
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 12, December 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Frontend Testing Improvement: A New Approach

to Ensuring Web Application Quality

Chakradhar Avinash Devarapalli

Software Engineer

Email: avinashd7[at]gmail.com

Abstract: This paper looks at the numerous challenges that are present in frontend testing for developers. It then proposes a novel

solution inspired by Netflix's proactive failure testing framework and the Molly algorithm. We look into the integration, deployment, and

adoption strategies necessary for the successful implementation of proactive failure testing. With the help of lightweight components and

automation frameworks, developers can streamline testing workflows and improve overall software quality. Through effective training

initiatives and feedback mechanisms, organizations can foster a culture of continuous improvement in frontend testing practices.

Keywords: Frontend Testing, Proactive Failure Testing, Molly Algorithm, Web Application Quality, Integration

1. Introduction

Frontend testing is a very critical element of web or

application development. We must make sure that every

element works right, the code does not break up, or there are

no interdependencies that lead to performance issues. There

are several ways to test the application or the website’s front

end, like checking small parts (unit testing) bit by bit or

testing everything together (integration testing) in one go. But

each approach has its own problems [1].

Sometimes, when we test small parts, we miss how they work

together. Other times, when we test everything together, it's

hard to see what's going wrong. Much like fixing a household

item or a car. We can check each part separately, but we need

to see how they all work together as well to know if it runs

smoothly.

Testing websites may be problematic because there are a

number of things to consider at all times. For instance, some

common issues with frontend testing include:

• Poor interaction or difficulties because of the complex UI

elements, such as the dropdown components,

breadcrumbs, etc.

• Inability to test aspects like CORS setup or GraphQL calls

comprehensively.

• Complex and unintuitive test authoring and debugging

processes [2].

• Challenges in making assertions on spies/mocks or

executing code within the application.

• Limited capability to handle enterprise - level applications

with sophisticated authentication mechanisms and build

processes.

Over the years, a large number of work structures and theories

have come forth to solve this issue. However, in one form or

another, these problems still exist.

For instance, some tools help with small parts, but they're not

good at checking the bigger picture. Alternatively, other tools

help with the big picture but don't work well with complex

stuff.

Element to element (E2E) Component Testing has become a

widespread tool for showcasing the progress in enhancing

testing methodologies, yet gaps persist in addressing the

nuanced demands of modern web applications [3].

However, that doesn’t cover the entire picture, either. E2E

takes a lot of time and efforts to text, especially in larger

applications or websites with more complicated

functionalities.

SafeTest by Netflix [4]is a concept under development,

focusing on utilizing a number of unique features such as deep

linking, two - way communication between browsers and test

contexts, and associated reporting capabilities. It is a novel

approach to front end testing focusing on proactive failure

testing, automating the process across the production phase as

well. While there isn’t much information about SafeTest yet,

Netflix has introduced automated and proactive means as a

prelude to this testing methodology.

This paper takes a closer look at the challenges that

developers currently face for front end testing and how

automated failure testing is set to help tackle these challenges

– especially with newer technologies currently under

development.

2. Literature Review

Frontend testing in web development is crucial for ensuring

reliability and user satisfaction. Integration testing faces

challenges like comprehensive coverage and managing

dependencies [2]. Debugging is complex due to intricate UI

elements and testing framework limitations [1] [3].

Netflix's proactive failure testing, exemplified by the Molly

algorithm, advances testing methodologies [7]. E2E testing is

vital but struggles with scalability and resource consumption

[4]. Frontend development evolution influences testing

practices, emphasizing agility and performance optimization.

3. Current Landscape

When it comes to testing, one of the most prevalent factors to

consider is time and developer exhaustion. Duplication of

Paper ID: SR24401235433 DOI: https://dx.doi.org/10.21275/SR24401235433 2032

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 12, December 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

testing efforts not only leads to wasted time, but also leads to

developers getting frustrated due to the repetitive nature of

work therein. The manual labor involved in testing may end

up delaying projects – especially in the case of larger, more

extensive and complicated projects.

Netflix has been actively looking for improved development

and testing of the frontend – especially when it comes the

application and its website. One key issue that the company

faces is that its application needs to span across a very wide

range of appliances. From telephone screens all the way to

computers and the wide array of monitors and TV screens; its

application needs to cater to a rather diverse environment.

