
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 10, October 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Understanding Time and Space Complexity in

Algorithms

Naga Sai Krishna Mohan Pitchikala

Masters in Computer Science, University of Texas at Dallas, Texas, USA

Email: nxp180022[at]utdallas.edu

Abstract: The important concept in algorithms is time and space complexities. This is the critical aspect in choosing the one algorithm

over the other. Calculating the time and space complexities are important as they are the measures of efficiencies of the algorithms and

based on them certain algorithms are chosen over the other. Time complexity refers to the amount of time the program takes to run

according to the input size, whereas the space complexity refers to the number of additional resources that are needed to run the program.

In this paper we will define each of them theoretically and explain why they are important in data structures and algorithms and how to

understand them practically.

Keywords: time complexity, space complexity, algorithm efficiency, data structures, program resources

1. Introduction

An Algorithm is a well - defined computational procedure that

takes some value, or set of values, as input and produces some

value, or set of values, as output1. This means that an

algorithm is a clear step by step process that we define to

solve a problem. It is a formal way of writing the steps to solve

a program, which are sometimes written in a language

understandable by computer. They should be detailed

correctly to be implemented in a computer. Once

implemented the computer program will take any input value

and will give out the desired output for that input value. This

is where the whole logic to solve the problem lies in. Based

on the the algorithms pseudo code is written before

implementing the actual program. Pseudo code is an informal

way to telling how we will be writing the program code.

Pseudo code is in the human readable format and any person

can write the actual code from the pseudo code by following

the syntax of the specific chosen programming language.

While algorithm is a decoding the logic that maps every input

to the desired output, Data structures are the ones which

indicate the type of storage used in program to store the

variables. Now, when writing the program choosing the right

algorithm and data structures is very important to write an

efficient code that works as expected in all scenarios.

Figure 1: Definition of an algorithm2

So, measuring the performance of the algorithm used in

program as well as the data structures is important to

determine the efficiency of the program. This is where time

and space complexity come in. The time and space

complexity are considered as the fundamental metrics in

measuring the time and space complexity of the algorithm.

While time complexity measures the number of operations an

algorithm performs as a function of input size, space

complexity measured the amount of additional memory

needed to execute the program. We will now discuss each of

them in detail.

2. Time Complexity

Time complexity is defined as the amount of time taken by an

algorithm to complete the process in terms of input size. Time

complexity is measured in 3 cases. Best case, Average case

and in worst case scenarios.

Best Case: The best - case time complexity denotes the time

taken by the algorithm to complete execution in best case

scenario. This is denoted by  (N)

Average Case: The average - case time complexity denotes

the time taken by the algorithm to complete execution in

typical case. This is denoted by  (N).

Worst Case: The worst - case time complexity refers to the

amount of time taken by the algorithm to complete execution

in worst case scenario. This is denoted by O (N).

For time complexity we will be mostly looking at the best -

case time complexity and the worst - case time complexity.

These two metrics will tell us how long the program or

algorithm will take to execute based on the input length. There

are like 7 different values for each of them ranging from 1,

logn, n, nlogn, n2, 2n, n!.

While they look and sound something strange, it is very clear

to understand them. They represent how the output grows

with respect to the input. Let us consider each of them in

detail.

1) O (1): Constant Time. This indicates that the time taken by

the program to run is constant and does not change with

the input size.

2) O (logn): Logarithmic Time. This indicates that the time

taken by the program to run grows at the rate that follows

a logarithmic pattern according to the input.

3) O (n): Linear Time. This indicates that the time taken by

the program to run grows at the rate that is proportional to

the input size.

4) O (nlogn): This indicates that the time taken by the

program to run grows at the rate that is proportional to the

Paper ID: SR24923134130 DOI: https://dx.doi.org/10.21275/SR24923134130 1893

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
mailto:Nxp180022@utdallas.edu

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 10, October 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

multiplication of input and its logarithmic. Which is

basically larger than the liner time.

5) O (n²): Quadratic Time. This indicates that the time taken

by the program to run grows at the rate that is proportional

to the quadratic of the input size.

6) O (2ⁿ): Exponential Time. This indicates that the time

taken by the program to run grows at the rate that is

exponential of the input size.

7) O (n!): Factorial Time. This indicates that the time taken

by the program to run grows at the rate that is factorial of

the input size.

O (1) is considered as the good value for the time complexity

metric while the O (n!) is considered as the bad value for the

time complexity measured in any case (best, worst, average)

Figure 2: Big - O complexity chart2

For every algorithm that is being implemented based on the

existing inventions or even if there is a new algorithm that is

invented to solve a problem, time complexity is calculated

first. This would inform the user about performance of the

algorithm in real world scenarios. For example, when a new

sorting algorithm is proposed by a person, the immediate

action that they do is to evaluate the time complexity of them

algorithm. If the proposed algorithm does not improve the

time complexity over the ones that are already in market, then

the proposed algorithm is not solving any problem for us

efficiently, and it will not be materialized.

