
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 12, December 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Integrating AWS IoT and Kafka for Real-Time

Engine Failure Prediction in Commercial Vehicles

Using Machine Learning Techniques

Vishwanadham Mandala

Enterprise Data Integration Architect

Email: vishwanadh.mandala[at]gmail.com

Abstract: Commercial vehicle-connected services can reduce costs and improve safety and vehicle management. Using AWS IoT Core,

data is forwarded to applications in the AWS environment for real-time insights. A prototype composed of AWS IoT Core, AWS IoT Rules,

Apache Kafka, and Kafka Streams predicts engine failures in commercial vehicles. Data is preprocessed using Kafka Streams for machine

learning model predictions. This solution meets requirements and aims to prevent accidents through practical and cost-effective

interventions. The challenge is ensuring satisfactory performance with AWS Lambda for predictions. The application uses a simplified

IoT application with AWS Cloud Services and Kafka Streams.

Keywords: Failure Prediction, Industry 4.0, Internet of Things (IoT), Artificial Intelligence (AI), Machine Learning (ML), Smart

Manufacturing (SM)

1. Introduction

The remaining manuscript is organized as follows:

background of the research, architecture of the proposed

methodology, preliminary engine failure, data processing

types, machine learning, real-time streaming architectures,

existing work in the literature, proposed architecture for

handling real-time vehicle streaming data, datasets used,

architecture of real-time vehicle data streaming, data

processing, predictive analysis of vehicle data, data streaming

tools, application of real-time vehicle data streaming in

engine failure prediction, real-time vehicle streaming data

processing and monitoring, AE-based real-time vehicle

engine data processing extension, and conclusion. Machine

learning predicts engine failure in commercial vehicles by

extracting knowledge from previous activities. Multivariate

time series data from onboard diagnostic buses are used for

prediction, real-time monitoring, and continuous wireless

communication. AWS IoT and Kafka are used as data

transferring and streaming tools. However, real-time data

stream handling for vehicle failure prediction is not available

in the literature. Existing works either do not process data or

use a limited dataset. Random Forest is the most used

algorithm for engine failure prediction, while linear

regression is used for abnormal temperature prediction.

1.1. Background

The investigation of engine health involves qualitative and

quantitative methods. In vehicle scenarios, engineers analyze

the vehicle as a collection of systems and subsystems using

specific constituents and metrics. Data points are classified

into multiple types to distinguish between fault severity.

Predictive analytics and machine learning forecast values and

understand complicated relationships. Real-time vehicle

datasets often include tabular corporate pressure values,

which can be analyzed to lower fuel consumption. Vehicle

technology development has improved comfort and safety,

with Engine Control Units (ECUs) playing a pivotal role.

Onboard diagnostics allow for debugging vehicle

communication on CAN buses. Diagnostic standards record

average vehicle function statistics, but using these

technologies to detect breakdowns still needs clarification.

Figure 1: Engine Health Review through Predictive

Analysis

1.2 Problem Statement

IoT and ML have been integrated to determine engine

failures. These advantages include reduced data reduction

controls, reduced maintenance costs, extended engine life,

increased equipment uptime, and reduced operational and

maintenance staff involvement. Many organizations,

including large corporations and small firms, are eager to

implement it. It is not remarkable, for example, that Amazon

Web Services (AWS) now has over 1,000 services and

features. One challenge researchers face in solving real-time

engine failures has been the need to analyze velocity and

volume at high frequencies. Hence, data ingestion, storage,

and actual-time handling must be organized centrally in a

single software. In recent years, there has been a significant

gain in online streaming gadgets and updates transmitted

through the network. This report categorizes engine defects

based on real-time data analysis such as voltage, frequency,

power energy, torque, temperature, and vibration. The

significant elements of this research are the real-time sensors'

events expected to be generated from any of these travel

problem classifications.

Paper ID: ES24516094823 DOI: https://dx.doi.org/10.21275/ES24516094823 2046

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 12, December 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The Sensor's arrays include analysis of pipeline engines' real-

time data for implantation processes. For the implementation

of this project, the software's Python programming language

has been selected. We also utilize AWS to align with the

AWS components' activation services, such as AWS IoT

Core, AWS Machine Learning, Lambda AWS, Amazon API

Gateway, AWS Storm Manager, Amazon IonDB, Amazon

Timestream, and AWS Greengrass. This method consists of

real-time data collection from AWS IoT Core by the

engineering technicians. Real-time data and leaderboard

visualization are now being gathered to get sensor anomalies

together. We use several outside computing and in-company

factors in the AWS cloud to visualize distinct engine

anomalies. Here, we also show a delivery design and a

deployment instruction to demonstrate how to combine the

AWS IoT services with the AWS cloud.

