
International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

Impact Factor (2018): 7.426 

Volume 8 Issue 2, February 2019 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Particle Swarm Intelligence Based Reduction 

Method Applied to Power System Descriptor 

Models 
 

Seema Das
1
, Deepika Bhalla

2
 

 

IK Gujral Punjab Technical University, Kapurthala, Punjab,144603, India 
 
 

Abstract: To model and analyze a large complex dynamic system such as power systems is a very challenging task. Modelling of large 

real- time systems results in a large number of differential equations that lead to transfer function models that represents a higher order 

system. Higher order systems impose heavy computational burden, along with additional memory requirements. Therefore, it is 

necessary to reduce the power system model for simplifying the simulation and controller design. Pragmatic methods are preferred in 

power system model reduction for good performance, as they are simple to use along with their ability to maintain the physical structure 

of the model.  A good algorithm to model the order reduction of power system applications should preserve the important characteristic 

and perform ability of the original system. The dimensions and density of typical accurate power system models give arise to difficulties 

which have been handled by several techniques. In this paper Particle Swarm Optimization (PSO) algorithm, evolutionary technique is 

employed to a two power system models. The first model considered is a single input single output (SISO) single machine connected to 

an infinite bus (SMIB) and the second model considered is a multiple input multiple output (MIMO) single machine connected to an 

infinite bus (SMIB). The PSO algorithm is based on the minimisation of the integral squared error between the transient responses of 

original higher order and reduced order model pertaining to a unit step input. The reduced models show the preservation of stability 

and other characteristic parameters of original system. The reduced order model so obtained shows minimum integral square error 

comparable with other reduction techniques. 
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1. Introduction 
 

Real life systems and processes are quite complex and their 

mathematical modelling leads to high order differential 

equations. For simulation of their behavior, analysis and 

synthesis, the high order model of systems and processes 

needs to be reduced to lower order model whose behavior 

resembles that of original model as far as feasible. Various 

methods of model order reduction have been listed and 

described comprehensively and comparatively by 

GenesioRetal[1], Bosley and Lees[2], Fortuna et al[3] and 

many others. Shamash Y [4] showed that the Padé 

approximation method, Time Moments Method and 

Continued Fraction Expansion methods are equivalent to 

each other and these reduced models may turnout  to be not 

stable even though the original model is stable. This 

instability problem has been addressed by Hutton M and 

others [5-9] by stability based reduction methods which 

make use of some stability criterion like Routh 

approximation or Mihailov stability criterion. Other 

methods which produce stable reduced models without 

using any stability criterion have been proposed by Chenand 

others [10-12].Lucas, Gutman [13, 14] proposed model 

order reduction (MOR) based on differentiation of the 

numerator and denominator polynomials but suffers with 

steady state error in the response of MOR as compared to 

original system. Many mixed techniques have also been 

developed by Shamash and others [7, 8, 12, 15, 16] in which 

the denominator of the reduced model is derived by using 

stability criterion and the numerator has been derived by 

some other method. 

 

In order to obtain a better reduced model an optimisation is 

required and Luus [17] proposed numerical optimization to 

minimize the deviation between the frequency responses of 

the high and low order models. Howitt and Luus[18] 

considered the poles and zeros of the reduced models to be 

free parameters and are obtained by minimizing the integral 

square error in impulse or step responses and shows better 

results as compared with other methods available. 

 
In the recent decade, bio-inspired evolutionary techniques 

such as Particle Swarm Optimization (PSO) Genetic 

Algorithm (GA), Differential evolution (DE),simulated 

annealing, Harmony Search (HS) algorithm, tabu search 

algorithm, cuckoo search algorithm have been applied for 

model reduction of high order systems. All of the GA, DE 

and PSO techniques are population based stochastic 

optimization versatile techniques, which utilize heuristics 

from nature and are capable of optimizing a solution in 

multi modal search spaces by minimization of an objective 

function which is often Integral Square Error (ISE) [19, 20]. 

