
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 4, April 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Handling Concurrent Transactions in Retail Systems

Using Multi-Threading in Application Development

Rajesh Kotha

Senior Software Engineer at Kroger, USA

Abstract: The single-threaded keeps the system from being able to handle large numbers of simultaneous transactions at one time.

Performance in the authorization system would be impacted within the hourly peak as a result. On the other hand, “the real-time multi-

threaded authorization system built on Java platforms often overcomes the sluggish sequential authorization processing of the single-

threaded model” [6]. In modern retail systems, the ability to process several transactions concurrently determines the efficiency of

operations and ensures customer satisfaction. Concurrency of transactions in retail applications requires cautious coordination in

avoiding issues such as inconsistency, race conditions, and system bottlenecks. This paper discusses how multi-threading techniques are

applied in developing retail system applications for effective management of concurrent transactions. By exploiting multi-threading, retail

applications can gain maximum utilization of resources, enhance the speed of processing, and maintain data integrity in real-time

transaction processing-based applications. Key strategies, challenges, and best practices for the implementation of multi-threaded

applications in retail systems will be discussed, focusing on ensuring data consistency and scalability. Overall, this framework offers a

more responsive and efficient alternative to conventional database-driven systems. This is according to various research results, which

also showed that multi-threaded authentication engines perform nearly twice as well as single-threaded authentication engines.

Keywords: Multi-threading, concurrent transactions, retail systems, application development, data consistency, scalability, real-time

processing, race condition.

1. Introduction

In modern times, a retail system should be able to handle

several concurrent transactions (Figure 1) at any given time,

especially during peak periods associated with promotional

sales or seasonal holidays. In addition, one transaction can be

composed of several operations, such as updating the

inventory, processing payments, and generating receipts.

Traditional single-threaded systems process only one

transaction at a time. In this process, there may be a chance

of probable delays and underutilization of system resources.

This would mean poor service to the users and financial loss

incurred by failed or delayed transactions. Application

development using multi-threading enables a retail system to

process numerous transactions in parallel. Therefore, there is

a considerable gain in throughput and responsiveness.

However, concurrency does come with its set of challenges.

For instance, poor multiple thread structure may lead to data

corruption, race conditions, and deadlocks, which

compromise the reliability of the operating system. As a

result, retail systems should implement robust strategies

throughout synchronization, resource allocation, and error

handling.

2. Problem Statement

While retail performance is associated with the efficiency or

speed at which a transaction is approved and executed,

security addresses fraud prevention and safeguarding of

financial information. In the last two decades, serious efforts

have been made to tighten this procedure and make it more

secure as fraudulent activity has substantially heightened and

started creating huge losses. In 2004, retail loss due to fraud in

the United States was around $800 million while the United

Kingdom suffered losses totaling £425 million.

Figure 1: Prototype framework of multi-threading crawler

[2]

Despite that, the application of advanced risk analysis such as

the multi-thread web crawler stricture (Figure 2) that involves

artificial intelligence also contributes to longer processing

times and therefore affects system performance as well. With

an attempt to avoid such problems, multithread capability has

hence been integrated into the architecture of the system

engine. That is, numerous threads can run simultaneously in

the same space of memory. This helps in optimizing

performance within the realms of security such that it can

perform tasks running with higher complexity without much

degradation in speed. Multi-threading for concurrency in retail

systems provides great enhancements to performance and

efficiency. In other words, parallel processing of more than

one transaction at a time can be handled with efficacy,

especially in retail settings seeing volumes of high traffic.

Different activities, like the processing of orders, inventory,

and payment, running in separate threads would enable the

Paper ID: SR19046110553 DOI: https://dx.doi.org/10.21275/SR19046110553 2033

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 4, April 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

system to manage resources more effectively, reducing

latency. This, in turn, would allow a far better user experience.

Figure 2: Small Multi-threading crawler configuration [2]

3. Literature Review

Many retailers continue to operate in-house transaction

authorization frameworks “that are over 15 years old and in

need of a functional and technical upgrade”. The evolution of

retail systems has increased emphasis on handling multiple

transactions simultaneously to cope with the demand from the

modern customer. This implies that concurrency becomes an

impending topic in a retail system, especially at peak

instances of demand: sales events and seasonal promotions.

That is where multi-threading-programmed methodologies

that allow running multiple threads together for execution-

entered the fray. This literature review looks at critical

research and practical insight into the use of multi-threading

in retail systems to handle concurrent transactions effectively.

