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1. Introduction and Fundamental Definitions 
 

The concept of a Γ-ring was given by Nobusawa [18] as a 

more general form than that of a ring. Thereafter, Barnes [29] 

studied Γ-rings in a way that takes different approach than to 

that of Nobu- sawa. Motivated by those generalizations of 

rings, a lot of algebraists authored generalized results from 

rings and semigroups to Γ-rings, Γ-semigroups, and other 

algebraic structures as well. The detailed deliberation on Γ-

semigroups was done by certain algebraists which are 

parallel to those results in semigroup theory, for instance, one 

can see [15], [16], [17], [19], [21], [30]. Recently, on the 

globe some new papers appeared, such as , [23], [24], [25], 

[26], [27]. For some most recent study of the theory, one can 

refer the elaborative exposition work of Basar et al, [1], [2], 

[3], [4], [5], [6], [7], [8], [10], [11], [12], [28]. 

 

One can see that Γ-semigroup is a generalization of 

semigroups. Suppose A and B are two nonempty sets. Let S 

be the set of all mappings from A to B and Γ be the set of all 

mappings from B to A. Now, the usual mapping product of 

two elements of S cannot be defined. However, if we 

consider f, g from S and α, β from Γ, then the usual mapping 

products f α g and α f β are defined. Moreover, f. α. g∈ S and 

α. f. β∈ Γ and f. α. (g. β. h) = f. (α. g. β).h = (f. α. g). β. h for 

all f, g, h∈ S and α, β∈ Γ. As such, the notion of Γ-

semigroup was defined by Sen [13] is a generalization of a 

semigroup. A Γ-semigroup is ordered triplets (S, Γ, ) 

consisting of two sets S and Γ and a ternary operation S x Γx 

S→S with the property that (axb)yc = ax(byc) for all 

a, b, c∈ S and x, y ∈ Γ. Let A be a nonempty subset of (S, 

Γ,
.
). Then, A is called a sub-Γ-semigroup of (S, Γ,

.
) if a γ b∈ 

A for all a, b∈ A and γ∈ Γ. Furthermore, a Γ-semigroup S is 

called commutative if a. γ. b = b. γ. a for all a, b∈ S and γ∈ 
Γ. If we consider, Γ= {1} in the definition, then one can see 

that every semigroup is a Γ-semigroup 

 

Example 1.1. [22] Let S = [0, 1] and Γ = : n is a 

positive integer}. Then, S is a Γ-semigroup under the usual 

multiplication. Next, let K = [0, 1/2]. We have K is a 

nonempty subset of S and a · γ · b ∈ K for all a, b ∈ K and γ ∈ 

Γ. Then, K is a sub Γ-semigroup of S. 

 

The above example shows that every semigroup is a Γ-

semigroup and not conversely, and thus, Γ-semigroup is a 

generalization of semigroup. 

 

The notion of a viable semigroup was introduced by Putcha 

and Weissglass[14]. 

 

Definition 1.1. A Γ-semigroup S is called viable if aαb = 

bβa whenever aαb and bβa are idempotents for α, β ∈ Γ.  

 

A group S is called Γ-group if hαS = Sβg = S for all (h, g) ∈ 

S
2 and for α, β ∈ Γ.  

 

The concept of idempotent semigroups was introduced by 

McLean [9]. 

 

Definition 1.2: An idempotent Γ-semigroup or band is a Γ-

semigroup S which satisfies h
2 = h for all h ∈ S. 

 

Definition 1.3: A Γ-semigroup satisfying hαbβg = h (hαg = 

h, gβh = h) for 𝛼, 𝛽 ∈ 𝛤 is called rectangular (left singular 

Γ-semigroup, right singular Γ-semigroup) Γ-semigroup. 

These Γ-semigroups are all idempotent. A left (right) 

singular Γ-semigroup is rectangular Γ-semigroup. 

 

Definition 1.4: A Γ-semigroup S is called total if every 

element of S can be written as the product of two elements of 

S, that is, S
2 = S. 