Calculating Time Complexity

Time complexity can be measured by the analyzing how the

different parts of an algorithm work, like loops, recursion, and

if - else statements. For example:

• In a loop for a single input value the loop will run ‘n’ times.

‘n’ being the size of the input. This means that the time

complexity if the for loop is O (n), meaning for the input

of size ‘n’ the runtime grows at the rate that is proportional

to the size of the input.

• Now, consider a nested for loop. So, for each value in the

outer loop, the inner loop will run ‘n’ times. This means

that in total the time complexity of the nested for loop is

O (n2).

By analyzing how different parts of algorithm and how they

run according to the size of input gives a clear idea on the run

time of each individual part and the runtime of the whole

algorithm.

3. Space Complexity

While time complexity is the primary performance metric in

algorithms, the other one is the space complexity. This is also

equally important as it tells us how much storage is required

to execute the algorithm and in the places where memory has

limitation, this plays a vital role.

Space complexity measures the amount of additional memory

needed for the algorithm to complete execution based on size

of the input it receives. When we say additional memory, we

focus on the extra memory the algorithm requires to run

instead of the memory needed to store the input itself. While

we generally measure the memory in bytes, it is often easier

to think about it in terms of how many integers the algorithm

uses. The final measure does not depend on the exact number

of bytes but on the overall pattern of memory usage.

People sometimes overlook space complexity because the

memory used may be small or straightforward. However, in

some cases, the memory usage can be just as important as the

time it takes for the algorithm to run. Space complexity is

usually measured in Big - O notation. This is similar to the

measure of worst - case time complexities. When the space

complexity is O (1) it means that the space complexity is

constant and is not dependent on the input size. Similarly,

when we say that the space complexity is O (n) it means that

the memory required to execute the algorithm grows

proportionally with the input size, and similarly other metrics

in O (n)

Calculating Space Complexity

Space complexity cab be measured by analyzing the amount

of additional memory an algorithm needs to run, beyond the

memory required to store the input data itself. For example:

• Memory used for variables like integers, booleans, floats,

and other basic data types is constant, regardless of the

size of the input. This is known as O (1) space complexity,

meaning it uses a constant amount of space irrespective of

the data size

• If an algorithm uses an array to store data for each element

of input, the space complexity would be O (n), meaning

that the size of the array grows according to the size of the

input.

By understanding how data is stored in different data

structures in an algorithm we can calculate the memory

needed by individual data objects in the algorithm and the

memory needed to run the program.

4. Understanding the practicality of space and

run time complexities

In real world scenarios, programs usually start with handling

small amounts of data but gradually they often need to handle

large amounts of data confined with the limitations from both

time and memory. When a program uses an algorithm with

high run time complexity, like for example O (n²) (where time

grows quadratically as the input increases) or O (2ⁿ) (where

time grows exponentially with input size), it can become very

slow as the input size gets large. This means that for tasks like

sorting or searching through a big dataset, using a slow

Paper ID: SR24923134130 DOI: https://dx.doi.org/10.21275/SR24923134130 1894

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 10, October 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

algorithm can lead to noticeable delays, which will degrade

the user experience and reduce the system's overall efficiency.

Space complexity is also a big factor, especially in

environments with limited memory, like smartphones,

embedded devices, or smaller computers. If an algorithm

requires too much memory, it can cause the program to crash

or make the system run slowly as this program consumes all

the available memory. Even if the algorithm is fast, it is not

desirable if it needs more memory than what is available in

the device.

By understanding the run time complexity and space

complexity programmers can make smart decisions about

which algorithms to use. This will help them in choosing the

right algorithms to run the program efficiently both in terms

of memory and space. When we choose the right algorithms

based on the limitations and the complexities, the programs

become more efficient and can handle larger tasks which are

better suited for real - world applications.

5. Conclusion

Time and space complexity are fundamental concepts in

computer science that will help us in figuring out how

efficient an algorithm is. Time complexity tells us how long

an algorithm takes to run (especially in the worst - case

scenario) while space complexity tells us how much memory

the algorithm will need. Knowing how to measure these

complexities is important for picking the right algorithms that

run fast and don't use too much memory, which is crucial

when developing applications that will have a constant

increase in the input data and when working with devices that

have limited resources.

Sometimes, making a program faster may require using more

memory, or reducing memory usage might slow the program

down. Programmers need to evaluate the trade - off between

time and space limitations, so they can create a software that

works well. Finding the right balance between these two

metrics is essential for building programs that are both quick

and efficient with memory.

References

[1] Introduction to Algorithms by Thomas H. Cormen

[2] Data Structures and Algorithms in Java by Roberto

Tamassia and Michael T. Goodrich

[3] https: //www.bigocheatsheet. com/

[4] Data Structures and Algorithms in Java by Michael T.

Goodrich

Paper ID: SR24923134130 DOI: https://dx.doi.org/10.21275/SR24923134130 1895

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
https://www.bigocheatsheet.com/