4. Concurrency in Retail Systems

Concurrency is the most ability of a system to process more

than one operation or transaction at the same time. In retail

systems, concurrency is relevant because many transactions

that form the customer circle can be handled simultaneously.

Each transaction may constitute some operations such as

inventory updates, payment processing, receipt generation,

and customer data retrieval among others. Current solutions

from retail companies show that most companies do not have

a multithreading technique in most of the existing system

architectures. Concurrency therefore assumes a significant

role in ensuring that data integrity is preserved while

responding to the requirements of high volumes of

transactions. While operations in single-threaded systems are

executed one at a time, this hints at delays and inefficiencies

in case of high demand. They are rough on scalability matters;

thus, they can be terrible for customers while it gets

overloaded. Multi-threaded systems hence mean trying to get

out of these limitations to allow several simultaneous

transactions

5. Advantages of Multi-Threading in Retail

Systems

It means multi-threading brings significant advantages to the

retail systems on two aspects: performance and utilization of

resources. Several research studies proved that in multi-

threaded systems, more transactions can be executed in less

time compared to single-threaded systems. Present retail

companies do not really employ some of the most evolved

programming languages, including .NET. (Figure 3). In

transaction execution, multi-threading optimizes CPU and

memory utilization as the transactions execute paralleled,

which leads to the faster processing of the transactions and

higher throughput. This multi-threading also enhances the

availability and responsiveness of systems. If one transaction

slows down, often a traditional system will be delayed; multi-

threaded systems may execute different transactions

concurrently, therefore minimizing the chances of slowing

down a system. Such capability is clearly important in e-

commerce platforms where customers expect to interact

seamlessly and almost instantaneously.

Figure 3: NET. Languages

6. Challenges in Implementing Multi-

Threading

Unfortunately, multi-threading in retail system

implementations has some problems, major ones being data

consistency and race conditions, and deadlock management.

This is because across the whole cycle, there are often

multiple threads having to access shared resources at the same

time, like databases or files. In the absence of proper

synchronization techniques deployed, threads may interfere

with each other, resulting in corrupted data or incorrect

results. It is the assurance of data consistency between the

running multi-threaded. Due to this fact, in case many threads

share the same data and, at any time, perform a read or modify

action, inconsistencies will appear when one of the threads

changes data which another thread is just reading. In this

respect, developers can avoid such problems by

synchronization mechanisms, such as Lock, Semaphore, or

Monitor. These prevent multithread access to the shared

resource at the same time; hence data consistency remains.

Other major problems beset multi-threaded systems include

race conditions. A race situation occurs when the outcome of

an execution is dependent on timing contingencies of various

transactions. For instance, two threads may simultaneously

attempt to update the same stock item, which could lead to the

incorrect recording of inventory in the multi-thread

architecture. Amongst the various solutions which have been

explored by researchers, atomic operations include the

assurance of certain critical operations being performed in an

all-or-nothing manner. Other concerns in multi-threaded

systems are deadlocks. Deadlock is a situation where two or

more threads are waiting for the other to release resources;

Paper ID: SR19046110553 DOI: https://dx.doi.org/10.21275/SR19046110553 2034

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 4, April 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

thus, a system comes to a hold. Deadlocks are hard to detect

and resolve, so a developer should be very conscious and use

strategies like deadlock prevention and deadlock detection to

avoid such annoyances.

7. Multi-Threading Best Practices

Research has identified various best practices in the

implementation of multi-threading in retail systems. Other

subsystems use the ISO 8583 format, the standard of the

International Organization for Standardization for electronic

messages. Figure 4 indicates the messaging format of ISO

8583. Synchronization would be essential; if multiple threads

share resources, such synchronization will prevent data

corruption and inconsistencies. A suggested good practice is

the minimal use of locks to lessen contention among threads

since too much locking creates reduced system performance.

Another important consideration is thread management-

developers must carefully throttle the number of threads

running simultaneously to prevent system resources from

being overwhelmed. Thread pooling enables the reuse of

threads and might offer an optimization in resource

utilization, with an overall improvement in system

performance. In this respect, multi-threaded systems must

handle errors, too.

Figure 4: Messaging format of ISO 8583 [3].