PSO has been motivated by the behavior of organisms, such 

as fish schooling and bird flocking. Generally, PSO has few 

parameters, computationally efficient and has found 

applications in many areas. PSO has a flexible and well-

balanced mechanism [21] to enhance the global and local 

exploration abilities as compared to other bio-inspired 

techniques such as Harmony Search (HA), Tabu Search 

algorithms. Both the PSO and GA methods are widely used 

for model order reduction. PSO utilizes the randomness of 

real numbers and the facilitation of global communication 

which occurs between swarm particles. The main advantage 

of the developed method in this paper is that it is applicable 

for all systems and not restricted to only stable or strictly 

proper systems. 
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Power systems are high order nonlinear large-scale systems 

with randomly changing operating conditions and are 

responsible for poor performance due to the occurrence of 

abrupt small load perturbations, parameter uncertainties 

[22]etc. A fairly complex and higher order model is 

obtained while modeling a large real time system from 

theoretical considerations. Accurate system modeling is an 

important step in power system engineering but the main 

problem is that the linearized models could be non-

minimum phase, unstable or improper so an appropriate 

model reduction technique is a must. In this paper two 

linearized practical power systems, Single Machine Infinite 

Bus System (SMIB) Single input single output (SISO), and 

Single Machine Infinite Bus System (SMIB) Multi input 

multi output (MIMO) are employed to demonstrate the 

application of PSO algorithm for MOR. The worthiness and 

effectiveness of the method are investigated in terms of 

integral square error (ISE). PSO aids in finding the best 

values among the possible ones to match the requirements 

of the large-scale system. Therefore, it is most suitable for 

power systems. The proposed method is very effective as 

can be seen from simulation results. Despite having various 

optimization techniques for different problems, [23] the 

quest for a global optimization method which shall be one-

size-fit-all for finding solution is underway. 

 

Thepaper is divided into five sections including the 

introduction. Section II describes the statement of SISO and 

MIMO systems. Section III discusses the implementation of 

PSO algorithm. In section IV, two numerical examples from 

practical power system (SISO [24] and MIMO [3]) have 

been solved and their results are compared with the 

available techniques [3, 32] in literature. Section V 

concludes the paper. 

 

2. Problem Formulation 
 

A system can be generalized into time linear invariant linear 

differential algebraic equation 

DC

BA

tDUtCxty

tBUtAxtx 





)()()(

)()()(:               (2.1) 

where 
pxmpxnnxmnxn RDRCRBRA  ,,

 
If the state space description is easily available, directly 

model order reduction in time domain can be applied [25]. 

 

2.1 SISO system  

 

If A, B, C and D are known than transfer function can be 

obtained using MatLab [26]. 

 

 
 

where aj, bi, dj, ei are coefficients of higher and lower order 

systems. The purpose is to find a reduced s
th

 order system 

model R(s) such that it maintains the important 

characteristics of G(s) for the same type of inputs. 

 

2.2 MIMO system 

 

The original system is described by transfer function G(s)  

 

 
The gji(s) of [G(s)] is shown below
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The transfer matrix (nxq)reduced order system is given as 
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where 
 

 

The  rji(s) of  R(s) is given below 
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 where aji, bji, cjiand dji are scalar constants, and n is smaller 

than m. 

 

3. Particle Swarm Optimisation (PSO) 
 

Flocking of birds was an inspiration which led Eberhart and 

Kennedy [27] to formulate particle swarm optimization. In 

PSO, each particle or a „bird‟ is treated as a solution in the 

search zone which modifies its flight according its own 

flying experience as well as the flying experience of other 

particles. The swarm consists of particles each of which has 

a memory. This memory enables it to remember its best 

position the search space ever visited by it.The main idea 

was to simulate the unpredictable choreography of a bird 

flock. Based on the observation of the evolution of the 

algorithm, it‟s realized that the conceptual model is in fact 

an optimizer. 

