
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 8, August 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Phased Rollout Configuration: A Comprehensive

Approach for Feature Releases in Software Systems

Mahidhar Mullapudi

Abstract: Effective feature rollout strategies [1] are crucial for ensuring a smooth and controlled deployment of new functionalities in

software systems [2]. This paper introduces a novel approach to phased rollouts using an advanced configuration library. The library

facilitates the configuration of feature rollouts based on the type of entity, allowing for fine - grained control and flexibility. This paper

explores the key principles [3], design considerations, and implementation details of the proposed rollout configuration library.

Through practical examples, we demonstrate how this approach enhances the reliability, manageability, and customization of feature

deployments in complex software environments. Additionally, the paper outlines essential criteria for deploying this library in large -

scale projects [4][5][6].

Keywords: Modern Distributed Applications, Rollout Configuration Library, Phased Feature Rollout

1. Introduction

In the dynamic landscape of software development, large -

scale projects present unique challenges in managing feature

deployments. The ability to deploy new features seamlessly

and with minimal impact on existing systems becomes

increasingly complex as the size of the project grows.

Traditional rollout strategies often fall short in addressing

the specific requirements of large - scale projects,

necessitating a more sophisticated approach [7][8].

This paper not only introduces a groundbreaking rollout

configuration library but also outlines crucial criteria to

consider when implementing this library in large - scale

projects. We delve into the core principles of the library's

design, emphasizing its scalability, performance, and

adaptability to diverse entities within expansive software

ecosystems [9].

Criteria for Large - Scale Projects:

1) Scalability:

The library should be designed to scale seamlessly with the

size of the project, supporting the rollout of features across a

multitude of entities without compromising performance

[9][10].

2) Performance Optimization:

Considerations for optimizing performance during feature

rollout, ensuring minimal impact on system resources and

response times in large - scale deployments [11].

3) Granular Control:

The library must provide granular control mechanisms,

allowing developers to fine - tune feature activations for

specific components within the project, ensuring a phased

and controlled rollout.

4) Dependency Management:

Addressing dependencies between entities is crucial in large

- scale projects. The library should facilitate the

management of dependencies to prevent unforeseen issues

during feature activation [12].

5) Configurability Across Levels:

Configuration options should be available at various levels,

from project - wide settings to entity - specific

configurations, providing flexibility in adapting to the

diverse needs of a large - scale software system.

6) Monitoring and Analytics:

Implement robust monitoring and analytics capabilities to

track the impact of feature rollouts, enabling real - time

insights and the identification of potential issues in large -

scale deployments[2].

7) Rollback Mechanism:

A reliable rollback mechanism should be in place, allowing

for quick and efficient reverting of features in case

unexpected issues arise during the rollout in large - scale

environments [8].

Throughout this paper, we will address these criteria in the

context of large - scale projects, illustrating how the

proposed rollout configuration library meets these

challenges head - on and empowers developers to navigate

the complexities of feature deployments in expansive

software ecosystems. We take an opiniated approach and

explore large - scale feature rollout management through

innovative and scalable solutions with code samples in

C#[13].

2. System Overview

Figure 1: Rollout Strategy Configuration Overview

Paper ID: SR24203224316 DOI: https://dx.doi.org/10.21275/SR24203224316 2306

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 8, August 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The rollout configuration library as illustrated in Figure 1, is

designed to facilitate phased rollouts of features in software

systems, offering a flexible and extensible framework. It

enables developers to configure feature deployments based

on the type of entity, providing fine - grained control over

the introduction of new functionalities. The library is

composed of several key components, offering a versatile

solution for managing rollout strategies across entities[10].