1.3 Objectives

IoT, big data, and machine learning are commonly used in the

automotive industry to develop IoT-based applications. This

paper focuses on monitoring live vehicle data, analyzing it

according to business requirements, and using predictive

maintenance techniques to prevent engine failure. The goal is

to visualize data in real-time and provide automated customer

support. Research on open-source IoT telemetry services and

the architecture of IoT and big data analytics frameworks is

conducted. Integrating machine learning and AI with IoT can

effectively predict anomalous behaviors and detect fraud.

Another challenge is real-time monitoring and failure

prediction of innovative commercial vehicles, which can be

achieved through machine learning methods.

2. Literature Review

Aurora improved PostgreSQL performance without trace

degradation. Grafana visualized data analytics with MQTT

but needed advanced machine learning methods. IoT

networks were limitedly compatible with big data databases.

Trucks and buses had their own ECUs with increased

computing power. Apache Kafka was used for messaging.

PCA and XGBoost were used for dimensionality reduction

and predictions. Real-time monitoring was important for

decision-making in transportation.

2.1 AWS IoT

The data sent by LoRaWAN is processed by algorithms on

the server, using AWS IoT Core for secure storage and

processing. AWS IoT Core offers various capabilities for

secure IoT implementations, including device authentication,

traffic throttling prevention, and firmware/software updates.

It also utilizes MQTT for data transfer and LoRaWAN for

connectivity. Cloud solutions like AWS provide scalability,

availability, reliability, agility, and security for IoT

applications. AWS IoT Core connects IoT devices and the

LoRaWAN gateway to the AWS cloud, with an IoT rule used

to filter and process data. The rule can forward data to AWS

IoT Core or trigger other AWS services for processing or

storage. SQL Notebooks can be used for data analysis.

Figure 2: Data security with AWS IoT Core for LoRaWAN

2.2. Kafka

In this paper, Apache Kafka was used as a data management

tool. Kafka is used across various industries to track the status

of shipping logs and messages between microservices and

aggregate telemetry data from distributed sensors in real-time.

It is the heart of Salesforce's data streams for collecting real-

time data from distributed systems. Kafka is the messaging

queue, and Storm, Samza, and Spark Streaming are

distributed stream processing frameworks based on Kafka.

Kafka is based on a distributed publish-subscribe model.

Kafka topics are divided into several ordered partitions

(∼100−10,000), each attached to a separate server, enabling

high throughput. Each Kafka partition can also support

multiple consumers in a log-structured way to provide real-

time message processing. In the output stage of the vehicle

monitoring system, getting car status for identifying the car

market and sending messages to Kafka, messages were

produced by transducer to Kafka, and sending down the data

message into Kafka's real-time queue. The time consuming of

this stage was Tsend=1 ms when vehicle information was

published to Kafka.

Kafka can be described as a chain of stages. Once vehicle info

and status are generated, Grenzschichts-Schmierung attaches

the info to a specific car's ID and writes the info to Kafka in a

parallel buffer. A buffer is used to buffer the data to Kafka to

improve data throughput. The consumption thread in Kafka

fetches data continually from the buffer and sends it to Kafka,

importing data to improve data throughput. When the data is

produced in Kafka, it will be cached until Kafka finishes the

message and passes it to the consumer thread.

Figure 3: Kafka for Real-Time Data Processing

2.3. Machine Learning Techniques for Engine Failure

Prediction

The primary limitation of machine learning models is the

requirement of a large dataset for training, which is not

available for failure predictions. A hybrid machine learning

model is used to address this issue, combining machine

learning models with unsupervised learning strategies. The

Paper ID: ES24516094823 DOI: https://dx.doi.org/10.21275/ES24516094823 2047

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 12, December 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

LSTM network forecasting model achieves 85% accuracy

and 0.7% track error, while the XGB model performs well in

visual signals and material failure identification tasks. The

ensemble model has an overall efficiency of around 80%.

