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Abstract: Commercial vehicle-connected services can reduce costs and improve safety and vehicle management. Using AWS IoT Core, 

data is forwarded to applications in the AWS environment for real-time insights. A prototype composed of AWS IoT Core, AWS IoT Rules, 

Apache Kafka, and Kafka Streams predicts engine failures in commercial vehicles. Data is preprocessed using Kafka Streams for machine 

learning model predictions. This solution meets requirements and aims to prevent accidents through practical and cost-effective 

interventions. The challenge is ensuring satisfactory performance with AWS Lambda for predictions. The application uses a simplified 

IoT application with AWS Cloud Services and Kafka Streams. 
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1. Introduction 
 

The remaining manuscript is organized as follows: 

background of the research, architecture of the proposed 

methodology, preliminary engine failure, data processing 

types, machine learning, real-time streaming architectures, 

existing work in the literature, proposed architecture for 

handling real-time vehicle streaming data, datasets used, 

architecture of real-time vehicle data streaming, data 

processing, predictive analysis of vehicle data, data streaming 

tools, application of real-time vehicle data streaming in 

engine failure prediction, real-time vehicle streaming data 

processing and monitoring, AE-based real-time vehicle 

engine data processing extension, and conclusion. Machine 

learning predicts engine failure in commercial vehicles by 

extracting knowledge from previous activities. Multivariate 

time series data from onboard diagnostic buses are used for 

prediction, real-time monitoring, and continuous wireless 

communication. AWS IoT and Kafka are used as data 

transferring and streaming tools. However, real-time data 

stream handling for vehicle failure prediction is not available 

in the literature. Existing works either do not process data or 

use a limited dataset. Random Forest is the most used 

algorithm for engine failure prediction, while linear 

regression is used for abnormal temperature prediction. 

 

1.1. Background 

 

The investigation of engine health involves qualitative and 

quantitative methods. In vehicle scenarios, engineers analyze 

the vehicle as a collection of systems and subsystems using 

specific constituents and metrics. Data points are classified 

into multiple types to distinguish between fault severity. 

Predictive analytics and machine learning forecast values and 

understand complicated relationships. Real-time vehicle 

datasets often include tabular corporate pressure values, 

which can be analyzed to lower fuel consumption. Vehicle 

technology development has improved comfort and safety, 

with Engine Control Units (ECUs) playing a pivotal role. 

Onboard diagnostics allow for debugging vehicle 

communication on CAN buses. Diagnostic standards record 

average vehicle function statistics, but using these 

technologies to detect breakdowns still needs clarification.   
 

 
Figure 1: Engine Health Review through Predictive 

Analysis 

 

1.2 Problem Statement 

 

IoT and ML have been integrated to determine engine 

failures. These advantages include reduced data reduction 

controls, reduced maintenance costs, extended engine life, 

increased equipment uptime, and reduced operational and 

maintenance staff involvement. Many organizations, 

including large corporations and small firms, are eager to 

implement it. It is not remarkable, for example, that Amazon 

Web Services (AWS) now has over 1,000 services and 

features. One challenge researchers face in solving real-time 

engine failures has been the need to analyze velocity and 

volume at high frequencies. Hence, data ingestion, storage, 

and actual-time handling must be organized centrally in a 

single software. In recent years, there has been a significant 

gain in online streaming gadgets and updates transmitted 

through the network. This report categorizes engine defects 

based on real-time data analysis such as voltage, frequency, 

power energy, torque, temperature, and vibration. The 

significant elements of this research are the real-time sensors' 

events expected to be generated from any of these travel 

problem classifications. 
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The Sensor's arrays include analysis of pipeline engines' real-

time data for implantation processes. For the implementation 

of this project, the software's Python programming language 

has been selected. We also utilize AWS to align with the 

AWS components' activation services, such as AWS IoT 

Core, AWS Machine Learning, Lambda AWS, Amazon API 

Gateway, AWS Storm Manager, Amazon IonDB, Amazon 

Timestream, and AWS Greengrass. This method consists of 

real-time data collection from AWS IoT Core by the 

engineering technicians. Real-time data and leaderboard 

visualization are now being gathered to get sensor anomalies 

together. We use several outside computing and in-company 

factors in the AWS cloud to visualize distinct engine 

anomalies. Here, we also show a delivery design and a 

deployment instruction to demonstrate how to combine the 

AWS IoT services with the AWS cloud. 