 

Definition 1.5: Suppose a, b ∈ S. Then, a | b if there exists h, 

g ∈ S such that aαh = gβa = b for α, β ∈ Γ. Furthermore, the 

set-valued function R on S is defined as follows: 

R (h) = {e | e ∈ E, h | E}. 

 

The relation δ on H is defined as follows: 

hδg if R(h) = R(g). 

 

Definition 1.6: A Γ-semigroup S is called I -

indecomposible if it has no proper semilattice de- 

composition. Suppose the set-valued functions I and I  on 
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Γ-semigroup S are defined as follows for α, β ∈ Γ: 

 
and 

 
respectively,  for α, β ∈  Γ.  We denote by E, I(h) and 𝐼   for 

E(S), I(h, S) and I(ℎ , S), respectively, when there is no 

possibility of ambiguity.  Let τ be a congruence on S.  If S/τ  

is a semilattice, τ is called a semilattice congruence on S. 

Let ρ be the smallest congruence on S and σ denote the 

relation on S defined by 

hσg ⇐⇒  I(h) = I(g) for 𝛼 ∈ Γ. 

If ρ = SxS, then S is called s-indecomposible. Furthermore, 

for any congruence τ on a Γ- semigroup S, we denote by τ| E 

the restriction of τ to E and by hτ the equivalence class mod 

τ containing an element h. 

 

Definition 1.7: A Γ-semigroup S is quasi-rectangular if and 

only if E(S) is nonempty and e = eαhβe for every e ∈ E(S), 

h∈ S and α, β ∈ Γ. 

 

This paper is based on some notions in [20], [14] and [31] in 

the context of a wide class of the theory of Γ-semigroups. 

 

2. Various Classes of Γ-Semigroups 
 

We now begin proving the main results. 

 

Theorem 2.1: A rectangular Γ-semigroup is the direct 

product of a left singular and a right singular Γ-semigroups. 

Also, this factorization is unique up to isomorphism. 

 

Proof:  Suppose S is a rectangular Γ-semigroup.  Then, for 

h, g ∈  S  and α, β ∈ Γ, we have the following: 

 

hΓS ⊃ hΓ(gΓS) = (hαg)ΓS ⊃ (hβg)Γ(hΓS) = (hΓgΓh)ΓS = 

hΓS, 

 

We obtain the following: 

hαgΓS = hΓS                                     (1) 

and 

SΓhαg = Sβg                                     (2) 
 

Also, we have the following: 

(hΓS)Γ(gΓS) = (hΓS)Γ(gΓhΓS) = (hΓSΓgΓh)ΓS = hΓS (3) 

 

Dually, we have the following: 

(SΓh)Γ(SΓg) = SΓg                          (4) 

 

Let P(Q) be the set of all subsets of S of the form hΓS(resp. 

SΓh). Then, P(Q) forms a left(right) singular Γ-semigroup 

with respect to the usual multiplication induced by that of S 

by (3) and (4). Suppose 

f1 : S → P( f2 : S → Q) 

 

are the mappings defined as follows: 

f1(h) = hΓS( f2(h) = SΓh) 

 

Then, by (1), (2), (3) and (4), f1 and f2 are onto 

homomorphisms.  

Suppose 

r: S → P × Q 

is the mapping defined as follows: 

r(h) = ( f1(h), f2(h)). 

 

Therefore, r is a homomorphism.  Consider any element of P 

Q, i.e., (hΓS, SΓg). It follows by (1) and (2) that  

r(h, g) = (hΓgΓS, SΓhΓg) = (hΓS, SΓg). 

Therefore, r is onto. 

 

Also, if  

r(z) = (hΓS, SΓg), 

then 

zΓS = hΓS  

and 

SΓz = SΓg 

 

Then, by rectangularity, we have the following: 

hαg = (hβ Sγh)θ (gγ1Sγ2g) = (zαSβh)γ(gγ1Sγ2z)= zα(Sβhγgθ 

S)γ1z = z. 

for α, β, γ, θ, γ1, γ2 ∈ Γ. Therefore, r is an isomorphism between 

S and PxQ, where P(Q) is left(right) singular. 

