
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 8, August 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Enhance the Application Security using Kubernetes Role

Based Access Control for Applications

Pallavi Priya Patharlagadda

United States of America

Email: pallavipriya527.p[at]gmail.com

Abstract: The goal of an identity and access management system is to guarantee that you have control over who can access your

information system and what can be accessed by users. Since it is one of the core procedures in security management, it needs to be

handled carefully. Identity and user management in Kubernetes should be handled via third-party IAM solutions such as Keycloak, Active

Directory, Google's IAM, etc. as these are not incorporated into the platform itself. On the other side, Kubernetes manages authorization

and authentication. This article will concentrate on the authorization features of Kubernetes' Identity and Access Management (IAM),

particularly on how to use the Role-Based Access Control model to ensure that a user has the appropriate permissions for the appropriate

resources.

Keywords: identity and access management, Kubernetes security, IAM solutions, rolebased access control, user authorization

1. Problem Statement

Growing in popularity, Kubernetes has made the ideas of

deploying, scaling, and maintaining containerized

applications familiar to many developers and administrators.

Security is one Kubernetes component that is essential to

production deployments that everyone needs to focus on. It's

critical to comprehend how the platform handles user and

application authorization and authentication. It is necessary

to be able to secure a Kubernetes cluster to prevent

unauthorized users from having administrator access. A

technique for controlling access to computer or network

resources based on the responsibilities of specific individuals

inside your company is called role-based access control, or

RBAC. Kubernetes RBAC authorization enables you to

dynamically configure policies via the Kubernetes API.

Authorization choices are driven by the

rbac.authorization.k8s.io API group. Let’s explore how

RBAC would solve the security concerns.

2. Introduction

Before delving into the topic of RBAC, it is imperative to

grasp the entire context in which a user or application desires

access to Kubernetes objects. Only then can we discuss the

role that RBAC plays within these stages. It's a three-stage

process all around. While authorization—where RBAC

comes into play—will be our primary emphasis, we will

touch on admission control and authentication in passing. The

below diagram depicts the scenario of a usual request flow.

1) Kubernetes Request Flow:

2) Authentication

Once the request makes it past TLS, it moves on to the

authentication stage, where one or more authenticator

modules examine the request content.

The administrator configures authentication modules while

creating the cluster. If more than one authentication module

is configured for a cluster, then each module is attempted one

after the other until one of them is successful.

Client certificates, passwords, plain tokens, bootstrap tokens,

and JWT tokens (used for service accounts) are a few

common authentication modules. The most typical and

default circumstance is the use of client certificates. Consult

the Kubernetes documentation for a comprehensive

inventory of authentication components.

It's critical to realize that Kubernetes lacks a standard user

database and profiles for user authentication. Rather, it

employs random strings that are taken out of X.509 tokens

and certificates and run through the authentication modules.

Through one of the authentication modules, Kubernetes can

be coupled with external authentication mechanisms from

OpenID, Github, or even LDAP.

3) Authorization

The next step after authenticating an API request is to

ascertain whether the activity is permitted. The access control

pipeline's second stage is where this is completed.

Kubernetes considers three factors when granting a request:

the requester's login, the action being asked, and the object

that will be impacted by the action. The action is one of the

HTTP verbs, such as GET, POST, PUT, and DELETE,

mapped to CRUD activities; the object is one of the

legitimate Kubernetes objects, such as a pod or a service; and

the username is taken from the token encoded in the header.

The authorization is decided by Kubernetes using an

established policy. Since Kubernetes adheres to the closed-

to-open concept by default, an explicit allow policy is

necessary to access the resources.

Paper ID: SR24829160051 DOI: https://dx.doi.org/10.21275/SR24829160051 2339

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 8, August 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 Like authentication, authorization is set up according to one

or more modules, including Webhook, RBAC, and ABAC

modes. The authorization modules associated with the API

server are configured by the administrator during cluster

creation. When many permission modules are being used,

Kubernetes verifies each one individually. If a module

approves the request, it can move forward. This indicates that

the request is refused (HTTP status code 403) if every module

rejects it. There is a list of approved permission modules in

the Kubernetes documentation.

All requests are processed when you use kubectl in the

default configuration since you are regarded as the cluster

administrator. However, new users have restricted access by

default when they are added.

4) Admission Control

The admission control is the penultimate and last step in the

request process. Pluggable modules are the key to admission

control, just like they are to authorization and authentication

processes.

In contrast to the first two phases, the last step could alter the

intended items. Admission control modules don't read

objects; instead, they react to changes, deletions, and

connections (proxies). To employ a certain storage class, for

instance, the request for the formation of a persistent volume

claim (PVC) may be modified using an admission control

module. The pulling of pictures each time a pod is produced

is another policy that a module might impose. See the

Kubernetes documentation for a further discussion of the

admission control module.

If any admission controller module rejects a request during

the access control procedure, it is refused right away. A

request is written to the object store after passing through

each admission controller and being validated using the

associated API object's validation methods.

