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Abstract: Transient analysis of an RLC circuit (or LCR circuit) comprising of a resistor, an inductor, and a capacitor are analysed 

using the Heun’s and the Runge-Kutta 4th order methods. Kirchhoff’s voltage and current laws were used to generate equations for 

voltages and currents across the elements in an RLC circuit. From Kirchhoff’s law, the resulting second order differential equations 

were later transformed into first order differential equations by substitution. The Heun’s and Runge-Kutta 4th order methods were then 

used together with MATLAB simulations to check how changes in resistance affects transient. Errors associated with selected numerical 

methods were then measured with Big “O” notation (truncation). From the study, it was observed that, the computational values of the 

Heun’s method converged faster than that of Runge-Kutta 4th order method. However, the errors incurred in Runge-Kutta 4th order 

method were very minimal as compared to that of Heun’s method, thus, Runge-Kutta 4th order method was concluded to be more 

accurate than Heun’s method. 
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1. Introduction  
 

Transient is the sudden bursts of energy in an electrical 

circuit which may damage certain components of the circuit. 

Transient normally results in changing the state of the 

components of an electrical circuit. It is very difficult for the 

capacitor voltage and the inductor current in an electrical 

circuit to assume a new steady state value. Therefore, 

transient analysis can be used in determining how the 

capacitor voltage and the inductor current evolve with time 

[3]. Transient analysis can be described as the analysis of a 

system in an unsteady state. If the variables defining the 

state of a system does not vary with respect to time, the 

system is said to be in a steady state. If not, then it is in an 

unsteady state. Transient analysis is very important since it 

can be used in analysing the performance of any electrical 

circuit [1]. Thus, for an electrical current or voltage flowing 

through an electrical circuit, there can be various forms of 

the voltage or current. For instance, considering circuits 

which are time-varying signals with resistive circuits, the 

resulting Kirchhoff’s Current Law (KCL) and Kirchhoff’s 

Voltage Law (KVL) are normally in the form of differential 

equations rather than algebraic equations. But these 

differential equations are not easily solved analytically when 

the order is high and complex. Also, for an RLC circuit 

which is an electrical circuit consisting of a resistor, an 

inductor and capacitor which are connected either in series 

or parallel, the circuit equations are integro-differential 

equations. These equations are converted to ordinary 

differential equations by differentiating with respect to time. 

Therefore, analysis of the transient in an RLC circuits can be 

approached numerically [1],[2].  

 

Numerical methods are one of the best techniques in solving 

almost all mathematical equations that cannot be solved 

analytically. A number of these methods have been designed 

to solve such equations especially, in differential equations 

[3]. The use of a particular numerical methods depends on 

its efficiency. Efficiency in numerical methods depends on 

the stability, cost in terms of time, suitability and accuracy 

[3]. Of all the mentioned requirements, accuracy plays a 

wonderful role in the choice of a particular numerical 

procedure [2]. Without the use of the most accurate method, 

one might not be able to get accurate solution and this might 

affect further decisions based on the results. 

 

Therefore, in this paper, two numerical techniques namely; 

the Runge-Kutta Method and the Heun’s Method are used in 

analysing the transient behaviors in an RLC circuit taken 

into consideration the damping factor and the change in 

voltage with respect to time in order to determine which one 

is the best in terms of accuracy and convergence. 

 

2. Materials and Methods Used  
 

2.1 Heun’s Method (Improved Euler’s Method) 

 

In computational science and mathematics, Heun’s method 

is referred to as improved Euler’s method or second order 

Runge-Kutta method. It is a numerical procedure for solving 

ordinary differential equations with a given initial value. 

This method is regarded as extensions of the Euler’s method 

into two-stage second order Runge-Kutta methods [4]. 

 

Euler’s method is a method devised from the area under a 

curve and its modification lead to the improved Euler’s 

method or the Heun’s method [5]. The Heun’s method 

results in solving initial value problems more accurately than 

Euler’s method. The improved Euler’s formula (Heun’s 

Method) is expressed in Equations (1) and (2). 

1 ( , )p

n n n ny y hf t y       (1) 

 1 1 1( , ) ( )
2

c p

n n n n n n

h
y y f t y f t y      (2)  

where h  is the step function. 

 

Equation (1) represents a predictor equation which gives the 

immediate value whereas Equation (2) represents a corrector 

equation which also gives the final approximation of the 

next integration point. The predictor formula gives an 
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inaccurate result 1

p

ny   which is made more accurate by the 

corrector equation. 

 

2.2 Runge-Kutta Methods 

 

Runge-Kutta methods are a family of implicit and 

explicit iterative methods in numerical analysis, which 

include the routine called the Euler Method, used 

in temporal discretisation for the approximate solutions 

of ordinary differential equations. Unlike the Heun’s 

method, there are Runge-Kutta methods of different orders. 

These methods are derived using the Taylor’s series 

expansion shown in Equation (3). 