Multi-threading applied to retail systems constructed tough

solutions to handle parallel transactions. The presence of “A

shared memory pool” also reduces the time used to fetch

details from the system database [3]. Instead of doing costly

I/O operations, the system can immediately retrieve the stored

data. “There are two thread-pools utilized in the system: the

worker thread-pool and the child thread-pool”. By following

best practices in thread management and synchronization,

developers of retail systems can maximize multi-threading to

create programs that are efficient, reliable, and highly

scalable, capable of addressing current demands in today's

retail environments

8. Solution

In application development, multi-threading represents one of

the critical solutions for handling concurrent database

transactions (Figure 5) in systems that require high

performance with scalability. Given that, multi-threading has

an important advantage: allowing several transactions in the

retail systems to run simultaneously within the same

application. This optimizes resource utilization and decreases

response times. In other words, multi-threading can improve

the application throughput by decomposing a complex task

into smaller parallel processes against a multi-user and multi-

tasking environment. It could be optimum in high-traffic

systems like web servers, databases, and financial systems,

where many real-time transactions must be processed. Multi-

threading ensures that the retail systems remain responsive

and operational, even under heavy load

Figure 5: Database transactions [4].

Multi-threading provides for concurrent transactions is

solutions that employ synchronization mechanisms, thereby

avoiding conflicts and ensuring data integrity within retail

system. Developers can use locks, semaphores, and monitors

that limit threading access to shared resources and guarantee

that no more than one thread enters a critical section of code

at any instant in time. This avoids deadlocks by helping

organizations comprehend transaction states (Figure 6) and

race conditions and therefore maintains transaction integrity,

ensuring every transaction is correctly and independently

processed without interference from other transactions. In

fact, all these synchronization mechanisms come already

provided by the threading libraries of modern programming

languages to ease the management of weaver concurrent

transactions.

Figure 6: Transaction states [5].

However, multi-threading management itself-in application

development-introduces challenges of performance overhead

and issues related to implementation complexity. While

transaction processing can be improved using multi-

threading, poor implementation may lead to thread

contention-a situation where threads compete for the same

resources, thus limiting the performance. In return,

developers and retailers can use thread pooling for this to

maintain several active threads and balance resources better.

Applications encounter less overhead from the continuous

creation and destruction of threads through thread pooling,

thus optimizing the performance. Additionally, concurrent

queues and atomic operations may help with communication

between threads better and keep the chance of

synchronization problems at a minimum. Such solutions

make multi-threading a powerful tool in ensuring that

applications handle concurrent transactions efficiently and

reliably, especially if implemented accordingly.

9. Impact

Application development with multi-threading enhances the

performance of retail systems involved in handling

Paper ID: SR19046110553 DOI: https://dx.doi.org/10.21275/SR19046110553 2035

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 4, April 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

concurrent transactions and algorithms (Figure 7). A few of

the frequent parallel transactions handled in a retail system

would include updating of stock inventories, sale processing,

and customer inquiries. By using multi-threading, developers

can split such tasks into multiple threads handling different

transactions concurrently. This, in turn, enhances overall

responsiveness and efficiency of the system during heavy

shopping periods or very busy environments. For instance, let

one thread handle customer purchases while another handles

the update in the inventory. This reduces bottlenecks and,

with other channels, may update data in real time.

Figure 7: Concurrency control algorithms [4].

Multi-threading reduces delays and therefore increases the

user experience by avoiding waiting queues during checkout

or even retrieving information about the product. These days,

users want a quick, seamless experience through modern

retail systems, which are usually known to convert lost sales

along with reduced customer satisfaction due to a slow or

delayed response. Retail systems can handle high volumes of

transactions with fewer chances of system crashes or

sluggishness when several transactions go on simultaneously.

However, when several threads access a common resource,

such as a database or even an inventory data, special care must

be taken to synchronize such actions lest data corruption,

deadlocks, or race conditions impend. In other words, multi-

threading increases performance while at the same time

demanding strict error-handling mechanisms to maintain data

integrity and system reliability.

10. Uses

Multithreading is one of the powerful techniques of

application development in managing concurrent transactions

to prevent conflicting operations within retail companies

(Figure 8). The multithreading technique allows several

threads of execution to run concurrently, thereby allowing full

utilization of resources and enhancing the performances of

applications [5]. Regarding concurrent transactions, multi-

threading is commonly used in handling several transactions

at the same time without necessarily waiting for the end of

one transaction to initiate another. Another great advantage

and use of multi-threading in concurrency (Figure 9) for

handling transactions is that it reduces latency. In a multi-

thread approach, the workload is shared among the threads,

which enables the application to process many transactions

with vastly improved throughput. It makes the system more

responsive because it ascertains that users have to wait less

while using an application. This reduces transaction time and

makes the user's experience even smoother.

Figure 8: Conflicting operations [4].

Figure 9: Concurrency control algorithms [4].