IRollout Strategy Unit Interface:

Represents a unit of rollout strategy associated with a

specific entity. Defines properties like Key - entity identifier

and Strategy (feature rollout strategy) [14].

publicinterfaceIRolloutStrategyUnit

{

 IEntity Key { get; }

IIdStrategy? Strategy { get; set; }

}

Also, provides a generic version for type - specific strategies

IRolloutStrategyUnit<TEntity>[15]:

publicinterfaceIRolloutStrategyUnit<outTEntity

>: IRolloutStrategyUnit

whereTEntity: class, IEntity

{

newTEntity Key { get; }

}

RolloutStrategyCollection Class:

Keyed collection that stores instances of

IRolloutStrategyUnit. Facilitates efficient retrieval of rollout

strategies based on entity keys. This class forms the

backbone of the configuration system, providing a structured

way to organize and manage rollout strategies.

public sealed

classRolloutStrategyCollection<TStrategyUnit>:

KeyedCollection<IEntity, TStrategyUnit>

whereTStrategyUnit: IRolloutStrategyUnit

{

publicRolloutStrategyCollection ()

{

}

protected override IEntity GetKeyForItem (TStrategyUnit

value)

 {

Ensure. ArgumentNotNull (value, nameof (value));

returnvalue. Key;

 }

}

RolloutConfiguration Class:

Serves as a central configuration hub for rollout strategies.

Utilizes a keyed collection (RolloutStrategyCollection) to

organize and store rollout strategies for different entities.

This allows developers to specify rollout configurations at

various levels, such as project - wide settings and entity -

specific configurations[1].

publicclassRolloutConfiguration<TStrategyUnit,

TStrategyCollection>

whereTStrategyUnit: IRolloutStrategyUnit

whereTStrategyCollection:

KeyedCollection<IEntity, TStrategyUnit>, new

()

{

publicTStrategyCollection

RolloutStrategyCollection

=>this. RolloutStrategyCollection;

public string Name =>this. Name;

}

IRolloutStrategyCollectionProvider Interface:

Abstracts the retrieval of the rollout strategy collection for a

given entity. This interface also enables a decoupled

approach to providing rollout strategy collections, enhancing

flexibility for different entities.

publicinterfaceIRolloutStrategyCollectionProvid

er

{

IFiRolloutStrategyCollectionGetRolloutStrategy

Collection (IEntity owner);

}

RolloutConfigurationUtils Class:

Contains utility methods for managing rollout strategies

during migration. The methods in this classallow dynamic

retrieval of the appropriate rollout strategy for a given entity,

promoting generic and reusable migration logic[5].

publicstaticclassRolloutConfigurationUtils

{

publicstatic async Task<IIdStrategy>

GetMigrationStrategyAsync<TStrategyCollection

>

 (IModelReference modelReference,

RolloutStrategyCollectionProvider<TStrategyCol

lection>strategyCollectionProvider)

 where TStrategyCollection:

KeyedCollection<IEntity, IRolloutStrategyUnit>,

new ()

 {

if (! (modelReference. Entity is

IEntityWithOwnerentityWithOwner))

 {

returnnull;

 }

 IEntity ownerEntity = entityWithOwner.

OwnerEntity;

TStrategyCollectionstrategyCollection =

strategyCollectionProvider.

GetRolloutStrategyCollection (ownerEntity);

if (strategyCollection == null ||

strategyCollection. Count == 0)

 {

returnnull;

 }

Paper ID: SR24203224316 DOI: https://dx.doi.org/10.21275/SR24203224316 2307

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 8, August 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 IRolloutStrategyUnit rolloutStrategy =

strategyCollection. TryGetValue

(modelReference. Entity, out var

entityRolloutStrategy)

 ? entityRolloutStrategy

: strategyCollection. TryGetValue (ownerEntity,

out IRolloutStrategyownerRolloutStrategy)

 ? ownerRolloutStrategy

: null;

return await Task. FromResult (rolloutStrategy?.

Strategy). ConfigureAwait (false);

 }

}

3. System Functionality

Configuration Flexibility:

The library empowers developers to configure feature

rollouts at different levels, catering to both project - wide

and entity - specific requirements. This flexibility enables

the customization of rollout strategies based on the unique

characteristics and dependencies of individual entities within

the software ecosystem.