' 2 '' ( ) 1
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1 1
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p p p

n n n n ny y hy h y h y O h
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       (3) 

The Euler’s method which is written in the form of Equation 

(4): 

1 ( , )n n n ny y hf x y       (4) 

is the first order Runge-Kutta procedure.                                                           

 

Runge-Kutta method is an effective method of solving first 

order ordinary differential equations. A given ordinary 

differential equation of higher order can be converted to a 

first order differential equations by substitution. The most 

widely known member of the Runge–Kutta family of 

methods is referred to as “RK4” (which is the 4
th

 order 

Runge-Kutta method), “classical Runge-Kutta method” or 

commonly known as “the Runge–Kutta method” [6]. 

The adaptive procedure for the fourth order Runge-Kutta 

Method according to [1] is given by Equation (5) 
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where   0, 1, 2,n    
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 4 3,n h nk hf t y k     (9) 

where 1k  is the increment based on the slope at the 

beginning of the interval, using ny ;   

2k  is the increment based on the slope at the midpoint of the 

interval, using 
1( / 2)ny k ;    

3k  represents the increment based on the slope at the 

midpoint, but now using 2( / 2)ny k ;     

4k  is the increment based on the slope at the end of the 

interval, using 
3ny k . 

 

2.3 RLC Circuit 

 

Figure 1 is an RLC circuit made up of a capacitor, an 

inductor and resistor. This circuit forms a harmonic 

oscillator for the current which dies away with time with the 

presence of the resistor. That is, the presence of the 

resistance reduces the resonant frequency [2].                               

 
Figure 1: RLC Circuit Diagram 

 

The RLC filter is normally seen as a second-order circuit, 

meaning that any voltage or current in the circuit can be 

described by a second-order differential equation in circuit 

analysis.  

Therefore, let  

( )
( ) cV t

I t C
t





     (10) 

where C  is the capacitance and  cV t  is the voltage across 

capacitance. Then, the KVL equation for the circuit is 

expressed in Equation (11) as: 

( )
( ) ( )c in

I t
L RI t V t V

t


  


       (11) 

where 
inV  is the input voltage. 

Substituting   I t  in Equation (11), results in Equation (12) 

2 2

2 2

( ) ( )
( )c c

c in

V t V t
LC RC V t V

t t

 
  

 
    (12) 

Again, for a given RLC circuit, parameters such as,   and  

0  are written in the form of Equations (13) and (14) 

respectively. 

2

R

L
       (13) 

0

1

LC
       (14) 

where 
0  is the natural frequency. 

Moreover, there is a useful parameter in an RLC circuit, 

called the damping factor. This damping factor,  , is 

estimated using Equation (15). 

0





       (15) 

Suppose the given RLC circuit is in series then the damping 

factor is estimated using Equation (16). 

2

R C

L
       (16) 

The transient response or type that a circuit exhibits is 

dependent on the value of the damping factor. The damping 

factor is the amount by which the oscillation of a system 

gradually decreases with time [1]. The following are various 

characterisation of the damping factor:  

i. If 1  , the system is called over damped.  

ii. If 1  , the system is called critically damped. 

iii. If 1   , the system is called under damped. 

Since the RLC circuit is described as a second order 

differential equation, the voltage across 2
nd

 order RLC 

circuit according to [2] is given by Equation (12). But 
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( )
( )cV t

C I t
t





    (18) 

Thus, substituting Equation (18) into Equation (12) yields 

( )
( ) ( )c in

I t
L RI t V t V

t


  


  

( ) ( )( ) in cV RI t V tI t

t L

 



   (19) 

Now letting, 1( )I t x  and 2( )cV t x  leads to Equation 

(20). 
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1

1 2
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( , , )
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f t x x
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
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
   (21) 

Formulating Runge-Kutta 4
th

 Order Method for the RLC 

circuit; 
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where h  is the step size. 

Also, in formulating Heun’s method; 
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where, 
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3. Results and Discussion 
 

3.1 Transient Analysis 
 

To compare the two numerical methods in terms of the 

transient analysis, the following numerical examples are 

used. 

3.1.1 Numerical Example 1 

Taking time to be from zero (0) to 0.001, Let 210R   , 

10mHL  , 1uFC   and 10VinV  and substituting the 

given values in Equations (13), (14) and (15) yields 

210

2*0.01

10500

 



  

0

1

0.01*0.000001

10000

 



    

10500

10000

1.05

 



  

 

Hence, the system is over-damped since the damping factor 

is greater than one (1). 

 

Table 1 shows the voltage outcomes for an overdamped 

system for both Runge-Kutta 4
th

 order (RK4) method and 

Heun’s method as time increases. From the Table 1, it can be 

observed that, as time increases, voltage also increases with 

both numerical methods. It can also be observed that voltage 

obtained from Heun’s method at each time t , is greater than 

that of Runge-Kutta 4
th

 order method. 

 

Figure 1 shows a plot of voltage against time for both 

Runge-Kutta 4
th

 order (RK4) and Heun’s method. From the 

Figure 1, it is observed that the Heun’s method converges 

faster than that of Runge-Kutta 4
th

 order method. 