 

1.3 Objectives 

 

IoT, big data, and machine learning are commonly used in the 

automotive industry to develop IoT-based applications. This 

paper focuses on monitoring live vehicle data, analyzing it 

according to business requirements, and using predictive 

maintenance techniques to prevent engine failure. The goal is 

to visualize data in real-time and provide automated customer 

support. Research on open-source IoT telemetry services and 

the architecture of IoT and big data analytics frameworks is 

conducted. Integrating machine learning and AI with IoT can 

effectively predict anomalous behaviors and detect fraud. 

Another challenge is real-time monitoring and failure 

prediction of innovative commercial vehicles, which can be 

achieved through machine learning methods. 

 

2. Literature Review 
 

Aurora improved PostgreSQL performance without trace 

degradation. Grafana visualized data analytics with MQTT 

but needed advanced machine learning methods. IoT 

networks were limitedly compatible with big data databases. 

Trucks and buses had their own ECUs with increased 

computing power. Apache Kafka was used for messaging. 

PCA and XGBoost were used for dimensionality reduction 

and predictions. Real-time monitoring was important for 

decision-making in transportation. 

 

2.1 AWS IoT 

 

The data sent by LoRaWAN is processed by algorithms on 

the server, using AWS IoT Core for secure storage and 

processing. AWS IoT Core offers various capabilities for 

secure IoT implementations, including device authentication, 

traffic throttling prevention, and firmware/software updates. 

It also utilizes MQTT for data transfer and LoRaWAN for 

connectivity. Cloud solutions like AWS provide scalability, 

availability, reliability, agility, and security for IoT 

applications. AWS IoT Core connects IoT devices and the 

LoRaWAN gateway to the AWS cloud, with an IoT rule used 

to filter and process data. The rule can forward data to AWS 

IoT Core or trigger other AWS services for processing or 

storage. SQL Notebooks can be used for data analysis.  

 

 
Figure 2: Data security with AWS IoT Core for LoRaWAN 

 

2.2. Kafka 

In this paper, Apache Kafka was used as a data management 

tool. Kafka is used across various industries to track the status 

of shipping logs and messages between microservices and 

aggregate telemetry data from distributed sensors in real-time. 

It is the heart of Salesforce's data streams for collecting real-

time data from distributed systems. Kafka is the messaging 

queue, and Storm, Samza, and Spark Streaming are 

distributed stream processing frameworks based on Kafka. 

 

Kafka is based on a distributed publish-subscribe model. 

Kafka topics are divided into several ordered partitions 

(∼100−10,000), each attached to a separate server, enabling 

high throughput. Each Kafka partition can also support 

multiple consumers in a log-structured way to provide real-

time message processing. In the output stage of the vehicle 

monitoring system, getting car status for identifying the car 

market and sending messages to Kafka, messages were 

produced by transducer to Kafka, and sending down the data 

message into Kafka's real-time queue. The time consuming of 

this stage was Tsend=1 ms when vehicle information was 

published to Kafka. 

 

Kafka can be described as a chain of stages. Once vehicle info 

and status are generated, Grenzschichts-Schmierung attaches 

the info to a specific car's ID and writes the info to Kafka in a 

parallel buffer. A buffer is used to buffer the data to Kafka to 

improve data throughput. The consumption thread in Kafka 

fetches data continually from the buffer and sends it to Kafka, 

importing data to improve data throughput. When the data is 

produced in Kafka, it will be cached until Kafka finishes the 

message and passes it to the consumer thread. 

