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Abstract: Principally, this study gives an overview about the Neuronal oscillations appear throughout the nervous system in structures 

as well as, the range of frequencies of clinical and physiological interests for motor imagery EEG signal. In addition, a brief description 

about MI paradigm which is also known as movement imagery, which is a mental process through which a person imagines a physical 

action, such as jumping, or moving hands. In particular, event-related desynchronization (ERD) and synchronization (ERS). Finally, a 

set of studies have been listed towards highlights the advantages of using BCI Competition dataset which is a public dataset that have 

been widely used in the analysis of the EEG motor imagery signal methods and technique. 
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1. Neural Oscillations 
 

Neuronal oscillations appear throughout the nervous system 

in structures as diverse as the cerebral cortex, hippocampus, 

subcortical nuclei, and sense organs [1]. EEG can measure 

and classify these oscillations according to their frequency. 

In general, frequency ranges have been defined according to 

the distribution over the scalp or biological importance [2]. 

For example, the range of frequencies of clinical and 

physiological interests is between 0.3 and 30 Hz. This range 

can be classified approximately in a number of frequency 

bands as follows[3]: 

 Delta (0.3/4 Hz): delta rhythms are slow brain activities 

preponderant only in deep sleep stages of normal adults. 

Otherwise, they suggest pathologies. 

 Theta (4_/8 Hz): this EEG frequency band exists in normal 

infants and children as well as during drowsiness and sleep 

in adults. Only a small amount of theta rhythms appears in 

the normal waking adult. The presence of high theta 

activity in awake adults suggests abnormal and 

pathological conditions. 

 Alpha (8_/13 Hz): alpha rhythms exist in normal adults 

who are relaxed and mentally inactive. The amplitude is 

mostly less than 50 mV and appears most prominent in the 

occipital area. Alpha rhythms are blocked by opening the 

eyes (visual attention) and other mental efforts, such as 

thinking. 

 Beta (14_/30 Hz): beta activity is mostly marked in the 

front central region with a lower amplitude than that of 

alpha rhythms. It is enhanced by expectancy states and 

tension. 

 Gamma (_/30 Hz): gamma rhythms have a high-frequency 

band and usually are not of clinical and physiological 

interests and therefore often filtered out in EEG 

recordings. 

 

2. Motor Imagery 
 

Motor imagery (MI) is one of the most common methods 

used in BCI-based EEG control systems [4, 5]. MI which is 

also known as movement imagery, which is a mental process 

through which a person imagines a physical action, such as 

jumping, or moving hands. In particular, event-related 

desynchronization (ERD) and synchronization (ERS) 

structures caused by MI will be analyzed [6]. 

 

Several research findings suggest that alpha and/or beta 

rhythms can be good signs to be used in BCI systems, as 

they are associated with cortical areas that are directly linked 

to brain motor activity [7]. Furthermore, it has been verified 

that sensorimotor rhythms (SMR) occurring in an imagined 

movement may help people with severe disabilities to 

perform tasks by merely using such a movement  [8]. 

Essentially, SMR is created by the primary sensory and 

motor cortices, which can be divided based BCI into two, 

namely event-related synchronization(ERS) and event-

related desynchronization (ERD), which are detected as mu 

rhythm and beta rhythm [9]. One of the most promising 

paradigms in BMI is motor imagery paradigm in which the 

alpha (8-13 Hz) and beta rhythms (14-30 Hz) of the 

sensorimotor cortex are used. The oscillations of the mu and 

beta rhythms of the sensorimotor cortex decrease when a 

movement is being initiated or when a movement has begun 

and this process is called event-related desynchronization 

(ERD). After a movement has occurred, the oscillations 

increase and this process is called event-related 

synchronization (ERS). If a person imagines moving his or 

her left hand, a strong ERD occurs at the right side of the 

sensorimotor cortex. On the other hand, if that person 

imagines moving his or her right hand, ERD occurs at the 

left side of the sensorimotor cortex [10]. Essentially, event-

related Synchronization and Desynchronization (ERS and 

ERD, respectively) are the EEG patterns characterized by 

meaningful changes in the signal energy in specific 

frequency bands. As such, an energy increase is associated 

with an ERS, while an energy decrease is associated with an 

ERD .The frequency band used to detect these patterns is the 

alpha band (8-13 Hz), and digitized signal is filtered by a 

finite impulse response (FIR) filter with a pass band filter 

[11]. Given that MI does not require any voluntary muscle 

movement, it can be used effectively for people with severe 

disability [12].  Recently, EEG-based MI signals have been 

used in various types of applications, such as sports, 

psychology, neuroscience, and rehabilitation technology, as 

well as wheelchair control [6, 13]. Such wide applications 

are attributed to the fact that users do not have to gaze or 
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focus when moving on a wheelchair. In addition, MI-based 

BCI signals provide a rapid response [14]. Therefore, these 

signals support the dynamic movements of an electrical 

wheelchair when making a turn and crossing a path during 

navigation [15, 16]. 

 

Table 1: MI Two Class BCI Competition Dataset 

BCI Competition Dataset 
No. of 

Classes 

No. of 

Channels 

No. of 

Participant 

Study uses 

dataset 

BCI Competition 

II 

Dataset-

III 
2 3 1 [1] 

BCI Competition 

III 

Dataset-

III-a 
4 60 3 [2] 

BCI Competition 

III 

Dataset-

III-b 
2 2 3 [3] 

BCI Competition 

III 

Dataset-

IVa 
2 118 5 [1] 

BCI Competition 

III 

Dataset-

IVc 
2 118 1 [2] 

BCI Competition 

IV 
Dataset-I 2 64 7 [3] 

BCI Competition 

IV 

Dataset-

IIa 
4 22 9 [1] 

BCI Competition 

IV 

Dataset-

IIb 
2 3 9 [2] 

 

MI-based BCI signals will be of particular interest to users in 

shared and complex navigation because they can offer 

continuous control of  BCW with few low-level commands 

(e.g. forward, backward, stop, and turn left and right) [17]. 

BCI Competition dataset is a widely used dataset by 

researchers to test their methods and technique on this 

dataset. Table 1 shows the two classes of EEG-MI BCI 

competition dataset, which are publicly available in the BCI 

competition database. 
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