
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 4, April 2019
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Enhancing Big Data Interoperability: Automating

Schema Expansion from Parquet to BigQuery

Preyaa Atri

Email: preyaa.atri91[at]gmail.com

Abstract: In the realm of data engineering, efficient data migration and transformation are pivotal. The Parquet Schema Expansion

Migrator for BigQuery is a Python library designed to streamline the process of migrating column data from Parquet files to Google

BigQuery tables, while expanding the BigQuery table schema to accommodate columns present in the Parquet data but missing from the

BigQuery schema. This paper explores the problem of schema evolution in data warehouses, introduces the library as a solution, discusses

its uses and impact, and outlines future enhancements and recommendations for robust data type management.

Keywords: BigQuery, Parquet, Schema Migration, Data Engineering, Cloud Storage, Data Transformation

1. Introduction

As Big Data grows in volume, velocity, and variety, data

warehouses like Google BigQuery must efficiently adapt to

schema evolution without extensive downtime or manual

intervention (Dawelbeit & McCrindle, 2016). Parquet files,

often used for storing data due to their efficiency and

compression, may have schemas that evolve separately from

those in BigQuery. This mismatch poses a challenge for data

engineers who need to ensure data integrity and accessibility

during schema evolution. The Parquet Schema Expansion

Migrator library was developed to address this challenge.

Additionally, the development of the Parquet Schema

Expansion Migrator library aligns with the need for scalable

and distributed systems, as discussed by (Sharma et al., 2018),

to effectively process and store data in parallel, ensuring

seamless schema evolution. Additionally, the work by Boss

& Broussard (2017) underscores the challenges of archiving

and preserving digital applications, emphasizing the

importance of adapting to new technologies and

methodologies to prevent data loss.

2. Problem Statement

Schema evolution is a natural part of the data lifecycle,

especially in big data environments. BigQuery administrators

often face challenges when Parquet files evolve, adding new

columns that are not present in the BigQuery table schema,

resulting in potential data loss or the need for cumbersome

manual schema updates.

3. Proposed Solution

The Parquet Schema Expansion Migrator mitigates these

challenges by providing a Python - based solution that

transfers column data from Parquet files to BigQuery tables,

automatically expanding the BigQuery schema with any

missing columns found in the Parquet files.

Parquet Schema Expansion Migrator library offers a suite of

functionalities:

• Seamless Data Transfer: The library facilitates the

transfer of column data from Parquet files to BigQuery

tables.

• Automatic Schema Expansion: It automatically detects

missing columns in the BigQuery table schema compared

to the Parquet data. Subsequently, it expands the BigQuery

schema by adding these missing columns.

• Data Manipulation with pandas: The library leverages

pandas DataFrames, a popular Python library for data

analysis and manipulation, to efficiently handle data

during the migration process.

• Google Cloud Storage (GCS) Integration: The library

supports interaction with GCS, enabling it to retrieve

Parquet files stored in the cloud.

Library Documentation & Usage

The library provides a primary function,

Parquet_Schema_Expansion_Migrator_for_BigQuery, that

takes several arguments:

• bucket_name: Name of the GCS bucket containing the

Parquet file.

• parquet_file_path: Path to the specific Parquet file within

the bucket.

• project_id: Google Cloud Project (GCP) project ID

where the BigQuery dataset resides.

• dataset_id: ID of the BigQuery dataset containing the

target table.

• table_id: ID of the BigQuery table where the data will be

migrated.

By providing these arguments, users can initiate the data

transfer process with automatic schema expansion if

necessary.

Installation

The library can be installed using one of the below mentioned

pip commands:

pip install

Parquet_Schema_Expansion_Migrator_for_BigQuery

Example

The following code snippet demonstrates how to use the

Parquet_Schema_Expansion_Migrator_for_BigQuery

function to migrate data from a Parquet file to a BigQuery

table:

Paper ID: SR24522144712 DOI: https://dx.doi.org/10.21275/SR24522144712 2000

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 4, April 2019
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Python

from Parquet_Schema_Expansion_Migrator_for_BigQuery

import

Parquet_Schema_Expansion_Migrator_for_BigQuery

Replace placeholders with your actual values

bucket_name = "your_bucket_name"

parquet_file_path = "path/to/your/file. parquet"

project_id = "your_project_id"

dataset_id = "your_dataset_id"

table_id = "your_table_id"

Parquet_Schema_Expansion_Migrator_for_BigQuery

(bucket_name, parquet_file_path, project_id, dataset_id,

table_id)

In this example, the script imports the

Parquet_Schema_Expansion_Migrator_for_BigQuery

function from the library. Then, it defines variables for the

GCS bucket name, Parquet file path, GCP project ID,

BigQuery dataset ID, and BigQuery table ID. Finally, it calls

the Parquet_Schema_Expansion_Migrator_for_BigQuery

function, providing the defined variables as arguments. This

initiates the data transfer process from the Parquet file to the

BigQuery table, with automatic schema expansion if required.

4. Dependencies and Considerations

The efficacy of the Parquet Schema Expansion Migrator is

deeply intertwined with its foundational components – a

selection of powerful libraries that are central to its operation.

