
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 12, December 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Implementation of DES Algorithm in Python

Sakshi Agarwal
1
, P K Bharti

2
, Rajesh Kumar Pathak

3

1Research Scholar, Department of CSE, Maharishi University of Information Technology, Lucknow, India

2Professor, Department of CSE, Maharishi University of Information Technology, Lucknow, India

3Professor, Department of CSE, VGI, Ghaziabad, India

Abstract: This paper overviews the implementation of DES algorithm in python language. It illustrates underlying ideas and common

techniques without going into too many details on each topic. Comparative study between implementation of DES algorithm in Python

language and Java language is also illustrated.

Keywords: Encryption, Decryption, Python, Python Cryptography, Java, One-time Padding key

1. Introduction

1.1 Cryptography

Cryptography implies to create written or generated codes to

keep our information secure. It converts the information into

a format that is unreadable for an unauthorized user .It also

allows it to be transmitted without unauthorized entities

decoding it back into a readable format. Information security

uses cryptography on several levels. The information

maintains its integrity during transit and while being stored.

Cryptography aids in nonrepudiation, information security,

authentication of data. This implies that the sender and the

delivery of a message can be verified [1].

1.1.1 Types of Cryptography

1.1.1.1 Symmetric Key Cryptography

Symmetric-key cryptography refers to encryption in which

both the sender and receiver shares the same key. Symmetric

key ciphers can be implemented in two ways, either block

ciphers or stream ciphers. A block cipher enciphers input in

blocks of plaintext as opposed to individual characters, the

input form used by a stream cipher.

The Data Encryption Standard (DES) and the Advanced

Encryption Standard (AES) are block ciphers that have been

designated cryptography standards by the US government.

In a stream cipher, the output stream is created based on a

hidden internal state that changes as the cipher operates.

That internal state is initially set up using the secret key

material [3].

 Data Encryption Standards (DES)
It is a symmetric-key algorithm for the encryption and

decryption of electronic data. Although insecure, it was

highly significant in the advancement of current era

cryptography [1].

It was developed in the early 1970s at IBM and based on an

earlier design by Feistel structure, the algorithm was

submitted to the National Bureau of Standards (NBS). DES

is based on block cipher technology .It is an algorithm that

uses a fixed-length string of plain text bits and transforms it

through a series of complex operations into another cipher

text string of the same length. DES is having the block size

of 64 bits.

1.1.1.2 Asymmetrc Key Cryptography

Public-key cryptography is also known as asymmetric key

cryptography .It is a cryptographic system that requires pairs

of keys as public keys which can be circulated widely, and

private keys which are known only to the user. This system

accomplishes two function i.e. authentication and

encryption.

Asymmetric Key Cryptography Techniques

• Diffie-Hellman key agreement

• Rivest-Shamir Adleman (RSA)

• Elliptic Curve Cryptography (ECC)

• El Gamal

• Digital Signature Algorithm (DSA).

1.2 History of Python

Python, was developed in an educational environment.

Guido van Rossum created Python over the 1989/1990

winter holidays while working as a researcher in

Amsterdam, who named it after Monty Python's Flying

Circus. The result was Python (named, by the way, a big fan

of Monty Python's Flying Circus). He released Python via

Internet FTP distribution and carries on developing and

improving the language for its increasing amount of

programmers and users [9].

Python

Paradigm- multi-paradigm: object-oriented,

imperative,functional, reflective

Appeared in 1991

Designed by Guido van Rossum

Developer Python Software Foundation

Stable release 3.1.2/ March 21, 2010

 2.7/ July 3, 2010

Typing discipline duck, dynamic, strong

Major C Python, Iron Python, Jython,

Python for S60, Py Py, Unladen

Swallow Implementations.

Dialects Stackless Python, R Python

Influenced by ABC, ALGOL C, Haskell, Icon,

Lisp, Modula-3, Perl, Java

Paper ID: ART20203106 DOI: 10.21275/ART20203106 402

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 12, December 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Influenced Boo, Cobra, D, Falcon, Groovy,

Ruby, JavaScript

OS Cross-platform

License Python Software Foundation

License

Usual file extensions .py, .pyw, .pyc, .pyo, .pyd

Website www.python.org

Python is a high-level programming language whose design

philosophy emphasizes code readability. Python aims to

combine "remarkable power with very clear syntax". It

structures a fully dynamic type system and automatic

memory management, similar to that of Scheme, Ruby, Perl.

Like other dynamic languages, Python is often used as a

scripting language, but is also used in a wide range of non-

scripting contexts [7].

2. Comparative Study

2.1 Comparison of Python and Java

I present a list of side-by-side comparisons of features of

Java and Python. If you look at these comparisons, they are

based on running time required by the respective language

[5,6].