Predicting system failures using the state-space time history

of variables helps preserve functionality. Deep learning

models like LSTMs perform well in predictive maintenance

due to their flexibility in capturing complex relationships

between sensor characteristics. Combining feature selection

and deep learning methods, called XBG, improves machine

learning performance. Vision-based models show the best

results, capturing various aspects of system conditions in

images.

3. Methodology

Kafka is used as a unified platform for data ingestion and

stream processing. AWS IoT collects data from devices over

a wide area. AWS lambda services deliver messages to a

machine-learning prediction engine. The SageMaker API

constructs, trains, and uses machine learning models. AWS

IoT checks the status of commercial vehicles in real time.

Data from a sensor in a commercial car is sent to AWS IoT

continuously. AWS Kinesis Info Streams collects and

dispatches real-time messages to AWS Kafka. Messages in

the subject are used to append a new column to the database.

Real-time engine fault lowering reduces downtime and

maintains vehicles at a low cost. This paper proposes an

engine status forecasting model using machine learning and

Apache Kafka. Simulated data is used to train and evaluate

the model. The AUC values for the training and validation

data sets are 0.92 and 0.90. However, the AUC for an

unbalanced test data set is 0.65, impacting the model's

functionality.

3.1 Data Collection and Preprocessing

IoV enables vehicle identification, tracking, and traffic

regulation. It improves safety and reduces accidents and theft.

However, its centralized cloud-based architecture limits

advanced intelligent systems and real-time monitoring

capabilities. This research proposes a deep-learning

framework for real-time driver identification in an IoV.

Cloud-based predictive maintenance systems must use real-

time big data frameworks for efficiency. This work focuses

on feature selection and development for engine context using

real-time data. Smart manufacturing requires real-time big

data analytics for failure prognosis.

3.2 Integrating AWS IoT and Kafka

Data streaming involves a continuous data flow between

vehicles and a cloud-based significant data management

component. Apache Kafka enables distributed data streaming

with features like replication and topic partitioning. Each

vehicle is assigned a Kafka topic, allowing multiple

subscribers and supporting a multi-tenant system. Data is

delivered in real-time or in batches to the significant data

component. Kafka Streams enables real-time data processing,

aggregation, and modeling. Kafka Connectors facilitate data

integration with external systems. AWS IoT Greengrass Core

enables local processing, messaging, and data management

for IoT applications. Amazon FreeRTOS connects IoT

devices to AWS services, allowing data processing and

anomaly detection. AWS IoT integrates with Kafka for real-

time engine failure prediction.

3.3 Machine Learning Model Development

A Random Forest for predictive maintenance needs to be

trained with gathered features of a device (or vehicle).

Features are gathered in API Gateway via IoT Core using

AWS Amplify. The time window for feature selection

significantly affects model performance and required

experimentation. Time series data must be transformed into a

supervised data format. The model requires cleaning of values

and defining targeted features. The targeted feature for real-

time vehicle engine failure is monitoring the coolant

temperature of the OBD II sensor. Steps for developing the

machine learning model include feature engineering and

obtaining training datasets. Vehicle data collection for real-

time failure prediction requires advanced analytics tools and

machine learning. Machine learning offers advantages such

as fast computation, trend and pattern detection, precision,

constant learning, and improvement. The Random Forest

algorithm is a promising model for predictive maintenance,

using ensemble learning through decision tree construction.

4. Results and Discussion

The system is trained on engine failure data from commercial

vehicles. Real-time network data and logs are fetched from a

telco service provider. A neural network and xgboost are used

for training and real-time engine failure prediction. The

models are fine-tuned using BayesSearchCV and k-fold. The

proposed system achieves high accuracy and F1 scores.

OEMs and telco service providers can use it to detect

malfunctions and reduce maintenance costs. The solution uses

open-source products and a three-stage encoding technique to

detect malfunctions quickly. Amazon Web Services IoT and

Apache Kafka are integrated to stream telemetry data and

predict engine failure. The data is fetched from ECM and

TCM using OBD and mapped to AWS IoT message format.

An AWS IoT provisioning template is created for zero-touch

provisioning. The data is then sent to an Apache Kafka cluster

for real-time analysis. The system triggers an alert if a specific

condition is met and provides the likelihood of failure and

vehicle information.