The library leverages pandas, known for its prowess in data

manipulation (McKinney, 2010); pyarrow, which facilitates

the handling of Parquet files; and the google - cloud - storage

and google - cloud - bigquery libraries, essential for engaging

with Google Cloud's storage and database services. These

building blocks are critical, not just as isolated tools, but as

part of an integrated whole that ensures a fluid and effective

migration process.

To fully realize the library's capabilities, these dependencies

must not only be present but also kept up to date. While the

current iteration of the library delivers robust functionality,

users should anticipate the need to craft or incorporate

additional functions, such as alter_schema and

ExecuteBqQuery. These functions are envisioned to extend

the library's schema manipulation abilities, though they

remain beyond its current feature set.

Moreover, the library's current approach to schema

expansion—defaulting to STRING data types for new

columns—presents an opportunity for refinement. Advancing

to a more discerning method that can intelligently ascertain

the correct data types or accept user - defined parameters

would significantly enhance its adaptability and precision.

5. Benefits and Applications

The Parquet Schema Expansion Migrator for BigQuery

streamlines the integration of evolving Parquet files into

BigQuery's analytical environment. Its key advantages

include automating the otherwise manual and error - prone

process of schema updates, which simplifies migration

workflows. The library capitalizes on the powerful pandas

library, renowned for its data manipulation capabilities,

reducing development time for data engineers. It also ensures

data consistency across BigQuery tables by automatically

aligning them with the latest Parquet file schemas.

In practice, the library finds its utility in various scenarios,

including data warehousing, where it aids in transferring

historical Parquet - stored data to BigQuery for advanced

analytics. It also fits seamlessly into ETL pipelines, ensuring

Parquet data is processed and loaded efficiently into

BigQuery. For cloud - centric architectures, it facilitates the

migration of data from cloud storage directly into BigQuery,

underscoring its importance in a cloud - first data strategy.

6. Conclusion & Future Scope

In conclusion, the Parquet Schema Expansion Migrator for

BigQuery emerges as a pivotal tool in data migration,

significantly enhancing the efficiency of data transfers from

Parquet to BigQuery. This contribution is not only valuable

for its immediate impact on data consistency and

development efficiency in data engineering practices but also

holds the potential to be a cornerstone in the advancement of

AI - based models. The library's ability to automate schema

expansion and ensure data consistency is not merely a

convenience but a necessity in the era of big data, where AI

algorithms thrive on vast and well - structured datasets.

The future scope of this library extends beyond the realm of

data engineering. By seamlessly integrating evolving Parquet

data into BigQuery, it lays the groundwork for building robust

AI algorithms. The automated schema adaptation ensures that

AI models are trained on the most up - to - date and

comprehensive data, leading to more accurate and reliable

predictions. The library's potential for customization through

user - defined data type mappings further empowers AI

practitioners to tailor data preprocessing to the specific needs

of their models. As AI continues to permeate various

industries, the Parquet Schema Expansion Migrator for

BigQuery stands as an essential tool, bridging the gap

between raw data and intelligent algorithms, and ultimately

contributing to the progress of AI - driven innovation.

References

[1] O. Dawelbeit and R. McCrindle, "Efficient dictionary

compression for processing rdf big data using google

bigquery", 2016 IEEE Global Communications

Conference (GLOBECOM), 2016. https: //doi.

org/10.1109/glocom.2016.7841775

[2] K. Sharma, U. Marjit, & U. Biswas, "Efficiently

processing and storing library linked data using apache

spark and parquet", Information Technology and

Libraries, vol.37, no.3, p.29 - 49, 2018. https: //doi.

org/10.6017/ital. v37i3.10177

[3] K. Boss and M. Broussard, "Challenges of archiving

and preserving born - digital news applications", IFLA

Journal, vol.43, no.2, p.150 - 157, 2017. https: //doi.

org/10.1177/0340035216686355

[4] McKinney, Wes. (2010). Data Structures for Statistical

Computing in Python.56 - 61.10.25080/Majora -

92bf1922 - 00a.

Paper ID: SR24522144712 DOI: https://dx.doi.org/10.21275/SR24522144712 2001

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/glocom.2016.7841775
https://doi.org/10.1109/glocom.2016.7841775
https://doi.org/10.6017/ital.v37i3.10177
https://doi.org/10.6017/ital.v37i3.10177

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 4, April 2019
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

[5] Apache Parquet, "File Format Documentation, "

[Online]. Available: https: //parquet. apache.

org/docs/file - format/

[6] Pandas development team [Online]. pandas.

DataFrame. to_gbq. Available: https: //pandas. pydata.

org/docs/reference/api/pandas. DataFrame. to_gbq.

html

[7] Google Cloud Platform. [Online]. BigQuery

Documentation. Available: https: //cloud. google.

com/bigquery/docs

Paper ID: SR24522144712 DOI: https://dx.doi.org/10.21275/SR24522144712 2002

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
https://parquet.apache.org/docs/file-format/
https://parquet.apache.org/docs/file-format/
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_gbq.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_gbq.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_gbq.html
https://cloud.google.com/bigquery/docs
https://cloud.google.com/bigquery/docs