Table 1: Time is measured in seconds
S.no Test Java Python Comparison

1 Standard Output 138.8 30.58 Python 4.5X Faster than Java

2 Hash table 17.0 8.22 Python 2X Faster than Java

3 I/O 56.72 47.36 Python 1.2X Faster than Java

4 List 5.94 14.32 Java 2.4X Faster than Python

5 Native Methods 2.475 0.04 Python 6.3X Faster than Java

6 Object Allocation 23.65 211.11 Java 8X Faster than Python

7 Interpreter Speed 0.43 2.29 Java 5.3X Faster than Python

3. Python Cryptography

Cryptography is a package which delivers cryptographic

recipes and primitives to Python developers. Cryptographic

standard library supports Python 2.7, Python 3.4+, and PyPy

5.3+.Cryptography includes both high level recipes and low

level interfaces to common cryptographic algorithms such as

symmetric ciphers, message digests, and key derivation

functions. For example, to encrypt something with

cryptography's high level symmetric encryption recipe:

from cryptography.fernet import Fernet

>>> # Put this somewhere safe!

>>> key = Fernet.generate_key()

>>> f = Fernet(key)

>>> token = f.encrypt(b"A really secret message. Not for

prying eyes.")

>>> token

>>> f.decrypt(token)

'A really secret message. Not for prying eyes.'

3.1 Installation

We can install cryptography with pip. The wheel package on

Windows is a statically linked build (as of 0.5) so all

dependencies are included. To install, you will typically just

run pip install cryptography [12].

3.3 Layout

Cryptography is broadly divided into two levels.

1) Safe cryptographic recipes required to no configuration

choices. These are easy and safe to use and don't require

developers to make many decisions.

2) Low-level cryptographic primitives work is referred to as

the "hazardous materials" or "hazmat" layer. They exists

in the (cryptography .hazmat) package. We recommend

using the recipes layer whenever possible, the hazmat

layer is used only when necessary [10].

The recipes layer:

(I) Fernet (symmetric encryption)

Fernet is an implementation of symmetric (also known as

"secret key") authenticated cryptography. Fernet also has

support for implementing key rotation via Multi Fernet.

class cryptography.fernet.Fernet(key)

This class provides both encryption and decryption facilities.

>>> from cryptography.fernet import Fernet

>>> key = Fernet.generate_key()

>>> f = Fernet(key)

>>> token = f.encrypt(b"my deep dark secret")

>>> token

b'...'

>>> f.decrypt(token)

b'my deep dark secret'

classmethod generate_key() : Generates a fresh fernet key.

Encrypt (data) : Encrypts the data that is passed. The result

of this encryption is known as a "Fernet token". It ensures

strong privacy and authenticity.

Decrypt (token, ttl=None) : Decrypts a Fernet token. We

will receive the original plaintext as a result if it is

successfully decrypted, otherwise an exception will be

raised.

token (bytes) – The Fernet token.

classcryptography.fernet.MultiFernet(fernets) : This class

implies the rotation of key for Fernet. It requires a list of

Fernet instances and implements the same API with the

exception of one additional method: MultiFernet.rotate().

>>> from cryptography.fernet import Fernet, MultiFernet

>>> key1 = Fernet(Fernet.generate_key())

>>> key2 = Fernet(Fernet.generate_key())

>>> f = MultiFernet([key1, key2])

>>> token = f.encrypt(b"Secret message!")

>>> token

>>> f.decrypt(token)

b'Secret message!

key (bytes) – A URL-safe base64-encoded 32-byte key. This

must be kept secret. Anyone with this key is able to create

and read messages.

3.4 Using passwords with Fernet

Passwords with Fernet can be used very easily.To do this,

you need to run the password through a key derivation

function such as PBKDF2HMAC, bcrypt or Scrypt [11].

>>> import base64

>>> import os

>>> from cryptography.fernet import Fernet

>>> from cryptography.hazmat.backends import

default_backend

Paper ID: ART20203106 DOI: 10.21275/ART20203106 403

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 12, December 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

>>> from cryptography.hazmat.primitives import hashes

>>> from cryptography.hazmat.primitives.kdf.pbkdf2

import PBKDF2HMAC

>>> password = b"password"

>>> salt = os.urandom(16)

>>> kdf = PBKDF2HMAC(

... algorithm=hashes.SHA256(),

... length=32,

... salt=salt,

... iterations=100000,

... backend=default_backend()

...)

>>> key = base64.urlsafe_b64encode(kdf.derive(password))

>>> f = Fernet(key)

>>> token = f.encrypt(b"Secret message!")

>>> token

b'...'

>>> f.decrypt(token)

b'Secret message!'

Implementation

Conceptually, Fernet takes a user-provided message (an

arbitrary sequence of bytes), a key (256 bits), and the current

time, and produces a token, which contains the message in a

form that can't be read or altered without the key. All

cryptographic function in this version is done with AES 128

in CBC mode. All base 64 encoding is done with the "URL

and Filename Safe" variant, defined in RFC 4648 as

"base64url".