5) Role-Based Access Control:

In Kubernetes, role-based access control, or RBAC, is a very

important but somewhat confusing notion. So, allow me to

explain it simply and demystify it. Understanding that there

are three components to RBAC is necessary to completely

comprehend the concept. Let’s learn each of the components

in more detail.

a) Subjects:

The group of individuals and procedures requesting access to

the Kubernetes API.

b) Api Resources:

The collection of cluster-available Kubernetes API Objects.

Pods, Deployments, Services, Nodes, and PersistentVolumes

are a few examples.

c) Operations:

The group of commands that can be used with the above

resources. While several bindings can be used (such as get,

watch, create, delete, etc.), they are all ultimately CRUD

(create, read, update, or delete) actions.

Keeping these three things in mind, the following is the main

concept of RBAC:

Subjects, operations, and API resources should all be

connected. Stated otherwise, our goal is to define, for a given

user, the actions that can be carried out over a collection of

resources.

Thus, by considering the connections between these three

categories of things, we may comprehend the many RBAC

API Objects that Kubernetes offers.

d) Roles:
Roles Will link verbs with API resources. These can be used

again for many topics. These are restricted to a single

namespace (we can deploy the same role object in many

namespaces, but we cannot use wildcards to represent more

than one). The same object is called ClusterRoles if we want

the role to be applied throughout the entire cluster.

e) RoleBinding:

RoleBinding Will link the remaining subjects that are entities.

We will determine which subjects can use a role that already

ties verbs and API Objects. There are ClusterRoleBindings

for the non-namespaced, cluster-level equivalent.

Let’s learn each of them in more detail.

6) Types of RBAC roles:

 Based on the scope, there are two types of Roles in

Kubernetes.

a) A Kubernetes role is limited to resources (such as

deployment or service) that are located inside a particular

namespace.

Below is the sample yaml file for Role

kind: Role

apiVersion: rbac.authorization.k8s.io/v1beta1

metadata:

 name: examplerole

 namespace: example-ns

rules:

 - apiGroups: [""]

 resources: ["pods"]

 verbs: ["list", “get”]

b) A Kubernetes cluster role is scoped to either namespace-

scoped resources, which are present in every namespace,

like pods, or cluster-wide resources, like worker nodes.

Below is the sample yml file.

kind: ClusterRole

apiVersion:rbac.authorization.k8s.io/v1beta1

metadata:

 name: exampleclusterrole

Paper ID: SR24829160051 DOI: https://dx.doi.org/10.21275/SR24829160051 2340

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 8, August 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

rules:

 - apiGroups: ["*"]

 resources: ["pods"]

 verbs: ["get", "list"]

7) Role Binding and Types of Role Binding:

Role bindings assign cluster or RBAC roles to a designated

namespace.

Role Binding:

A user is granted access to a certain resource inside a

designated namespace when a role binding is utilized to apply

a role. Applying a cluster role through role binding grants a

user access to namespace-scoped resources, such as pods,

that are present in every namespace but are only accessible

within that namespace. Below is the sample yml file.

kind: RoleBinding

apiVersion: rbac.authorization.k8s.io/v1beta1

metadata:

 name: example-rolebinding

 namespace: example-ns

subjects:

 - kind: User

 name: Alice

 apiGroup: rbac.authorization.k8s.io

roleRef:

 kind: Role

 name: examplerole

 apiGroup: rbac.authorization.k8s.io

2. Cluster Role Binding

RBAC cluster roles are applied to every namespace in the

cluster through cluster role bindings. A user gains access to

resources that are scoped across namespaces, such as pods, or

cluster-wide resources, such as worker nodes, when a cluster

role binding is used to apply a cluster role.

Below is the yaml file for ClusterRoleBinding.

kind: ClusterRoleBinding

apiVersion: rbac.authorization.k8s.io/v1beta1

metadata:

 name: exampleclusterbinding

subjects:

 - kind: User

 name: Alice

 apiGroup: rbac.authorization.k8s.io

roleRef:

 kind: ClusterRole

 name: exampleclusterrole

 apiGroup: rbac.authorization.k8s.io

1) Service Account:

A concept that many Kubernetes users find difficult to

understand is that of subjects, notably the distinction between

ServiceAccounts and normal users. Theoretically, it appears

straightforward:

a) Users:
These are aimed at people or processes that reside outside of

the cluster and are global.

b) ServiceAccounts:
Designed for intra-cluster processes operating within pods,

these are namespaced.

Their domains appear to be well-defined, and they both share

the desire to authenticate against the API to carry out a certain

set of activities over a certain set of resources (keep in mind

the preceding section). In addition, they can be a part of

groups, meaning that multiple subjects can be bound by a role

binding (albeit ServiceAccounts can only be a part of the

"system:serviceaccounts" group).

Because service accounts are API objects, they are separately

RBAC managed, allowing each one to have a unique set of

RBAC permissions. Moreover, service accounts have the

same labeling capabilities as any other Kubernetes object.

This indicates that Kubernetes has a somewhat fine-grained

RBAC-controlled label artifact available.

