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Abstract: This paper is concerned with thermal stresses in an Elliptical Cylinder to determine the temperature gradient and stresses at 

any point of the Elliptical Cylinder. The integral transform techniques are used to find the solution of the problem. The results are 

expressed in terms of Bessel’s function in the form of infinite series. 
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1. Introduction 
 

Grysa and Kozlowski (1982) have discussed one 

dimensional thermoelastic problems derived the heating 

temperature and the heat flux on the surface of an isotropic 

infinite slab and Sirakowski and Sun (1968) have studied 

the direct problems of finite length hollow cylinder  and 

determined an exact solution. Grysa and Cialkowski (1980) 

and Further Deshmukh and Wankhede (1997) have studied 

an axisymmetric inverse steady state problem of 

thermoelastic deformation to determine the temperature, 

displacement and stress functions on the outer curved surface 

of finite length hollow cylinder. In this paper, an attempt has 

been made to determine the temperature gradient and stresses 

at any point of the cylinder.  

 

2. Statement of the Problem 
 

Consider a Elliptical Cylinder of length 2  occupying space 

 defined by bra  , hzh  . The thermoelastic 

displacement function is governed by the Poisson’s equation 

[5] 

 

  and ta  are the Poisson’s ratio and the linear coefficient of 

thermal expansion of the material of the cylinder. Consider 

the   is the temperature of the cylinder and satisfying the 

differential equation, 

 
Subject to the initial condition 

 
 
the boundary conditions 

 
 

 
Where, k is the thermal diffusivity of the material of the 

cylinder. 

 

The radial and axial displacements U and W satisfying the 

uncoupled thermoelastic equations are  

 

Where U U W
l

r r z

 
  
 

 is the volume dilatation and 

 
The stress functions are given by 

 
And 

 
Where  1p  and 0p  are the surface pressures assumed to be 

uniform over the boundaries of the cylinder. The boundary 

conditions for the stress functions (13) and (14) are 

expressed in terms of the displacement components by the 

following relations: 
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Where 
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G  is the Lame’s constant, G  is the shear 

modulus and U and W are the displacement components. 

 

3. Solution of the Problem  
 

The equations (1) to (18) constitute the mathematical 

formulation of the problem under consideration. Applying 

finite Marchi-Zgrablich transform [4] to the equation (3), one 

obtains 

 
Further applying finite Marchi-Fasulo transform [6] to the 

equation (19), one obtains 
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Equation (20) is the first order differential equation, whose 

solution is given by 
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Where, X is constant. 

 

Applying inversion of finite Marchi-Fasulo transform and 

Marchi-Zgrablich transform to the equation (21)  

 

We obtain 

 
 

4. Determination of Thermoelastic Displacement  
 

Substituting the value of ( , , )r z t  from equation (22) in 

equation (1), one obtains the thermoelastic displacement 

function ),,( tzr  as 
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Using equation (23) in equation (11) and (12), one obtains 

the radial and axial displacement U and W as 
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Equation (24) and (25) are the radial and axial displacement. 

 

5. Determination of Stress Functions 
 

Using equations (24) and (25) in equations (15) to (18), the 

stress functions are obtained as 
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Equation (27), (28) and (29) are the thermal stresses 

functions. 

 

6. Conclusion  
 

In this paper, we discussed completely the inverse unsteady-

state problem of thermoelastic deformation of an elliptical 

cylinder for upper plane surface where the temperature is 

maintained at zero on the curved surface and the lower plane 

surface of the cylinder. The temperature, displacement and 

thermal stresses that are obtained by using the integral 

transform techniques. 
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