 

 

    qinjsrsR ji ......2,1,,.......2,1,)()( 
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3.1 PSO Method 

 

Imitation of bird flocks by Particle swarm optimization 

results in a desired outcome to the intricate non-linear 

optimization problem. The m-dimensional function g for 

PSO method is taken as: 

)(),......,( 21 Xgxxxg m                    (3.1) 

 

Where xj signifies the set of independent variables of the 

given function. The objective is to find a valuex* such that 

the function g(x*) is either a maximum or a minimum in the 

search space. The PSO algorithm is initialized by a 

population of random solutions, each having a randomized 

velocity. The particlesmake efforts to improve themselves 

by imitating the position of their own best fitness achieved 

so far and the best fitness achieved so far by any of their 

peers. The xj
t
in equation (3.2) denotes the position of 

particle which is updated at time step t. 
11   t

j

t

j

t

j vxx   withxj
0
~U(xmin , xmax )   (3.2) 

 

where, vi
t
is the velocity vector of particle responsible for the 

optimization process which is continuously being modified 

according to its flying experience.U (xmin , xmax ) is the 

uniform distribution wherexmin ,xmax are its minimum and 

maximum values respectively. PSO is initialized by a 

population of random solutions and randomized velocity 

and evaluated to compute fitness together with finding the 

personal best (best value of each particle) and global best 

(best value of particle in the entire swarm). These two PSO 

algorithms, i.e.Global Best (gbest) and Local Best (lbest) 

differ in the size of their neighborhoods. In both algorithms, 

initially the particles‟ velocity is updated by the personal 

and global bests, and subsequently each particle‟s position is 

updated by the current velocity. AStopping criterion, 

predetermined in advance,ends the algorithm. 
 

3.1.1 Global best PSO 

The overall best position out of all the particles in the entire 

swarm is referred to asgbest. It uses a star social network 

topology since it leads to faster convergence than other 

topologies.In this method each individual particle,

],...,1[ mj  where  m>1 , has a current position xj in 

search space, a current velocity,vj, and a personal best 

position in search space, Pbest,j . In a minimization problem 

where individual j has the minimum value as obtained by 

the objective function g, the personal best position in the 

search space is denoted as Pbest,j. Minimizing  a function f, 

this is equivalent to maximizing a function g, where f = -

g[28].Gbest,j, called the global best position, is the smallest 

value in the entire swarm. The Pbest,jand Gbest,j values are 

modified as shown in  equations (3.3) and (3.4), 

respectively. Then  Pbest,j at step, t+1, ],.....0[ mt  is 

computed as shown in equation(3.3). 
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The global best position Gbest at time step t is computed as 

 t

jbestbest PG ,min                            (3.4) 

where ],...,1[ mj and m>1 

 

It may be noted from above that the finest position visited 

by the individual bird since the first stage represents 

personal best  Pbest  where as the finest position  discovered 

by any of the bird in the entire flock is represented by the 

global best position Gbest. 

 

The velocity of particle j is computed by 

 
 

Where vji
t       

is the velocity vector of particle j in dimension i 

at time t and  
maxmin

i

t

jii vvv   

xji
t       

is the position vector of particle j in dimension  i at 

time t ; 
t

jbestp , is the personal best position of particlej in 

dimension I found from initialization through time t; 

 

Gbest,jis the global best position of particle  j   in dimension  I 

found from initialization through time t ; 
1

jir   and  
2

jir  are 

random numbers from uniform distribution U (0, 1) at time 

t; 

c1    and   c2    are constants which are used to uniform the 

involvement of the cognitive and social components 

respectively; 

w is inertia weight factor that is used to control the effect of 

the previous velocities on the current velocity. 

 

The flow chart of the gbest PSO algorithm for order 

reduction is shown in Fig. 1. 