At Netflix, proactive failure testing has proven effective in

ensuring product reliability by preparing systems for

production environment issues. Manual efforts, though

beneficial, are limited in scope and efficiency. The pursuit of

a more comprehensive approach led Netflix to develop a

failure testing approach called Molly, inspired by Peter

Alvaro's work [5].

The concept of Molly came to in 2018 to solve the significant

challenges that frontend testing developers face due to the

nature of modern web applications. Despite advancements in

testing methodologies, several persistent problems hinder

efficient and comprehensive testing of frontend components.

3.1 Difficulty in Interaction with UI Elements

Testing UI elements like dropdown components or interactive

widgets often prove challenging.

Traditional testing approaches end up struggling to simulate

user interactions accurately, leading to incomplete test

coverage and potential functionality gaps.

3.2 Limited Testing of Backend Integration

Frontend testing often overlooks comprehensive testing of

backend integration points such as CORS setups or GraphQL

calls.

Ensuring seamless communication between frontend and

backend systems requires robust testing strategies, which are

often lacking in conventional testing frameworks.

3.3 Test Authoring and Debugging

The process of authoring and debugging frontend tests can be

cumbersome and unintuitive.

Traditional testing frameworks may require verbose test

scripts and lack user - friendly debugging tools, leading to

inefficiencies in the testing workflow.

3.4 Inability to Make Assertions on Application Behavior

Testing tools today often lack the capability to make

assertions on spies, mocks, or execute code within the

application context effectively.

This limitation restricts the ability to validate critical

application behaviors and edge cases, leading to potential

functionality issues in production environments.

3.5 Limited Scalability for Enterprise Applications

Conventional frontend testing approaches face scalability

challenges when applied to large - scale enterprise

applications with sophisticated authentication mechanisms

and build processes.

Testing frameworks may struggle to handle the details of

enterprise - level applications, resulting in inadequate test

coverage and reliability.

The talent shortage seen since COVID - 19 also plays a major

role here, as 88% of companies have reported that they have

been struggling to find, hire, and retain QA engineers [6].

3.6 Inefficiencies in End - to - End Testing

End - to - end (E2E) testing, while essential for validating

complete user workflows, often consumes significant time

and resources, especially in larger applications with

functionalities [7].

The time - intensive nature of E2E testing limits its feasibility

for frequent testing cycles and agile development workflows.

However, since 2018, the frontend development world has

evolved considerably – to the point that there are now a

number of challenges that even Molly cannot deal with. For

example, one of the most pressing issues that need to be dealt

with includes the limitations in testing due to limited numbers

of QA engineers available. The general inefficiencies in end -

to - end testing is also a major concern that companies need

to deal with. Automation stands as a critical element here,

providing solutions to almost all the challenges developers

currently face.

4. Proposed Solution

The world of frontend development and testing has seen

significant changes over the years. COVID - 19 shifted

consumer demands considerably, and as a result, the issues

within applications and websites also changed quite a bit.

Consequently, so did the need for front end development

models [7].

In response to the challenges that the current developers face

for frontend testing, Netflix has pioneered a proactive failure

testing approach aimed at enhancing product reliability and

streamlining testing workflows. The proposed solution,

inspired by Peter Alvaro's Molly framework, leverages a

lineage - driven fault injection technique to identify potential

failure points and preemptively address system vulnerabilities

[1].

The core of the proactive failure testing approach lies in the

Molly algorithm, which analyzes successful requests and

retroactively identifies failure points that could have

prevented the desired outcome. Systematically injecting

failures at various points within the request execution path,

Paper ID: SR24401235433 DOI: https://dx.doi.org/10.21275/SR24401235433 2033

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 12, December 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

the algorithm iteratively explores potential failure scenarios

and evaluates their impact on system performance.

The workflow of the proposed solution is as follows:

1) Identification of Necessary Components:

Molly begins by identifying the components necessary for a

successful request execution, including API calls, resource

loading, and service interactions.