Key Format

A fernet key is the base64url encoding of the following

fields:

Signing-key||Encryption-key

Signing-key, 128 bits

Encryption-key, 128 bits

Token Format

A fernet token is the base64 URL encoding of the

concatenation of the following fields:

Version||Timestamp||IV||Cipher text

Version, 8 bits

Timestamp, 64 bits

IV, 128 bits

Cipher text, variable length, multiple of 128 bits

HMAC, 256 bits

Token Fields

Version: This field symbolizes the version of the format that

is used by the token. Presently, there is one version well

defined, with the value of 128 (0x80).

Timestamp: The field is a 64-bit unsigned big integer. It

records the number of seconds elapsed between January 1,

1970 UTC and the time, the token was generated.

Initialization Vector (IV): The 128-bit Initialization Vector

used in AES encryption and decryption of the Ciphertext.

While generating new fernet tokens, the Initialization vector

must be chosen uniquely for each token.

Ciphertext: This field has variable size, but is always a

multiple of 128 bits, the AES block size. It contains the

original input message, padded and encrypted.

HMAC: This field is the 256-bit SHA256 HMAC, under

signing-key, of the concatenation of the following fields:

Version||Timestamp||IV||Cipher text

Generating

If a key and a message is given , we can create a Fernet

token with the following steps :

1) Record the current time for timestamp field.

2) Choose a unique Initialization vector.

3) Construct the ciphertext:

Verifying

 If a key and token is given , verification can be done in the

following steps :

1) Base 64 URL decrypt the token.

2) Confirm that the initial byte of token is 0x80.

3) If the user has indicated the maximum age for the token,

ensure the recorded timestamp is not too far in the past.

4) Re-Compute the HMAC from the other fields and the

user-supplied signing-key.

5) Ensure the recomputed HMAC matches the HMAC field

stored in the token, using a constant-time comparison

function.

6) Decrypt the cipher text field using AES 128 in CBC

mode with the recorded IV and user-supplied encryption-

key.

7) Unpad the decrypted plaintext, yielding the original

message.

4. DES Implementation in Python

In [1]: from cryptography.fernet import Fernet

In [2]:cipher_key = Fernet.generate_key()

In [3]:cipher_key

Out[3]:b'g6EWtxBVirwbIPwjsD44CAiSEXgrbYDOm9P9Ii

ybXxM='

In [4]:cipher = Fernet(cipher_key)

In [5]:text = b'My super secret message'

In [6]:encrypted_text = cipher.encrypt(text)

In [7]:encrypted_text

Out[7]:b'gAAAAABbYA2vPRk4nw_QtZDZlbuBX6av2Tt1

_Aheu-GvIPpuMeqg3lRpwb1nIxzYaP6NTzaZDf-

QeD1i2qYc29Wgmh4sCPg5dImIkPykc3oD_f9RjBW4TAg

='

In [8]:decrypted_text = cipher.decrypt(encrypted_text)

In [9]:decrypted_text = cipher.decrypt(encrypted_text)

In [10]:decrypted_text

Out[10]:b'My super secret message'

5. Conclusion

Python is used to develop the source code for DES

algorithm. The implementation of Data Encryption

Standards (DES) have some advantages like

1) It is a robust programming language and gives an easy

usage of the code lines.

2) The debugging and maintenance of DES algorithm is

done easily with this language.

3) The code length is minimized as compared to Java.

4) The syntax and semantics are very easy as compared to

Java.

5) Byte code of DES is generated by the virtual machine

using shell in Python.

Paper ID: ART20203106 DOI: 10.21275/ART20203106 404

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 12, December 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

References

[1] Data Encryption Standard, Federal Information

Processing Standards Publication (FIPS PUB) 46,

National Bureau of Standards, Washington, DC (1977).

[2] Electronic Frontier Foundation, Cracking DES, Secrets

of Encryption Research, Wiretap Politics & Chip

Design, O'reilly, 1998.

[3] Eli Biham, Adi Shamir, Differential Cryptanalysis of

DES-like Cryptosystems, Journal of Cryptology, Vol. 4

No. 1, Springer, pp. 3– 72, 1991.

[4] “Exhaustive Cryptanalysis of the NBS Data Encryption

Standard" by Diffie, Whitfield and Martin Hellman.

[5] "Java language "[online].Available:

https://docs.oracle.com.

[6] Java SE Specifications - Oracle

Docs[online].https://docs.oracle.com.

[7] "Keyczar." [Online]. Available:

https://github.com/google/keyczar

[8] Lutz Prechelt and Barbara Unger,Technical Report

1/1999, Fakult¨at f¨ur Informatik, Universit¨at

Karlsruhe, Germany, March 1999. ftp.ira.uka.de.

[9] P. Gorski and L. L. Iacono, "Towards the usability

evaluation of security apis," .

[10] S. Willden, "Keyczar Design Philosophy," 2015.

[Online]. Available:

https://github.com/google/keyczar/wiki/KeyczarPhiloso

phy

[11] "The Sodium crypto library (libsodium)." [Online].

Available: https://libsodium.org.

[12] Watts S. Humphrey. A Discipline for Software

Engineering. SEI series in Software Engineering.

Addison Wesley, Reading, MA, 1995.

Paper ID: ART20203106 DOI: 10.21275/ART20203106 405