 
Figure 1: Flowchart of order reduction obtained by PSO 

 

3.1.2 Local best PSO 

The lbest PSO method, as the name suggests, restricts the 

influence of each particle to the best-fit particle 

selectedfrom its neighborhood. The velocity of particle is 

computed by: 

 
The algorithm for „lbest ‘ PSOis same as that of  „gbest’ 

PSO except  gbest  is replaced by  lbest  and the velocity is 

given by  above equation (3.6) 
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Basically, there are two dissimilarities between the „gbest‟ 

PSO and the „lbest‟ PSO: First is that because of the larger 

particle interconnectivity of the gbest PSO, sometimes the 

convergence is faster.Second it is less vulnerable to being 

stuck in local minima [29] due to the higher diversity of the 

gbest PSO, in contrast to the neighborhood information 

obtained in the lbest PSO algorithm. Therefore it can be 

inferred that every particle, under the gbest PSO algorithm, 

collects the information from the best particle in the entire 

swarm. 

 

3.2 PSO algorithm parameters 

 

The PSO algorithm is affected by some parameters. It 

becomes necessary to choose the optimum value of setting 

the parameter for the best performance of PSO for different 

types of applications. The swarm size or number of 

particles, number of iterations, velocity components, and 

acceleration coefficients are the basic PSO parameters.   

 

The number of particles n contain in a swarm denotes the 

swarm size or population size. To ensure a bigger search 

space to be covered per iteration requires a big swarm. A big 

swarm may result in reducing the numbers of iterations 

required to acquire a noble optimization result [30]. In 

contrast, huge amounts of particles increase the 

computational complexity per iteration, and more time 

consuming. The number of iterations to attain a worthy 

result is problem-dependent. Too large iterations may 

unnecessarily add computational complexity and time 

needed whereas too low numbers may stop the search 

process prematurely. For updating particle‟s velocity, the 

velocity components are of utmost importance and consists 

of three parts; namely inertia, cognitive and social parts as 

shown in equations (3.5) and (3.6). The inertia component 

vji
t 
represents as a thrust which stops any drastic change in 

the path of the particles and biases it towards the present 

direction thus providing a memory of the previous flight 

direction which means movement in the immediate past. 

The term ][ ,11

t

ji

t

jbest

t

j xprc   is called cognitive 

component which measures the functioning of the particles 

comparative to past performances. It has a memory and 

stores best position for the particle and its effect corresponds 

to the  particles tendency to return to the most satisfied past 

positions. The term ][22

t

ijbest

t

j xGrc  for gbest PSO or 

][ ,22

t

ijibest

t

j xLrc  for lbest PSO is called social 

component. As the term suggests, this measures the 

performance of the particles i relative to a group of particles 

or neighbors and its effect is to make individual particle fly 

near the best position obtained by the particle‟s 

neighborhood. The acceleration constantsc1 and c2,along 

with the random numbers r1andr2, maintain the stochastic 

impact of the cognitive and social components of the 

particle‟s velocity respectively. The constant  c1 and c2 

indicate the level of confidence a particle has in itself and in 

its neighbors respectively. Wrong initialization of c1 and 

c2may possibly result in deviating or cyclical performance 

[28]. From the different empirical researches, it has been 

proposed that the two acceleration constants should be c1 = 

c2 = 2[29].The inertia weight is a control parameter that 

determines how much a particle holds its current velocity in 

the next iteration. For efficient performance of PSO, 

theinertia weight (w) and the maximum allowable velocity 

is critical. Initially the inertia weight [31] was taken as 

constant, but subsequent experimental results proposed to 

start with a larger value initially (around 1.2) so as to mimic 

global exploration of the search space, and gradually 

decrease it towards zero in order to get more refined 

solutions[28]. 