However, there are a few things to be mindful of when using

service accounts. There can only be one service account

associated with each pod. A service account can be compared

to a distinct pod identifier.

On the other hand, service accounts—just like any other

Kubernetes API object—can also be tagged. This means that,

similarly to label selectors for pods, services, and network

policies that adhere to normal Kubernetes practice, those

labels can be used to construct "groups" of service accounts.

You can restrict which users can alter a service account and

its labels using RBAC because service accounts are

independent API objects.

This makes it possible to designate trustworthy entities (code

and/or persons) that can grant a specific service account the

required selectors (service account labels) and enable that

service account to be used in a specific namespace. One can

create a service account using the below command.

kubectl create serviceaccount example-sa --namespace

example-ns

Service Account can also be created using the below yml file.

apiVersion: v1

Paper ID: SR24829160051 DOI: https://dx.doi.org/10.21275/SR24829160051 2341

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 8, August 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

kind: ServiceAccount

metadata:

 name: sample-sa

 namespace: example-ns

The RoleBinding example-role binding links the Role

example-role to the ServiceAccount example in the example

below:

kind: RoleBinding

apiVersion: rbac.authorization.k8s.io/v1

metadata:

 name: example-rolebinding

 namespace: example-ns

subjects:

- kind: ServiceAccount

 name: example-sa

 namespace: mynamespace

roleRef:

 kind: Role

 name: examplerole

 apiGroup: rbac.authorization.k8s.io

3. Conclusion

For most platforms, role-based access controls are standard,

and Kubernetes is no exception. RBAC policies are required

to use Kubernetes in production. These cannot be thought of

as a limited list of Kubernetes API Objects administrators

need to be aware of. To deploy safe apps and take full

advantage of the potential that the Kubernetes API provides

for their cloud-native apps, application developers will

require them. It's beneficial to thoroughly design your

responsibilities to ensure their reusability across many

scenarios. We have seen how to utilize the Role-based Access

Control model to issue permissions to a service account or a

user.

Although it is arguably the most often used model, ABAC

(attribute-based access control), the Webhook mode, and the

Node Authorization model are alternative effective models

that may be used to create authorization in Kubernetes.

Because service accounts allow you to monitor and manage

resource access in Kubernetes, they are a very useful tool for

cluster administration. They can be used to restrict access to

specific namespaces. Pods should only be allowed access to

what they require. Understanding which resources were

accessed by whom and when gives information about cluster

activity. After a user departs the team, it's crucial to delete

them as well. By employing these techniques, Authorization

can be achieved in Kubernetes.

References

[1] https://thenewstack.io/a-primer-on-kubernetes-access-

control/

[2] https://kubernetes.io/docs/reference/access-authn-

authz/controlling-access/

[3] https://medium.com/@ishagirdhar/rbac-in-kubernetes-

demystified-72424901fcb3

[4] https://theithollow.com/2019/05/20/kubernetes-role-

based-access/

[5] https://www.cncf.io/blog/2018/08/01/demystifying-

rbac-in-kubernetes/

[6] https://schoolofdevops.github.io/ultimate-kubernetes-

bootcamp/configuring_authentication_and_authorizati

on/

[7] https://imti.co/team-kubernetes-remote-access/

[8] https://schoolofdevops.github.io/ultimate-kubernetes-

bootcamp/configuring_authentication_and_authorizati

on/

[9] https://kubernetes.io/blog/2017/04/rbac-support-in-

kubernetes/

[10] https://thenewstack.io/kubernetes-access-control-

exploring-service-accounts/

[11] https://laszlo.cloud/Why-access-control-is-key-for-a-

secure-multi-tenant-Kubernetes-deployment

[12] https://kubernetes.io/blog/2017/10/using-rbac-

generally-available-18/

[13] https://platform9.com/blog/the-gorilla-guide-to-

kubernetes-in-the-enterprise-chapter-4-putting-

kubernetes-to-

work/#:~:text=The%20types%20of%20Role%20Base

d,and%20service%20accounts%20to%20Roles).

[14] https://www.ibm.com/docs/en/cloud-

private/3.2.0?topic=private-role-based-access-control

[15] https://www.tremolosecurity.com/post/kubernetes-

identity-management-part-ii-rbac-and-user-

provisioning

[16] https://dev.to/mhausenblas/on-some-defaults-in-

kubernetes-rbac-270l

[17] https://software.danielwatrous.com/self-service-

access-control-in-kubernetes/

[18] https://techdocs.akamai.com/cloud-

computing/docs/secure-a-cluster-with-user-

permissions-and-rbac

[19] https://www.yld.io/blog/testing-kubernetes-rbac

[20] https://docs.redhat.com/en/documentation/openshift_c

ontainer_platform/3.9/html/cluster_administration/ad

min-guide-manage-rbac#creating-cluster-role

[21] https://www.adaltas.com/en/2019/08/07/users-rbac-

kubernetes/

Paper ID: SR24829160051 DOI: https://dx.doi.org/10.21275/SR24829160051 2342

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