2) Failure Injection and Experimentation:

a) Failure points are randomly selected from the identified

components and injected to simulate system failures.

b) The request is rerun with the injected failure to evaluate

its impact on request success or failure.

3) Outcome Analysis:

a) Molly categorizes request outcomes into three

possibilities: request failure, successful request without

critical failure points, and successful request with

alternative execution paths.

b) Each outcome is analyzed to update the failure equation

and explore new failure points iteratively.

4) Exploration Strategy:

Molly adopts an exploration strategy that computes all

solutions satisfying the failure equation and randomly selects

from the smallest solution sets to prioritize critical failure

points.

Netflix's implementation of proactive failure testing

integrates seamlessly with the company's existing

infrastructure and testing frameworks. With the help of

Netflix's tracing system and injection points provided by the

FIT service, Molly builds a comprehensive request tree to

analyze request execution paths and potential failure points.

This also makes for a very compelling use case, where

normally, this would take more than 2100 attempts and hours

lost via developer frustration. However, with the help of this

proposed methodology, Netflix was able to find five distinct

failure points in just 200 tries.

Netflix prioritizes member experience as the primary metric

for evaluating request success. Tapping into device - reported

metrics streams, Netflix assessed whether a request resulted

in member - facing errors, providing valuable insights into

system performance and reliability.

Furthermore, to address challenges related to request

idempotence and behavior mapping, Netflix employed

equivalence classes to group requests with similar behaviors.

Analyzing request features such as paths, parameters, and

device information, Netflix creates request classes that cover

similar request behaviors and failure scenarios, enabling

efficient testing and analysis.

4.1 Idempotence and Request Class Mapping

In addressing the challenges of frontend development,

particularly in the world of proactive failure testing, the

concepts of idempotence and request class mapping play

crucial roles.

Developers often come face to face with the task of

determining whether certain requests are idempotent and safe

to replay, especially when analyzing the impact of failure

injection on request outcomes.

To overcome this challenge, a sophisticated approach to

request class mapping has been devised, focusing on requests

generated within the framework's context. Getting back to our

use case, these requests typically adhere to structured JSON

paths, such as 'videos', 'profiles', and 'images', providing

insights into the internal services required to fulfill them. [5]

Using the inherent structure of Falcor requests, Netflix

created request classes that cover similar request behaviors

and failure scenarios. This approach, in turn, enhanced the

efficiency of failure testing by grouping requests with

comparable characteristics, enabling streamlined analysis and

targeted failure injection.

5. Academic Review of Perceived Challenges

Paper ID: SR24401235433 DOI: https://dx.doi.org/10.21275/SR24401235433 2034

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 12, December 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Table 1: Table of Studied Literature Regarding Challenges

Name Title Challenge Discussed

Leung and White
A study of integration testing and software regression at

the integration level
Challenges in integration testing and regression

Wolfgang Mayer
Model - Based Debugging – State of the Art And Future

Challenges

Advancements and challenges in model - based

debugging

Y. Li
Front - end testing: an important part of quality assurance

in Front - end development
Importance and challenges of front - end testing

Netflix

Technology Blog
Automated Failure Testing

Implementation and benefits of automated failure

testing

Alvaro Molly Overview of the Molly project and its significance

6. Implementation & Deployment

The implementation and deployment of Netflix's proactive

failure testing framework, inspired by the Molly algorithm,

involves a comprehensive approach to seamlessly integrate

this novel testing methodology into existing frontend

development workflows. This process is characterized by

several key steps aimed at optimizing the testing framework's

efficacy and ensuring its wide adoption among development

teams.

5.1 Infrastructure Integration

The first step involves assessing and integrating the testing

framework with current infrastructure components, including

version control systems like Git, and CI/CD platforms. This

ensures the framework can be easily adopted without

disrupting existing development processes.