 

 
Figure 3: Kafka for Real-Time Data Processing 

 

2.3. Machine Learning Techniques for Engine Failure 

Prediction 

 

The primary limitation of machine learning models is the 

requirement of a large dataset for training, which is not 

available for failure predictions. A hybrid machine learning 

model is used to address this issue, combining machine 

learning models with unsupervised learning strategies. The 
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LSTM network forecasting model achieves 85% accuracy 

and 0.7% track error, while the XGB model performs well in 

visual signals and material failure identification tasks. The 

ensemble model has an overall efficiency of around 80%. 

Predicting system failures using the state-space time history 

of variables helps preserve functionality. Deep learning 

models like LSTMs perform well in predictive maintenance 

due to their flexibility in capturing complex relationships 

between sensor characteristics. Combining feature selection 

and deep learning methods, called XBG, improves machine 

learning performance. Vision-based models show the best 

results, capturing various aspects of system conditions in 

images.  

 

3. Methodology 
 

Kafka is used as a unified platform for data ingestion and 

stream processing. AWS IoT collects data from devices over 

a wide area. AWS lambda services deliver messages to a 

machine-learning prediction engine. The SageMaker API 

constructs, trains, and uses machine learning models. AWS 

IoT checks the status of commercial vehicles in real time. 

Data from a sensor in a commercial car is sent to AWS IoT 

continuously. AWS Kinesis Info Streams collects and 

dispatches real-time messages to AWS Kafka. Messages in 

the subject are used to append a new column to the database. 

Real-time engine fault lowering reduces downtime and 

maintains vehicles at a low cost. This paper proposes an 

engine status forecasting model using machine learning and 

Apache Kafka. Simulated data is used to train and evaluate 

the model. The AUC values for the training and validation 

data sets are 0.92 and 0.90. However, the AUC for an 

unbalanced test data set is 0.65, impacting the model's 

functionality.  

 

3.1 Data Collection and Preprocessing 

 

IoV enables vehicle identification, tracking, and traffic 

regulation. It improves safety and reduces accidents and theft. 

However, its centralized cloud-based architecture limits 

advanced intelligent systems and real-time monitoring 

capabilities. This research proposes a deep-learning 

framework for real-time driver identification in an IoV. 

Cloud-based predictive maintenance systems must use real-

time big data frameworks for efficiency. This work focuses 

on feature selection and development for engine context using 

real-time data. Smart manufacturing requires real-time big 

data analytics for failure prognosis.  

 

3.2 Integrating AWS IoT and Kafka 

 

Data streaming involves a continuous data flow between 

vehicles and a cloud-based significant data management 

component. Apache Kafka enables distributed data streaming 

with features like replication and topic partitioning. Each 

vehicle is assigned a Kafka topic, allowing multiple 

subscribers and supporting a multi-tenant system. Data is 

delivered in real-time or in batches to the significant data 

component. Kafka Streams enables real-time data processing, 

aggregation, and modeling. Kafka Connectors facilitate data 

integration with external systems. AWS IoT Greengrass Core 

enables local processing, messaging, and data management 

for IoT applications. Amazon FreeRTOS connects IoT 

devices to AWS services, allowing data processing and 

anomaly detection. AWS IoT integrates with Kafka for real-

time engine failure prediction.   

 

3.3 Machine Learning Model Development 

 

A Random Forest for predictive maintenance needs to be 

trained with gathered features of a device (or vehicle). 

Features are gathered in API Gateway via IoT Core using 

AWS Amplify. The time window for feature selection 

significantly affects model performance and required 

experimentation. Time series data must be transformed into a 

supervised data format. The model requires cleaning of values 

and defining targeted features. The targeted feature for real-

time vehicle engine failure is monitoring the coolant 

temperature of the OBD II sensor. Steps for developing the 

machine learning model include feature engineering and 

obtaining training datasets. Vehicle data collection for real-

time failure prediction requires advanced analytics tools and 

machine learning. Machine learning offers advantages such 

as fast computation, trend and pattern detection, precision, 

constant learning, and improvement. The Random Forest 

algorithm is a promising model for predictive maintenance, 

using ensemble learning through decision tree construction.  