 

4. Systems Under Consideration 
 

A Single machine connected to infinite bus through 

transmission line is considered in both the examples as 

shown in fig.2. In this paper PSO algorithm is used to 

reduce the objective function, which is the integral square 

error (ISE) between the transient responses of higher and 

reduced order model system is: 





0

2))()(( tytgISE                      (4.1) 

Where )(tg  and )(ty  are the higher order and lower order 

unit step responses respectively for SISO system. For 

MIMO system  )(tg ji
 and  )(ty ji   can be taken in place of 

)(tg  and )(ty . The acceptability and reliability of reduced 

system is measured in terms of ISE. Lesser the ISE 

performance index, the closer is R(s) to G(S). Two 

numerical examples are undertaken in this study. 

 
Figure 2: Single machine connected to infinite bus 

 

Case1:A linearized SISO SMIB system has been taken from 

[24].The original seventh order transfer function is given 

below 

1729002.3534001.5165006.1757005.26407.33128.23

18770003.43420001.46630001.13900001.94354.4202
)(

234567

23456






sssssss

ssssss
sG

(4.2) 

 

Third order reduced model for SISO SIMB system using 

PSO algorithm is 
07886182.11083625.387132881.25722029.0

96774835.12033429.35504.15
)(

23

2
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
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(4.3) 
Simulation results along with performance index ISE  are 

presented in Table I. From Table I It can be understood that 

the transient state responses of the PSO reduced order model 

is almost identical with that of the original model and shows 

better response as compared to previous work [32]. The 

systems mentioned in the Table II are found to be stable as 

indicated by the Eigen values calculated for both original 

and reduced models. It basically proves the “preservation of 

stability of a stable system” even with the reduced models. 

Fig 2 shows the step responses of original and reduced third 
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order models. It can be easily seen from the Fig.2 that the 

GA [32] method possess some steady state error whereas 

proposed PSO does not. 

 

 

Table I: Response Data, ISE of Original SMIB SISO and Reduced Power System Models 
System Rise Time Settling Time Peak Time Peak Overshoot ISE 

Original 0.1722 5.9332 0.4271 15.9952 47.34 --- 

GA [32] 0.1647 6.1503 0.4194 16.71 39.8342 6.9735 

PSO(proposed) 0.1317 4.5092 0.4363 19.3024 76.4823 0.4999 

 

Table II: Eigenvalue Analysis 0f SMIB SISO and Reduced Power System Models 
System Original Third order GA [32] Third order PSO (proposed) 

Eigenvalue -8.4107 ± 8.3263i, 

-0.3624 ± 0.5564i 

-0.9033 ± 8.3954i,  

-3.9273 + 0.0000i 

-0.7153 ± 8.2085i, 

-1.8515 + 0.0000i 

-0.8376 ±7.8761i, 

-3.0665 + 0.0000i 

 

 
Figure 2: Step responses of original and reduced third order models for Case1. 

 

Case 2: Amultiple input multiple output power system 

consisting of a salient-pole synchronous generator 

connected to an infinite bus-bar with two inputs and three 

outputs is taken from [3]. The elements of equation (2.4) of 

original seventh order transfer matrix is given below. 

 

1018.16.4.51050.218442916254828134143095964.258)( 234567  ssssssssD        (4.4) 

 

The six numerators are given below 

653.650665701506.33688717004.28814107928.1212441377.12)( 234

11  sssssa                                           (4.5)

052.7165638481665.1218621170395.13737146741.21869382478.1075808.52)( 2345

12  ssssssa    (4.6) 

653.650665701506.33688717004.28814101.21869382478.1075808.52)( 23456

21  ssssssa (4.7)

sssssssa 052.7165638481665.1218621170395.13737146741.21869382478.1075808.52)( 23456

22  (4.8)

54678854913482982404179.23138419374.5153949396.3926786274.472004556.0)( 23456

31  sssssssa (4.9)  

8251.8357195607006.632247763178.16222929387.8681094259.27013453465.7)( 2345

32  ssssssa      (4.10)

 
 

The third order reduced modelof each element of transfer 

matrix for multivariable system is obtained below using 

PSO algorithm.The following polynomials refer to elements 

of transfer matrix equation (2.7). 
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49738098.716437298.3482695634.1392754064.0)( 23 


ssssD       (4.11)