For example, the following is a sample code for the

integration of the code frontend testing repository to

accommodate testing scripts, configurations, and

dependencies, thereby facilitating versioning and

collaboration among development teams. This example

focuses on integrating a proactive failure testing framework

with version control systems (e. g., Git) and CI/CD platforms.

frontend - testing - repo/

│

├── tests/

│ ├── unit/

│ │ ├── test - utils. js

│ │ ├── componentA. test. js

│ │ └── componentB. test. js

│ │

│ ├── integration/

│ │ ├── integration - test - utils. js

│ │ ├── featureA. test. js

│ │ └── featureB. test. js

│ │

│ └── e2e/

│ ├── e2e - test - utils. js

│ ├── scenarioA. test. js

│ └── scenarioB. test. js

│

├── configurations/

│ ├── jest. config. js

│ ├── babel. config. js

│ └── eslint. config. js

│

└── package. json

Here,

• tests/: This directory contains subdirectories for different

types of tests, including unit tests, integration tests, and

end - to - end (E2E) tests. Each test file focuses on a

specific aspect or feature of the application.

• tests/unit/: This directory contains unit tests that verify

individual components or functions in isolation. Each test

file typically corresponds to a single component or

function being tested.

• tests/integration/: Integration tests in this directory verify

the interactions and behavior of multiple components or

modules within the application. These tests may involve

testing API endpoints, data fetching, or UI components

working together.

• tests/e2e/: End - to - end tests simulate real user scenarios

and interactions with the application. These tests typically

cover complete user workflows, including navigation,

form submissions, and UI interactions.

• configurations/: This directory contains configuration

files for testing tools and frameworks used in the project.

Examples include Jest configuration (jest. config. js) for

unit and integration tests, Babel configuration (babel.

config. js) for transpiling JavaScript code, and ESLint

configuration (eslint. config. js) for code linting and

quality checks.

• package. json: The package. json file specifies project

dependencies, scripts, and metadata. It includes

dependencies for testing frameworks (e. g., Jest), testing

utilities, and other development dependencies.

For reference, these are the sample code snippets for the

respective syntax:

5.1.1 jest. config. js (Jest configuration):

module. exports = {

testEnvironment: 'jsdom',

testMatch: ['<rootDir>/tests/**/*. test. js'],

setupFilesAfterEnv: ['<rootDir>/tests/setupTests.

js'],

};

5.1.2 babel. config. js (Babel configuration):

module. exports = {

 presets: ['[at]babel/preset - env', '[at]babel/preset -

react'],

plugins: ['[at]babel/plugin - transform - runtime'],

};

Paper ID: SR24401235433 DOI: https://dx.doi.org/10.21275/SR24401235433 2035

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 12, December 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

5.1.3 eslint. config. js (ESLint configuration):

module. exports = {

 root: true,

 env: {

 browser: true,

 es6: true,

 jest: true,

 },

 extends: ['eslint: recommended', 'plugin:

react/recommended'],

parserOptions: {

ecmaVersion: 2018,

sourceType: 'module',

ecmaFeatures: {

jsx: true,

 },

 },

 plugins: ['react'],

 rules: {

 'react/prop - types': 'off',

 },

};

Organizing the frontend testing repository with clear

directory structures and configuration files allows for a much

more streamlined integration with version control systems,

CI/CD platforms, and development workflows. Developers

can collaborate effectively, maintain code quality, and

automate testing processes using the defined structure and

configurations.

5.2 Tooling and Automation

Selecting and customizing the right set of tools and

automation frameworks is crucial for facilitating

comprehensive test coverage. The framework should support

integration with established testing libraries like Jest,

enabling automated test suites that can run within CI/CD

pipelines for continuous testing.

5.3 Developer Training and Adoption

To maximize the framework's benefits, development teams

require training on its methodologies, tooling, and best

practices. This could involve workshops, documentation, and

ongoing support to encourage widespread adoption and

proficiency in proactive failure testing practices.

5.4 Iterative Improvement and Feedback Mechanisms

Implementing feedback mechanisms to gather insights from

users of the framework is essential for its continual

refinement. Regular reviews and surveys can help identify

areas for improvement, ensuring the testing approach remains

effective and relevant to developers' needs.

7. Significant Impact on the Field

The introduction of Netflix's proactive failure testing

framework, particularly its reliance on the Molly algorithm

for lineage - driven fault injection, marks a significant

advancement in the field of frontend testing.

By automating the identification and injection of potential

failure points, the framework significantly reduces the time

and manual effort required for thorough testing. This enables

developers to focus on other critical aspects of development,

fostering faster iteration cycles and product enhancements.