 

4. Results and Discussion 
 

The system is trained on engine failure data from commercial 

vehicles. Real-time network data and logs are fetched from a 

telco service provider. A neural network and xgboost are used 

for training and real-time engine failure prediction. The 

models are fine-tuned using BayesSearchCV and k-fold. The 

proposed system achieves high accuracy and F1 scores. 

OEMs and telco service providers can use it to detect 

malfunctions and reduce maintenance costs. The solution uses 

open-source products and a three-stage encoding technique to 

detect malfunctions quickly. Amazon Web Services IoT and 

Apache Kafka are integrated to stream telemetry data and 

predict engine failure. The data is fetched from ECM and 

TCM using OBD and mapped to AWS IoT message format. 

An AWS IoT provisioning template is created for zero-touch 

provisioning. The data is then sent to an Apache Kafka cluster 

for real-time analysis. The system triggers an alert if a specific 

condition is met and provides the likelihood of failure and 

vehicle information.  

 

4.1 Performance Evaluation of Engine Failure Prediction 

Model 

 

After manipulating historical and real-time data, machine-

learning models were trained and tested. Random forest, 

logistic regression, decision tree, support vector machine, and 

KNN were used for anomaly prediction. Performance metrics 

such as MSE, precision, recall, accuracy, and F1 were 

assessed. Unsupervised methods were used for abnormal 

detection in time series data, while supervised prediction 

employed Bayesian Networks, Linear Regression, and 

Random Forest. Random Forest demonstrated the highest 

accuracy and F1 score. Therefore, Random Forest was used 

as the predictive model for engine failure prediction. The 

abundance of data allows for improved performance in 

predictive maintenance systems. The system requires 

efficient data acquisition, extensive storage, and 
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comprehensive analytics. AWS IoT and Kafka were 

integrated for data storage and visualization. Real-time data 

was stored in AWS S3, while offline storage utilized HDFS. 

Anupama et al. designed a cloud-based architecture for IoT in 

intelligent livestock.  

 

4.2 Real-Time Monitoring and Alerting System 

 

A real-time monitoring and alerting system was implemented 

using Amazon Web Services (AWS) IoT. A message broker 

was also utilized to enhance data safety and reliability. While 

there are various messaging brokers available for cloud 

platforms - like Cloud IoT Core (Google Cloud), Azure IoT 

Hub (Microsoft Azure), and CloudMQTT - the extension of 

our Amazon Web Services (AWS)-based architecture was 

selected by integrating AWS IoT with Kafka (and ksqlDB 

when applicable). In the selected architecture, messages are 

generated from the vehicles and delivered as messages in 

MQTT format to the AWS IoT Core. This data is then used 

for instant monitoring, alerting, and archiving. Several AWS 

services can act as stream consumers, stored in a data 

warehouse, delivered in batched form to an application for 

processing, or used in a real-time stream processing 

application in which we are interested. 

 

To add data security and reliability, we designed our alerting 

system to balance these using the best of the cloud (AWS) and 

on-premises by integrating AWS IoT with Apache Kafka as a 

message broker. The architecture used in this project was 

developed to serve two objectives: watch for real-time engine 

failure incidents and enable the immediate canceling of 

existing orders to a vehicle in the event of an engine failure. 

The events were transmitted to the AWS cloud using the 

AWS IoT platform and MQTT protocol based on the 

individual share of data or batched data from the real-time 

data. 

 

Once the data is streamed from the vehicles, it is received in 

AWS IoT Core as lectures. AWS IoT Core acts as the 

message broker, and AWS Cognito user pools authorize the 

AWS IoT Core. The central intake for AWS Cognito was the 

vehicle's React Native-based mobile application, which also 

granted access to user management. We installed and 

maintained a Kafka cluster on virtual machines to use Kafka 

as the central message broker and form of data persistence. 

The tasks were carried out using the People's Bureau. Hence, 

the VM type Kafka was mounted and managed on them. The 

two topics were produced in 21 monitored properties using an 

MQTT producer. Lists were created and stored using KTables 

and saved as a Kafka topic, consumed by a stream processor 

application running in Kafka with KSQ. A KSQL application 

consumed the topic and immediately sent an action event in 

KTable. 