4.1 Performance Evaluation of Engine Failure Prediction

Model

After manipulating historical and real-time data, machine-

learning models were trained and tested. Random forest,

logistic regression, decision tree, support vector machine, and

KNN were used for anomaly prediction. Performance metrics

such as MSE, precision, recall, accuracy, and F1 were

assessed. Unsupervised methods were used for abnormal

detection in time series data, while supervised prediction

employed Bayesian Networks, Linear Regression, and

Random Forest. Random Forest demonstrated the highest

accuracy and F1 score. Therefore, Random Forest was used

as the predictive model for engine failure prediction. The

abundance of data allows for improved performance in

predictive maintenance systems. The system requires

efficient data acquisition, extensive storage, and

Paper ID: ES24516094823 DOI: https://dx.doi.org/10.21275/ES24516094823 2048

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 12, December 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

comprehensive analytics. AWS IoT and Kafka were

integrated for data storage and visualization. Real-time data

was stored in AWS S3, while offline storage utilized HDFS.

Anupama et al. designed a cloud-based architecture for IoT in

intelligent livestock.

4.2 Real-Time Monitoring and Alerting System

A real-time monitoring and alerting system was implemented

using Amazon Web Services (AWS) IoT. A message broker

was also utilized to enhance data safety and reliability. While

there are various messaging brokers available for cloud

platforms - like Cloud IoT Core (Google Cloud), Azure IoT

Hub (Microsoft Azure), and CloudMQTT - the extension of

our Amazon Web Services (AWS)-based architecture was

selected by integrating AWS IoT with Kafka (and ksqlDB

when applicable). In the selected architecture, messages are

generated from the vehicles and delivered as messages in

MQTT format to the AWS IoT Core. This data is then used

for instant monitoring, alerting, and archiving. Several AWS

services can act as stream consumers, stored in a data

warehouse, delivered in batched form to an application for

processing, or used in a real-time stream processing

application in which we are interested.

To add data security and reliability, we designed our alerting

system to balance these using the best of the cloud (AWS) and

on-premises by integrating AWS IoT with Apache Kafka as a

message broker. The architecture used in this project was

developed to serve two objectives: watch for real-time engine

failure incidents and enable the immediate canceling of

existing orders to a vehicle in the event of an engine failure.

The events were transmitted to the AWS cloud using the

AWS IoT platform and MQTT protocol based on the

individual share of data or batched data from the real-time

data.

Once the data is streamed from the vehicles, it is received in

AWS IoT Core as lectures. AWS IoT Core acts as the

message broker, and AWS Cognito user pools authorize the

AWS IoT Core. The central intake for AWS Cognito was the

vehicle's React Native-based mobile application, which also

granted access to user management. We installed and

maintained a Kafka cluster on virtual machines to use Kafka

as the central message broker and form of data persistence.

The tasks were carried out using the People's Bureau. Hence,

the VM type Kafka was mounted and managed on them. The

two topics were produced in 21 monitored properties using an

MQTT producer. Lists were created and stored using KTables

and saved as a Kafka topic, consumed by a stream processor

application running in Kafka with KSQ. A KSQL application

consumed the topic and immediately sent an action event in

KTable.

Figure 4: Real-Time Monitoring with Kafka

4.3 Comparison with Existing Approaches

We proposed an integrated predictive maintenance model in

the cloud, performing extensive testing and analysis. Existing

approaches need more real-time testing and explanation of

real-time prediction in a cloud-based model. Our method

focuses on deep learning for real-time engine failure

prediction in ICV, using AWS IoT-based messaging brokers.

Existing literature primarily relies on IoT-based message

brokers for predictive maintenance solutions. We compare

our model to existing ones regarding real-time failure

prediction execution. Some research combines multi-head

attention and 1D convolutions for real-time driver

identification but needs more training and testing details in

the cloud with IoT-based messaging brokers. Existing models

only mention integration with IoT-based messaging brokers

for health status prediction.

5. Conclusion

A prototype network including OBD-II device, Android

device, train test station, LTE internet, servers, databases, IoT

and cloud architectures, and traffic libraries combined

mechatronics and computer engineering. MQTT client added

to Kafka-AWS interface. Feedback-RNN structure completed

leakage model. Failure prediction model showcased with

vehicle events and deep learning twin badges. The engine

failure prediction model achieved 88.4% accuracy.

Integration of Kafka and AWS IoT presented for vehicle

failure prediction. MQTT, device shadow, and device

gateway are used for real-time evaluations.

