
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 11, November 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Optimizing Stored Procedures: Advanced

Techniques for Improved SQL Performance

Vishnupriya S Devarajulu

Email: vishnupriyasupriya[at]gmail.com

Abstract: For a good Database performance, Optimizing the Stored Procedures plays a crucial role. This article provides key solutions

for common issues encountered in Stored Procedure Optimization and covers the best practices such as indexing, efficient joins,

minimizing cursor usage, using schema names with object names, using try-catch for error handling etc. Code samples are provided to

each solution, making it easier to understand and implement these techniques.

Keywords: Database Optimization, Stored Procedures, SQL Performance, Indexing, Joins, TRY-CATCH, SET NOCOUNT ON, Cursors,

Schema Names, SQL Best Practices

1. Introduction

Stored procedures are the most fundamental and integral

component of Database management systems, allowing

efficient execution of complex queries and business logic

directly within the Database. However, poorly optimized

stored procedures can lead to major performance issues, such

as slow query execution, heavy resource consumption, and

other bottlenecks. This article provides practical solutions and

best practices to optimize stored procedures. By following

these techniques, Database admins and developers can

improve the performance of their stored procedures, for a

more efficient and responsive Database system.

2. Key Solutions and Best Practices

Include SET NOCOUNT ON Statement: With every

SELECT and DML statement, the SQL server returns a

message that indicates the number of affected rows by that

statement. This information is mostly helpful in debugging

the code, but it is useless after that.

Solution: By setting SET NOCOUNT ON, we can disable the

feature of returning this extra information. For stored

procedures that contain several statements or contain

Transact-SQL loops, setting SET NOCOUNT to ON can

provide a significant performance boost.

Code Sample:
CREATE PROCEDURE GetCustomerOrders

 @customerId INT

AS

BEGIN

 SET NOCOUNT ON;

 SELECT order_id, order_date,

total_amount

 FROM order WHERE customer_id =

@customerId;

END;

Use Schema Name with Object Name: Not specifying the

schema name can lead to performance issues due to additional

time required for name resolution and potential ambiguity.

Solution: Always use the schema name when referring to

database objects.

Code Sample:
-- Without schema name

SELECT order_id, order_date FROM orders;

-- With schema name

SELECT order_id, order_date FROM

dbo.orders;

Do Not Use the Prefix “sp_” in the Stored Procedure

Name: The prefix “sp_” is used for system stored procedures

in SQL Server and can lead to name resolution delays.

Solution: Avoid using the “sp_” prefix for user-defined

stored procedures.

Code Sample:
-- Avoid using sp_ prefix

CREATE PROCEDURE sp_GetCustomerOrders

-- Use a different prefix or naming

convention

CREATE PROCEDURE usp_GetCustomerOrders

Use IF EXISTS (SELECT 1) Instead of (SELECT): Using

SELECT * can be less efficient as it retrieves all columns,

even when checking for the existence of records.

Solution: Use IF EXISTS (SELECT 1) to check for the

existence of rows more efficiently.

Code Sample:
-- Less efficient

IF EXISTS (SELECT * FROM dbo.orders WHERE

order_id = 1234)

-- More efficient

IF EXISTS (SELECT 1 FROM dbo.orders WHERE

order_id = 1234)

Use Proper Indexing: Without proper indexing, the database

engine must perform a full table scan to retrieve the required

data, which is time-consuming for large datasets.

Paper ID: SR24715234242 DOI: https://dx.doi.org/10.21275/SR24715234242 2030

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 11, November 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Solution: Ensure that indexes are created on columns

frequently used in WHERE, JOIN, and ORDER BY clauses.

Code Sample:
CREATE INDEX idx_customer_id ON orders

(customer_id);

Avoid Using Cursors: Cursors can be slow because they

process each row individually, leading to high resource

consumption for large result sets.

Solution: Replace cursors with set-based operations

whenever possible.
-- Efficient set-based operation

UPDATE customers

SET status = 'active'

WHERE last_order_date > '2019-01-01';

Use Join Techniques: Unnecessary joins such as cross joins

or missing join conditions, can lead to extremely large result

sets and slow query performance.

Solution: Use inner, left, right joins and ensure proper join

conditions are specified.

Code Sample:
-- Inefficient join

SELECT * FROM orders, customers

WHERE orders.customer_id =

customers.customer_id;

-- Efficient join

SELECT * FROM orders

INNER JOIN customers ON

orders.customer_id =

customers.customer_id;

Optimize the Use of Temporary Tables: Overusing or

improperly indexing temporary tables can lead to

performance issue’s due to excessive I/O operations.

Solution: Limit the use of temporary tables and make sure

they are indexed appropriately

Code Sample:
-- Inefficient temporary table usage

CREATE TEMPORARY TABLE temp_orders AS

SELECT * FROM orders WHERE order_date >

'2019-01-01';

-- Efficient temporary table usage with

indexing

CREATE TEMPORARY TABLE temp_orders (INDEX

idx_order_date (order_date))

AS SELECT * FROM orders WHERE order_date

> '2019-01-01';

Minimize the Use of Scalar Functions in SELECT

Clauses: Scalar functions in SELECT clauses can lead to

row-by-row processing, reducing query performance.

Solution: Avoid scalar functions in SELECT clauses and use

inline calculations or joins instead.

Code Sample:
-- Inefficient use of scalar function

SELECT order_id,

dbo.CalculateOrderTotal(order_id) FROM

orders;

-- Efficient use with inline calculation

SELECT order_id, SUM(quantity * price) AS

total

FROM order_items GROUP BY order_id;

Use Query Execution Plans: Not analyzing query execution

plans can lead to potential performance issues in query

execution.

Solution: Use execution plans to identify and address slow-

performing parts of your queries.

Code Sample:
-- Get the execution plan for a query

EXPLAIN SELECT * FROM orders WHERE

customer_id = 1234;

Avoid Select *: When used SELECT * it retrieves all

columns from a table, including unnecessary ones, and

reduces performance.

Solution: Select only the necessary columns.

Code Sample:
-- Inefficient query

SELECT * FROM orders WHERE order_id =

1234;

-- Efficient query

SELECT order_id, customer_id, order_date

FROM orders WHERE order_id = 1234;

3. Conclusion

Optimizing stored procedure is essential for maintaining a

high-performing and efficient database system. By

implementing best practices and techniques discussed in this

article we can significantly improve query execution times,

resource utilization, and overall database efficiency, leading

to a more responsive and reliable system.

References

[1] Microsoft SQL Server Documentation:

docs.microsoft.com/sql

[2] Oracle Database Performance Tuning Guide:

oracle.com/database

[3] SQLServerCarpenter:

https://sqlservercarpenter.com/2018/07/17/best-

practices-for-stored-procedures-in-sql-server/

[4] Blog SQL Authority:

https://blog.sqlauthority.com/2010/02/16/sql-server-

stored-procedure-optimization-tips-best-practices/

Paper ID: SR24715234242 DOI: https://dx.doi.org/10.21275/SR24715234242 2031

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
https://docs.microsoft.com/sql/
https://www.oracle.com/database/
https://sqlservercarpenter.com/2018/07/17/best-practices-for-stored-procedures-in-sql-server/
https://sqlservercarpenter.com/2018/07/17/best-practices-for-stored-procedures-in-sql-server/