Furthermore, the ability to preemptively identify and rectify

potential failures before they impact the user experience

directly contributes to higher quality web applications. This

proactive approach to testing ensures that products are more

reliable and performant, enhancing user satisfaction and trust.

The framework's ability to handle complex, enterprise - level

applications with sophisticated authentication mechanisms

also addresses a critical gap in existing testing methodologies.

Its scalability supports the growing complexity of web

applications, making it a valuable tool for organizations of all

sizes.

8. Conclusion

Frontend development and testing highlights the critical

importance of ensuring the reliability and quality of web

applications. The challenges outlined in this paper, ranging

from UI interaction issues to the scalability issues of

enterprise - level applications, highlight the need for

innovative approaches to frontend testing.

Netflix's proactive failure testing framework, inspired by the

Molly algorithm, presents a promising solution to address

these challenges.

The integration and deployment of the proactive failure

testing framework require careful consideration of

infrastructure components, tooling, and developer adoption

strategies. Leveraging lightweight, modular components and

automation frameworks compatible with popular

development frameworks ensures broad applicability and

seamless integration into existing workflows.

Furthermore, effective training initiatives and feedback

mechanisms are essential for improvement and accountability

within development teams.

References

[1] H. Leung and L. White, "A study of integration testing

and software regression at the integration level, " in

IEEEXplore, San Diego, USA, 2002. Original Date: 26

- 29 November 1990. [Accessed 01 11 2019]

[2] M. S. Wolfgang Mayer, "Model - Based Debugging –

State of the Art And Future Challenges, " 30 05 2007.

[Online]. Available: https: //www.sciencedirect.

com/science/article/pii/S157106610700196X.

[Accessed 01 11 2019].

[3] Y. Li, "Front - end testing: an important part of quality

assurance in Front - end development, " 30 01 2019.

[Online]. Available: https: //www.theseus.

fi/handle/10024/265272. [Accessed 01 11 2019].

[4] Netflix Technology Blog, "Automated Failure Testing, "

20 01 2016. [Online]. Available: https: //netflixtechblog.

com/automated - failure - testing - 86c1b8bc841f.

[Accessed 01 11 2019].

Paper ID: SR24401235433 DOI: https://dx.doi.org/10.21275/SR24401235433 2036

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
https://www.sciencedirect.com/science/article/pii/S157106610700196X
https://www.sciencedirect.com/science/article/pii/S157106610700196X
https://www.theseus.fi/handle/10024/265272
https://www.theseus.fi/handle/10024/265272
https://netflixtechblog.com/automated-failure-testing-86c1b8bc841f
https://netflixtechblog.com/automated-failure-testing-86c1b8bc841f

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 12, December 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[5] P. Alvaro, "Molly, " Github, 2018. [Online]. Available:

https: //github. com/palvaro/molly. [Accessed 01 11

2019].

[6] Pulasthi Perera; Roshali Silva; Indika Perera, " Improve

software quality through practicing DevOps, "

IEEEXplore, 15 01 2018. [Online]. Available: https:

//ieeexplore. ieee. org/abstract/document/8257807.

[Accessed 01 11 2019].

[7] Thanh - Toan Do; Anh Nguyen; Ian Reid, "

AffordanceNet: An End - to - End Deep Learning

Approach for Object Affordance Detection, "

IEEEXplore, 13 09 2018. Original Conference: 21 - 25

May 2018 [Online]. Available: https: //ieeexplore. ieee.

org/abstract/document/8460902. [Accessed 01 11 2019].

[8] Kevin Hoffman, "Building Microservices with ASP.

NET Core" Book. Publisher: O’Reilly®. Beijing, Boston,

Farnham, Sebastopol, Tokyo.31 08 2017 [Accessed 01

11 2019].

Paper ID: SR24401235433 DOI: https://dx.doi.org/10.21275/SR24401235433 2037

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
https://github.com/palvaro/molly
https://ieeexplore.ieee.org/abstract/document/8257807
https://ieeexplore.ieee.org/abstract/document/8257807
https://ieeexplore.ieee.org/abstract/document/8460902
https://ieeexplore.ieee.org/abstract/document/8460902