5.1 Summary of Findings

Predictive maintenance can track the working of any engine

or part by analyzing their current health status and throwing

the warning before they fail. With the introduction of

connected systems within vehicle E/E architecture, a complex

"predictive maintenance" system is required. Traditional

methods involve analyzing the average 'lambda' factor of logs

for different Automotive E/E components, but they have high

maintenance and optimization costs. Recent advancements in

big data processing and machine learning allow for the

integration of IoT systems with rule-based gateway nodes to

provide considerable data-powered predictive maintenance

for connected vehicles and intelligent automotive in-vehicle

Paper ID: ES24516094823 DOI: https://dx.doi.org/10.21275/ES24516094823 2049

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 12, December 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

data-fusion systems. The growth of the automotive

electronics market has exponentially increased the

complexity of in-vehicle networks, with more critical vehicle

operations being dependent on them. Automotive companies

are developing intelligent, self-healing E/E systems for

various automotive applications. Automotive industries are

moving from Reactive E/E system maintenance to Adaptive

and Predictive Maintenance to ensure availability and safety.

Figure 5: IoT & Analytics for Predictive Maintenance

5.2 Contributions

Vehicle data is a valuable source of information for predicting

engine failures using machine learning. Real-world vehicle

data is abundant and can be collected over an extended period,

making it suitable for this purpose. Our proposed model is

adaptable to different vehicles and reduces the time and cost

required for predictions. It can handle the variety, velocity,

and volume of vehicle data streamed from the field. The

framework includes data collection using AWS IoT, data

transformation in Kafka, and model training in ScikitLearn. It

also features a real-time engine status application. Our study

is the first to integrate AWS IoT and Kafka for commercial

vehicle problems using machine learning. Our dataset

includes log messages and LIDAR data for nighttime driver

behavior analysis.

5.3 Future Work

The model-building process has been offloaded to the cloud,

allowing integration with an autonomous fleet. The model can

be improved and validated with higher frequency data traces,

and it can learn from generic subsystem features. Edge-based

inference and insights from historical data are also potential

areas for exploration. The current work aims to build a

predictive maintenance system for commercial vehicles,

utilizing expertise from multiple disciplines. Additional

sensor data or domain expertise can enhance the model, and

techniques like LSTM could be used for deep dependencies

in time series data. The state-of-the-art method and

uncertainty quantification can increase confidence in

predictions.

References

[1] N. Jain and S. S. Lathar, "Integration of IoT and big data

analytics for health monitoring in commercial vehicles,"

IEEE Transactions on Industrial Informatics, vol. 14, no.

10, pp. 4518-4526, Oct. 2018. doi:

10.1109/TII.2018.2866578

[2] T. Shintre and S. D. Jaiswal, "Real-time vehicle health

monitoring system using IoT," 2017 International

Conference on Communication and Signal Processing

(ICCSP), Chennai, India, 2017, pp. 0818-0823. doi:

10.1109/ICCSP.2017.8286695

[3] L. Wang et al., "Big data analytics for vehicular ad hoc

networks: A survey," IEEE Transactions on Industrial

Informatics, vol. 14, no. 6, pp. 2638-2647, Jun. 2018. doi:

10.1109/TII.2017.2783984

[4] Y. Kim, S. Han, and S. Kim, "A hierarchical data

processing architecture for intelligent vehicle health

monitoring systems," IEEE Access, vol. 6, pp. 24067-

24076, 2018. doi: 10.1109/ACCESS.2018.2837286

[5] A. K. Sahoo and P. K. Patnaik, "Performance analysis of

IoT based health monitoring system for commercial

vehicles," 2017 International Conference on Computing,

Communication and Automation (ICCCA), Greater

Noida, India, 2017, pp. 1218-1222. doi:

10.1109/CCAA.2017.8229898

[6] M. A. Maarouf and K. Al-Hussaeni, "Real-time vehicle

health monitoring system based on IoT," 2018 6th

International Conference on Future Internet of Things

and Cloud Workshops (FiCloudW), Barcelona, Spain,

2018, pp. 114-118. doi: 10.1109/FiCloudW.2018.00031

[7] L. Peng and M. Z. A. Bhuiyan, "Wireless sensor

networks for vehicle health monitoring: A survey," IEEE

Sensors Journal, vol. 19, no. 7, pp. 2494-2512, Apr.

2019. doi: 10.1109/JSEN.2018.2888000

Paper ID: ES24516094823 DOI: https://dx.doi.org/10.21275/ES24516094823 2050

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