Entity - Centric Rollout:

The entity - centric approach ensures that rollout strategies

can be associated with specific entities, tailoring feature

deployments to the diverse needs of different components

within a software system. This promotes a more granular

and controlled rollout process[16].

Phased Rollout Management:

Developers can systematically manage the phased rollout of

features using the IRolloutStrategyUnit interface. This

enables a controlled activation of new functionalities,

minimizing the risk of unforeseen issues during deployment

[11].

How to Use:

Configuration Setup:

Instantiate a RolloutConfiguration object to serve as the

central configuration hub. Use the RolloutStrategyCollection

property to access the strategy collection and add rollout

strategies for various types of entities or specific instances.

Entity - Specific Configuration:

Implement the IRolloutStrategyUnit interface for each entity

requiring a custom rollout strategy. Specify the entity's key

and the associated rollout strategy.

Phased Rollout in Migration:

Utilize the GetMigrationStrategyAsync () method during

migration to dynamically retrieve the appropriate rollout

strategy for a given entity.

Implement the IRolloutStrategyCollectionProvider interface

to provide rollout strategy collections tailored to different

entities.

By following these steps, developers can leverage the

generic and flexible nature of the rollout configuration

library to achieve a tailored, entity - centric, and phased

approach to feature deployments in their software systems.

4. Best Practices For Scalability

Scalability is a critical aspect of any software library,

especially when dealing with large - scale systems. Below

are some ideas and best practices to enhance the scalability

of the rollout configuration library:

1) Distributed Configuration Store:

Store rollout configurations in a distributed and highly

scalable data store, such as a distributed database or a cloud

- based storage service. This allows for efficient retrieval of

configuration data, reducing the load on a single point of

access [4].

2) Caching Mechanism:

Implement a robust caching mechanism to store frequently

accessed rollout configurations at the application level. This

can significantly reduce the number of calls to the

underlying data store, improving response times and

minimizing latency during feature rollouts [17].

3) Configuration Sharding:

Shard the rollout configurations based on certain criteria,

such as business unit, or entity type. This allows for

parallelized access to configuration data, distributing the

load across multiple shards and enhancing overall system

scalability[4].

4) Horizontal Scaling of Configuration Services:

If the rollout configuration service is separate from the

application, consider horizontally scaling it by deploying

multiple instances. Load balancing mechanisms can

distribute incoming requests among these instances,

ensuring a balanced and scalable configuration service[9].

5) Optimized Rollout Strategy Collection Access:

Optimize the access patterns of the Rollout Strategy

Collection by leveraging indexing or caching strategies.

Efficient retrieval mechanisms can significantly reduce the

time required to access rollout strategies, especially in

scenarios involving large - scale collections [5] [11].

5. Conclusion

In conclusion, the rollout configuration library stands as a

versatile and powerful tool, designed to help the way

software teams approach feature deployments. Through the

systematic management of phased rollouts based on entity

types, the library empowers developers to achieve fine -

grained control, flexibility, and scalability in the ever -

evolving landscape of software development by taking an

opiniated approach in implementing and configuring the

library and showcase examples using C# [13][18] but is

language agnostic.

The core components, such as:

 IRollout Strategy Unit interface,

 Rollout Configuration, and

 Rollout Strategy Collection

Paper ID: SR24203224316 DOI: https://dx.doi.org/10.21275/SR24203224316 2308

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 8, August 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

form a cohesive foundation that caters to the diverse needs

of entities within a software system. The introduction of

generics, coupled with the flexibility of the IRollout Strategy

Collection Provider interface, ensures adaptability to

different entities, configurations, and strategies.

In the pursuit of scalability, the library goes beyond

conventional approaches, embracing groundbreaking ideas

and best practices. From leveraging distributed configuration

stores to implementing lazy loading and dynamic

partitioning, the library is engineered to thrive in large -

scale, distributed environments. These scalability

enhancements, combined with a forward - thinking design,

make the rollout configuration library a robust solution for

the challenges posed by complex software ecosystems.