 

Table 1: Results for an Over-Damped System 

Time (t) RK4 (Voltage) Heun’s (Voltage) 

0.0000 0.000000 0.000000 

0.0001 2.920833 5.000000 

0.0002 5.933846 7.525000 

0.0003 7.849549 8.790125 

0.0004 8.907360 9.417963 

0.0005 9.456536 9.725861 

0.0006 9.732881 9.874598 

0.0007 9.869598 9.945043 

0.0008 9.936591 9.977520 

0.0009 9.969238 9.991922 

0.0010 9.985097 9.997930 

 

 
Figure 1: Voltage vs Time Graph for (Overdamped) 

 

3.1.2 Numerical Example 2 

Given another system with the same values for C , L  and 

inV . Taking 200R   . Substituting these values into 
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Equations (13), (14) and (15) yields 1.0  . The value 

signifies that the system is critically-damped. 

 

Table 2 shows the voltage outcomes for a critically-damped 

system for both Runge-Kutta 4
th

 order method and Heun’s 

method as time increases. From the Table 2, it can be 

observed that, as time increases, voltage also increases with 

both numerical methods. It can also be observed that voltage 

obtained from Heun’s method at each time t , is not always 

greater than that of Runge-Kutta 4
th

 order method. At some 

point in time Runge-Kutta values are greater than that of 

Heun’s values. 

 

Table 2: Results for Critically-Damped System 
Time (t)  RK4 (voltage) Heun’s (voltage) 

0.0000 0.000000 0.000000 

0.0001 2.916667 5.000000 

0.0002 6.093750 7.500000 

0.0003 8.066406 8.750000 

0.0004 9.099121 9.375000 

0.0005 9.596252 9.687500 

0.0006 9.823875 9.843750 

0.0007 9.924684 9.921875 

0.0008 9.968280 9.960938 

0.0009 9.986802 9.980469 

0.0010 9.994562 9.990234 

 

Figure 2 shows a plot of voltage against time for both 

Runge-Kutta 4
th

 order and Heun’s method. From the Figure 

2, it is observed that the plot of Heun’s method converges 

almost at the same time with of Runge-Kutta 4
th

 order 

method. 

 
Figure 2: Voltage vs Time Graph for Critically- Damped 

System 

 

3.1.2 Numerical Example 3 

Given another system with the same values for C , L  and 

inV . Taking 100R   . Substituting these values into 

Equations (13), (14) and (15) yields 0.5  .  

 

From the resulting damping factor value  , the system is 

under-damped. 

 

Table 3 shows the voltage outcomes for an underdamped 

system for both Runge-Kutta 4
th

 order method and Heun’s 

method as time increases. From the Table 3, it can be 

observed that, as time increases, voltage also increases in 

both numerical methods. It can also be observed that voltage 

obtained from Heun’s method at each time t , is not always 

greater than that of Runge-Kutta 4
th

 order method. At some 

point in time Runge-Kutta values are greater than that of 

Heun’s values.                                   

 

Table 3: Results for an Under-Damped System 
Time (t) RK4 (voltage) Heun’s (voltage) 

0.0000 0.000000 0.000000 

0.0001 3.333333 5.000000 

0.0002 8.489583 10.000000 

0.0003 11.315828 11.250000 

0.0004 11.610725 10.625000 

0.0005 10.779438 10.000000 

0.0006 10.010237 9.843750 

0.0007 9.714462 9.921875 

0.0008 9.770092 10.000000 

0.0009 9.925562 10.019531 

0.0010 10.027685 10.009766 

 

Figure 3 shows a plot of voltage against time for both 

Runge-Kutta 4
th

 order and Heun’s method. From the Figure 

3, it is observed that the plot of Heun’s method converges 

faster than that of Runge-Kutta 4
th

 order method. 

 

 
Figure 3: Voltage vs Time Graph for Under-Damped 

System 

 

3.2 Accuracy Checking 

 

In order to determine the perfect numerical method amongst 

the two selected techniques with regard to transient analysis, 

it suffices to check out the errors involve. In this case, the 

big “O” notation which is also known as the local truncation 

error was used. The results are shown in Table 4. From 

Table 4, the local truncation errors indicate that the Runge-

Kutta 4
th

 order method is more accurate  201 10  than the 

Heun’s method. 

 

Table 4: Errors in Selected Numerical Methods 

Error RK4 Heun’s 

Minimum 0 0 

Maximum 1 x 10-20 1 x 10-12 
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4. Conclusions and Recommendation 
 

From the study, the Heun’s method reaches the stable limit 

first, thus, converges faster as shown in the Figures 1, 2 and 

3. Also, the Runge-Kutta 4
th

 order method proved to be more 

accurate numerical method for solving higher order 

differential equations when compared to the Heun’s method. 

Thus, the Runge-Kutta 4
th

 order method is recommended for 

transient analysis of complex electrical circuits since it is 

more accurate than the Heun’s method. 
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