 
 

 
 

Table III and Table IV show time response parameters, 

performance index ISE and eigenvalue analysis of SMIB 

MIMO system respectively. The response parameters of 

reduced proposed systems are almost matching with the 

original one. Fig.4 shows comparison of time response of 

higher order system, proposed PSO reduced order model 

and previously proposed mm [3] method. The ISE is also 

small of almost all the PSO proposed reduced models as can 

be seen from Table III. The MATLAB (R2014A) software 

is used to obtain the results for SISO and MIMO systems. 

 

Table III: Response Data, ISE of Original SMIB MIMO and Reduced Power System Models 
System

 

Rise Time Settling Time Peak Time Peak ISE 

11g

 

9.1347 16.6028 31.7375 0.5511 --- 

11mm [3]

 

9.0885 16.4538 30.2314 0.5481 4.3681E-06 

11r (proposed)

 

9.0859 16.3569 30.1389 0.5484 7.1328E-04 

12g
 

8.2806 15.0933 29.4124 1.4028 --- 

12mm [3]

 

8.7874 15.4456 25.7858 1.3940 0.0077 

12r  (proposed)

 

8.7387 15.3754 24.5355 1.3787 0.0153 

21g
 

0 10.9215 0.1120 0.1301 --- 

21mm [3]

 

0 17.6135 1.0602 0.1039 0.0040 

21r  (proposed)

 

9.0439 17.4071 0.9192 0.0872 1.6446E-05 

22g
 

0 11.0817 0.0725 0.9011 --- 

22mm [3]

 

0 11.5069 0.1820 0.7996 0.0022 

22r  (proposed)

 

6.8035E-05 10.7407 0.1786 0.8050 1.8879E-05 

31g

 

8.9816 15.9761 52.7754 0.4634 --- 

31mm  [3]

 

8.8748 15.9160 26.1460 0.4690 5.5786E-06 

31r  (proposed)

 

8.8325 15.8285 25.1568 0.4590 2.2642E-06 

32g

 

9.1348 16.5771 37.9377 0.7082 --- 

32mm [3] 9.0856 16.4390 30.2314 0.7182 0.0015 

32r  (proposed)

 

9.0681 16.4192 30.1389 0.7062 2.0385E-04 

 

Table IV: Eigenvalue Analysis of SMIB MIMO and Reduced Order Power System 
System Original Third order reduced (mm) [3] Third order proposed (PSO) 

Eigenvalue -71.28 ± 636.28i,-0.4848, 

-2.38, -0.24,-27.42,-37.54 

-11.6407 

-2.6032 

-0.2422 

-11.8585 

-2.8056 

-0.2429 
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Figure 4: Step response of original and third order reduced SIMB MIMO Systems 

 

5. Conclusion 
 

The objective of model reduction is about getting a balance 

between complexity and misfit. Literature of MOR provides 

several techniques which can be used for approximation of 

different large scale practical systems. Every method is 

distinct and has a severe computational basic and aim to 

reduce the input-output behavior of the considered system. 

Empirical methods are favored as for approximations of 

power system model as they preserve the physical structure 

as well as performabilityof the model while being simple to 

use. The use of evolutionary algorithms such as PSO 

algorithm facilitates the process of solving complex model 

reduction problems. The coefficients of numerator and 

denominator polynomials are generated so as to minimize 

the error between the step responses of higher order and 

lower order models. Both the examples in the paper offer a 

significant contribution towards institution of a superior 

algorithm over other prevailing techniques based on the 

performance measure, step response and stability check.The 

results show a constructive improvement in the performance 

index ISE and transient response parameters. Eigenvalue 

analysis shows preservation of stability of reduced systems. 

This makes the proposed PSO algorithm for model order 

reduction for SMIB SISO power system and SMIB MIMO 

power system competitive to other methods available in the 

literature. 
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