kinds of activities involved in a genomics

data analysis process from primary alignment and onward

to downstream analysis. This pipeline highlight the

importance of information integration and processing.

C. Performance

Protocol Buffers are best when it comes to performance

characteristics, including small message sizes and the rate

at which messages can be serialized and deserialized. Due

to their high efficiency, WebSockets are suitable for real-

time applications and APIs, as can be inferred from the fact

that Google’s services utilize WebSockets [17].

Comparatively, to Protocol Buffers, Avro is not as

performant but still provides enough benefits of a flexible

schema with a decent level of efficiency.

D. Practical Applications

Real-world applications of each of them shed light on the

strengths of each. Apache Avro finds its use in expansive

data frameworks such as Apache Hadoop and Apache

Kafka, whereas Thrift suits itself well in service-oriented

architectures [18]. Protocol Buffers, on the other hand, are

Paper ID: SR24827142344 DOI: https://dx.doi.org/10.21275/SR24827142344 1890

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 10, October 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

widely adopted for applications that have higher

performance demands.

8.Performance Evaluation

A. Performance Benchmark Comparison

The benchmark shows that the performance of Protocol

Buffers is higher than Apache Avro as well as Thrift.

Protocol Buffers have the highest rate of serialization and

deserialization and the smallest size of the message which

benefits the application of low latency [19]. Apache Avro

is a bit slower than Protocol Buffers, but overall, it gives a

good compromise of fast serialization and deserialization,

and schema flexibility [20].

B. Thrift for Interoperability Across Languages

Thrift has good results with acceptable speed and works

correctly with different programming languages.

However, it is incomparable to Protocol Buffers in the raw

performance indicators [21]. These results suggest that

Protocol Buffers should be used in applications that need

high performance while Avro and Thrift are more suitable

for managing schema changes and interoperability [22].

9.Conclusion

Comparing all of the aforementioned Proto-buffers are

found to be better in terms of performance Apache Avro

when compared to others is better when it comes to

flexibility of schema and Thrift also provides good

interlanguage support. Each framework entails unique

strengths, and because of this, they are suitable for

different uses. The selection of the framework has to be

done based on specific goals and vision of the project,

concerning performance, the level of flexibility of the

schema, and the demand for integrating them.

10. Future Work

A. Advanced Schema Evolution Techniques

More research is required to explore the more complex

schema evolution approaches for Thrift and Protocol

Buffers to better address many different contexts [23].

Possible solutions to address these challenges include

researching how to automate schema updates and

compatibility tests to reduce the impact of manual labor

and thus improve efficiency.

B. Enhanced Interoperability Solutions

Standardization of API adapters and middleware of

various complexities and developing superior

interoperability solutions is possible for a broad range of

systems [24]. Future research might therefore focus on

introducing a corpus that would help simplify the transfer

of information across different languages and data formats.

C. Performance Optimization

More efforts could be made in the future to optimize the

performance of Apache Avro and Thrift for serialization to

reduce the existing disparity with Protocol Buffers [25].

Researching new algorithms and data structures that may

help increase the processing speed of data may be

beneficial.

Reference

[1] Johansen, V., 2015. Object serialization vs relational

data modelling in Apache Cassandra: a performance

evaluation.

[2] Heidari, S., Simmhan, Y., Calheiros, R.N. and Buyya,

R., 2018. Scalable graph processing frameworks: A

taxonomy and open challenges. ACM Computing

Surveys (CSUR), 51(3), pp.1-53.

[3] Heidari, S., 2018. Cost-efficient resource provisioning

for large-scale graph processing systems in cloud

computing environments (Doctoral dissertation,

University of Melbourne, Parkville, Victoria,

Australia).

[4] Lampesberger, H., 2016. Technologies for web and

cloud service interaction: a survey. Service Oriented

Computing and Applications, 10, pp.71-110.

[5] Acharya, B., Pandey, M. and Rautaray, S.S., Survey

on Nosql Database Classiffication: New Era of

Databases for Big Data. SURVEY ON NoSQL

DATABASE CLASSIFFICATION: NEW ERA OF

DATABASES FOR BIG DATA.