 

 
Figure 4: Real-Time Monitoring with Kafka 

 

4.3 Comparison with Existing Approaches 

 

We proposed an integrated predictive maintenance model in 

the cloud, performing extensive testing and analysis. Existing 

approaches need more real-time testing and explanation of 

real-time prediction in a cloud-based model. Our method 

focuses on deep learning for real-time engine failure 

prediction in ICV, using AWS IoT-based messaging brokers. 

Existing literature primarily relies on IoT-based message 

brokers for predictive maintenance solutions. We compare 

our model to existing ones regarding real-time failure 

prediction execution. Some research combines multi-head 

attention and 1D convolutions for real-time driver 

identification but needs more training and testing details in 

the cloud with IoT-based messaging brokers. Existing models 

only mention integration with IoT-based messaging brokers 

for health status prediction.  

 

5. Conclusion 
 

A prototype network including OBD-II device, Android 

device, train test station, LTE internet, servers, databases, IoT 

and cloud architectures, and traffic libraries combined 

mechatronics and computer engineering. MQTT client added 

to Kafka-AWS interface. Feedback-RNN structure completed 

leakage model. Failure prediction model showcased with 

vehicle events and deep learning twin badges. The engine 

failure prediction model achieved 88.4% accuracy. 

Integration of Kafka and AWS IoT presented for vehicle 

failure prediction. MQTT, device shadow, and device 

gateway are used for real-time evaluations.  

 

5.1 Summary of Findings 

 

Predictive maintenance can track the working of any engine 

or part by analyzing their current health status and throwing 

the warning before they fail. With the introduction of 

connected systems within vehicle E/E architecture, a complex 

"predictive maintenance" system is required. Traditional 

methods involve analyzing the average 'lambda' factor of logs 

for different Automotive E/E components, but they have high 

maintenance and optimization costs. Recent advancements in 

big data processing and machine learning allow for the 

integration of IoT systems with rule-based gateway nodes to 

provide considerable data-powered predictive maintenance 

for connected vehicles and intelligent automotive in-vehicle 
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data-fusion systems. The growth of the automotive 

electronics market has exponentially increased the 

complexity of in-vehicle networks, with more critical vehicle 

operations being dependent on them. Automotive companies 

are developing intelligent, self-healing E/E systems for 

various automotive applications. Automotive industries are 

moving from Reactive E/E system maintenance to Adaptive 

and Predictive Maintenance to ensure availability and safety.  

 

 
Figure 5: IoT & Analytics for Predictive Maintenance 

 

5.2 Contributions 

 

Vehicle data is a valuable source of information for predicting 

engine failures using machine learning. Real-world vehicle 

data is abundant and can be collected over an extended period, 

making it suitable for this purpose. Our proposed model is 

adaptable to different vehicles and reduces the time and cost 

required for predictions. It can handle the variety, velocity, 

and volume of vehicle data streamed from the field. The 

framework includes data collection using AWS IoT, data 

transformation in Kafka, and model training in ScikitLearn. It 

also features a real-time engine status application. Our study 

is the first to integrate AWS IoT and Kafka for commercial 

vehicle problems using machine learning. Our dataset 

includes log messages and LIDAR data for nighttime driver 

behavior analysis.  

 

5.3 Future Work 

 

The model-building process has been offloaded to the cloud, 

allowing integration with an autonomous fleet. The model can 

be improved and validated with higher frequency data traces, 

and it can learn from generic subsystem features. Edge-based 

inference and insights from historical data are also potential 

areas for exploration. The current work aims to build a 

predictive maintenance system for commercial vehicles, 

utilizing expertise from multiple disciplines. Additional 

sensor data or domain expertise can enhance the model, and 

techniques like LSTM could be used for deep dependencies 

in time series data. The state-of-the-art method and 

uncertainty quantification can increase confidence in 

predictions. 
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