In addition to the gain in performance multi-threading also

helps with better resource utilization by making full use of

CPU and memory. Because most of the modern processors

are supporting multiple cores, multi-threading unleashes

them. This prevents waste of any CPU time in applications

that deal with concurrent transactions since more than one

task can be processed simultaneously. A big challenge

remains in thread synchronization management and data

integrity in transaction handling parallel to each other. Proper

synchronization mechanisms based on locks or semaphores

will be required to maintain data consistency and avoid

potential conflicts amongst threads [7]. Hence, multi-

threading offers a tradeoff between performance

improvement and optimization of resources whereby proper

handling is crucial in maintaining transaction integrity within

retail systems.

11. Conclusion

Multi-threading is one of the key techniques that have been

decisive in handling concurrent transactions in modern retail

systems, greatly improving performance, scalability, and

responsiveness of the system. As the retail environment is

becoming even more complex-for instance, due to the growth

of e-commerce and omnichannel retailing-the ability to

handle several transactions simultaneously becomes crucial

for operational efficiency and customer satisfaction. Multi-

threaded systems enable retailers to better optimize resource

utilization, reduce wait times for transactions, thereby coping

more effectively with surges in transaction volumes.

However, the implementation of multi-threading is not bereft

of its glitches. There are race conditions, deadlock, and data

inconsistency problems that can easily compromise the

integrity of the system if not well handled. Therefore,

synchronization mechanisms, effective thread management,

and robust error handling thus become the trinity of

requirements to keep the system working reliably without

errors in real-time transaction environments. Besides

following best practices like reducing locks, utilizing thread

pooling, and incorporating robust error-handling techniques,

multithreading would enable developers to use the mentioned

Paper ID: SR19046110553 DOI: https://dx.doi.org/10.21275/SR19046110553 2036

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 4, April 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

advantages to maximum effect to construct efficient, scalable,

and robust retail systems. In that regard, the ability to handle

many simultaneous transactions is greatly enhanced with

multi-threading, squarely positioning retail systems to meet

both business and customer demands in today's hurrying

world of digitization.

References

[1] Geeksforgeeks.“Concurrency Control Techniques,”

GeeksforGeeks, Aug. 26, 2019.

https://www.geeksforgeeks.org/concurrency-control-

techniques/

[2] W. Yuan, "Research on Prototype Framework of a

Multi-Threading Web Crawler for E-Commerce," 2009

International Conference on Management and Service

Science, Beijing, China, 2009, pp. 1-5, doi:

10.1109/ICMSS.2009.5304437

[3] S. Kumar. “Introduction to ISO 8583,” CodePsroject,

Aug. 07, 2018.

https://www.codeproject.com/Articles/100084/Introdu

ction-to-ISO

[4] A. Li, “A Peek Into Transactions and Concurrency

Control,” Medium, May 21, 2019.

https://medium.com/@liamy561t/a-peek-into-

transactions-and-concurrency-control-97cf0c08e32e.

[5] J. Fix, N. P. Nagendra, S. Apostolakis, H. Zhang, S. Qiu,

and D. I. August, “Hardware Multithreaded

Transactions,” Mar. 2018, doi:

https://doi.org/10.1145/3173162.3173172

[6] U. Ugobame Uchibeke, K. A. Schneider, S.

Hosseinzadeh Kassani, and R. Deters, “Blockchain

Access Control Ecosystem for Big Data Security,” 2018

IEEE International Conference on Internet of Things

(iThings) and IEEE Green Computing and

Communications (GreenCom) and IEEE Cyber,

Physical and Social Computing (CPSCom) and IEEE

Smart Data (SmartData), July, 10. 2018, doi:

https://doi.org/10.1109/cybermatics_2018.2018.00236.

[7] Dulaj Atapattu, “Spring Transaction Management Over

Multiple Threads,” dzone.com, Apr. 25, 2017.

https://dzone.com/articles/spring-transaction-

management-over-multiple-thread-1.

Paper ID: SR19046110553 DOI: https://dx.doi.org/10.21275/SR19046110553 2037

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
https://www.geeksforgeeks.org/concurrency-control-techniques/
https://www.geeksforgeeks.org/concurrency-control-techniques/
https://medium.com/@liamy561t/a-peek-into-transactions-and-concurrency-control-97cf0c08e32e
https://medium.com/@liamy561t/a-peek-into-transactions-and-concurrency-control-97cf0c08e32e
https://doi.org/10.1109/cybermatics_2018.2018.00236