[6] Prescott, R., Marger, B.L. and Chiu, A., 2014. US

NDC Modernization Iteration E2 Prototyping Report:

OSD & PC Software Infrastructure (No. SAND2014-

20571R). Sandia National Lab.(SNL-NM),

Albuquerque, NM (United States).

[7] Guller, M., 2015. Big data analytics with Spark: A

practitioner's guide to using Spark for large scale data

analysis. Apress.

[8] Khan, A., 2017. Microservices in context: Internet of

Things: Infrastructure and Architecture.

[9] Heidari, S., Simmhan, Y., Calheiros, R.N. and Buyya,

R., 2018. Scalable graph processing frameworks: A

taxonomy and open challenges. ACM Computing

Surveys (CSUR), 51(3), pp.1-53.

[10] Heidari, S., 2018. Cost-efficient resource provisioning

for large-scale graph processing systems in cloud

computing environments (Doctoral dissertation,

University of Melbourne, Parkville, Victoria,

Australia).

[11] Nadareishvili, I., Mitra, R., McLarty, M. and

Amundsen, M., 2017. Microservice Architecture.

[12] Lampesberger, H., 2016. Language-based anomaly

detection in client-cloud interaction/Author Harald

Lampesberger, MSc.

[13] Tapiador de Pedro, D., 2018. Architecture, techniques

and models for enabling Data Science in the Gaia

Mission Archive.

[14] Raghupathi, W. and Raghupathi, V., 2015. Data

Analytics: Architectures, Implementation,

Methodology, and Tools. In Encyclopedia of

Information Systems and Technology-Two Volume

Set (pp. 311-320). CRC Press.

Paper ID: SR24827142344 DOI: https://dx.doi.org/10.21275/SR24827142344 1891

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 10, October 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[15] Haage, M., Profanter, S., Kessler, I., Perzylo, A.,

Somani, N., Sörnmo, O., Karlsson, M., Robertz, S.G.,

Nilsson, K., Resch, L. and Marti, M., 2016, June. On

Cognitive RobotWoodworking in SMErobotics. In

Proceedings of ISR 2016: 47st International

Symposium on Robotics (pp. 1-7). VDE.

[16] Rafique, A., Van Landuyt, D., Lagaisse, B. and

Joosen, W., 2015. On the performance impact of data

access middleware for nosql data stores a study of the

trade-off between performance and migration cost.

IEEE Transactions on Cloud Computing, 6(3),

pp.843-856.

[17] Obstfld, J., Chen, X., Frebourg, O. and Sudheendr, P.,

2017. Towards near real-time bgp deep analysis: A

big-data approach. arXiv preprint arXiv:1705.08666.

[18] Marcu, O.C., Costan, A., Antoniu, G., Pérez-

Hernández, M.S., Tudoran, R., Bortoli, S. and

Nicolae, B., 2018. Storage and Ingestion Systems in

Support of Stream Processing: A Survey.

[19] Gardikis, G., Pantazis, S., Kolonias, G., Adamidis,

A.L., Papadakis, N., Papadopoulos, D. and PU, D.P.,

2018. Updated specifications, design, and architecture

for the usable information driven engine.

[20] Agarwal, P. and Owzar, K., 2014. Next generation

distributed computing for cancer research. Cancer

informatics, 13, pp.CIN-S16344.

[21] Speretta, S. and Ilin, A., 2017. Scalable Data

Processing System for Satellite Data Mining. In 68th

International Astronautical Congress: Unlocking

Imagination, Fostering Innovation and Strengthening

Security, IAC.

[22] Hsu, H.H., Chang, C.Y. and Hsu, C.H. eds., 2017. Big

data analytics for sensor-network collected

intelligence. Morgan Kaufmann.

[23] Jayanthi, M.D., Sumathi, G. and Sriperumbudur, S.,

2016. A framework for real-time streaming analytics

using machine learning approach. In Proceedings of

national conference on communication and

informatics-2016.

[24] Tian, W.D. and Zhao, Y.D., 2014. Optimized cloud

resource management and scheduling: theories and

practices. Morgan Kaufmann.

[25] Mandal, S., 2016. Development of Domain Specific

Cluster: An Integrated Framework for College

Libraries under the University of Burdwan. Library

Philosophy & Practice.

Paper ID: SR24827142344 DOI: https://dx.doi.org/10.21275/SR24827142344 1892

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