As development landscapes evolve and systems continue to

grow in complexity, the rollout configuration library

provides a roadmap for effective and scalable feature

deployment. By following the outlined best practices and

adopting the principles of flexibility, entity - centric rollout,

and dynamic scalability, software teams can ensure a

smoother, controlled, and adaptive transition to new

functionalities.

In essence, the rollout configuration library is not just a tool;

it's a strategic asset for software engineers aiming to

navigate the intricate terrain of feature rollouts in modern,

large - scale applications. Its impact goes beyond managing

configurations; it sets the stage for a future where software

deployment is not just a process but a well - orchestrated

symphony of control, adaptability, and scalability.

References

[1] "Feature Toggles, " 2017. [Online]. Available: https:

//martinfowler. com/articles/feature - toggles. html.

[2] T. Huff, "Developing, deploying, and supporting

software according to the way of the cloud, " 2011.

[Online]. Available: http: //highscalability.

com/blog/2011/12/12/netflix - developing - deploying -

and - supporting - software - accordi. html.

[3] K. H. Robert Martin, Clean Architecture: A

Craftsman's Guide to Software Structure and Design,

Pearson.

[4] Kleppmann, Martin, Designing Data - Intensive

Applications, O'Reilly Media, 2017.

[5] D. F. Jez Humble, in Continuous Delivery: Reliable

Software Releases through Build, Test, and

Deployment Automation, Addison - Wesley Signature

Series, 2010.

[6] O. Dijkstra, Extending the agile development discipline

to deployment: The need for a holistic approach,

Utrecht University, 2013.

[7] K. Beck, Extreme Programming Explained: Embrace

Change, Addison - Wesley, 2000.

[8] M. Brittain, "Continuous deployment: The dirty

details, " [Online]. Available: http: //www.slideshare.

net/mikebrittain/mbrittain - continuous -

deploymentalm3public.

[9] J. A. a. P. Hammond, "10 deploys per day - Dev and

Ops cooperation at Flickr, " [Online]. Available: ttp:

//www.slideshare. net/jallspaw/10 - deploys - per - day

- dev - and - ops - cooperation - at - flickr.

[10] M. D. M. G. L. W. K. B. M. S. Tony Savor,

"Continuous deployment at Facebook and OANDA, "

ICSE '16: Proceedings of the 38th International

Conference on Software Engineering Companion,

pp.21 - 30, 2016.

[11] B. Schmaus, "Deploying the Netflix API, " 2013.

[Online]. Available: http: //techblog. netflix.

com/2013/08/deploying - netflix - api. html.

[12] M. Mullapudi, "OBJECT ORIENTED CONCEPTS, "

2016. [Online]. Available: https: //tutorialq.

com/java/object - oriented - concepts/.

[13] "Microsoft csharp, " [Online]. Available: https: //learn.

microsoft. com/en - us/dotnet/csharp/language -

reference/.

[14] M. Mullapudi, "ACCESS AND NON - ACCESS

MODIFIERS, " 2016. [Online]. Available: https:

//tutorialq. com/java/object - oriented - concepts/access

- and - non - access - modifiers/.

[15] "Generic classes and methods, " [Online]. Available:

https: //learn. microsoft. com/en -

us/dotnet/csharp/fundamentals/types/generics.

[16] H. E. A. C. B. H. G. M. G. A. H. J. M. J. M. B. S. T. S.

M. W. S. a. W. L. Parnin C, "The Top 10 Adages in

Continuous Deployment, " IEEE Software, vol.34,

no.3, pp.86 - 95, 2017.

[17] "Redis cache, " [Online]. Available: https: //redis. io/.

[18] M. Mullapudi, "HOW TO LEARN CSHARP, " 2016.

[Online]. Available: https: //tutorialq.

com/programming/csharp.

Paper ID: SR24203224316 DOI: https://dx.doi.org/10.21275/SR24203224316 2309