 

Suppose r
j 

: S →P
 j  

X Q
j 
is an isomorphism, where P

 j 
(Q

 j
) 

is left(right)singular. 

Define  f3 : S→P
j 
and  f4 : S→Q 

j  

by r 
j 
(h) = ( f3(h), f4(h)), 

therefore, they are onto homomorphisms. If  f1(h) = f1(g), 

that is, hΓS = gΓS, then 

f3(hαS) = f3(h)β f3(S) = f3(h) 

and 

f3(gγS) = f3(g). 

 

Therefore, f3(h) = f3(g), that is, hαS = gβ S, which follows 

that 

f3(hγS) = f3(h) f3(S) = f3(h) 

and 

f3(gΓS) = f3(h) 

 

Therefore, f3(h) = f3(g). Thus, we have an onto 

homomorphism: 

f : P → P 
j
 
( f5 : Q → Q 

j
 
) 

such that 

f3 = f f1( f4 = f5 f2). 

 

Now, we show that f ( f5) is one-to-one. Let 

hΓS ≠ gΓS, f (hΓS) = f (gΓS). 

 

Then,  

hΓgΓS = hΓS = gΓS,  

Therefore,  

hγg ≠ g. 

But 

f3(hΓg) = f f1(hΓg)= f (hΓgΓS) 

                        = f (hΓS) 

                        = f (gΓS) 

                                   = f f1(g) = f3(g), 

 

f4(hΓg)     = f5 f2(gΓh) 

= f5(SΓhΓg) 

= g(SΓg) 

= f5Γ f2(g) = f4(g). 

 

Therefore, r 
j 

(hγg) = r
 j 

(g), which contradicts the 

assumption that r
 j 

is an isomorphism. Hence, f and f5 are 

isomorphisms. 

Paper ID: ART20203889 DOI: 10.21275/ART20203889 114 



International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426 

Volume 9 Issue 1, January 2020 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

N. B.: The above defined P(Q) is the set of all minimal 

right(left) Γ-ideals of S. 

 

Lemma 2.1: A band is rectangular if and only if it satisfies 

 

for α, β, γ ∈ Γ. 
 

Proof: Suppose the band S satisfies the given identity, then 

substituting c = a, proves that S is a rectangular Γ-

semigroup. 

 

Conversely, let S be a rectangular band, then 

 
for α, β, θ ∈ Γ. Therefore, we have the following: 

 
for α, β, θ, γ, γ1, λ ∈ Γ. This completes the proof. 

 

Lemma 2.2. A total Γ-semigroup is rectangular if and only 

if it satisfies the following: 

 
for α, β, θ ∈ Γ. 
 

Proof: Suppose S is total, and 

aαbβc = aγc. 

Let h ∈ H, then h = mγn for some elements m, n and α, β, γ ∈ 

Γ. Then, we have the following: 

h
2 

= (hαg)
2
 = (hβg)(hγg) = hα(gβh)γg = hγg = h. 

for α, β, γ ∈ Γ. So, S is a band. Thus, by Lemma 2.1, S is a 

rectangular Γ-semigroup. Since, any rectangular Γ-

semigroup satisfies the given identity by Lemma 2.1, the 

converse part proves. 

 

Lemma 2.3:  Suppose H is a viable Γ-semigroup.  

If aαb = e E, then bαeβa =e. 

 

Proof: 

(bαeβa)2 = bγeαaβbγeθa = bαeβa. 

Hence, bαeβa∈ E.  

 

But, clearly 

aαbβe = e ∈ E 

Hence, bαeβa = aγbθe = e for α, β, γ, θ ∈ Γ 

 

Lemma 2.4: Suppose H is a viable Γ-semigroup and h ∈ S 

and e ∈ E. Then, h | e if and only if e ∈ Sαhβ S for 𝛼, 𝛽 ∈ Γ. 

 

Proof: If h | e, then by the definition, we have the following: 

e ∈ SΓhΓS 

 

Conversely, let e = sαhβt  with s, t ∈ S. By Lemma 2.3 

hαtβeγs = e  

tαeβsγh = e. 

Hence,  

h | e. 

 

Theorem 2.2. Suppose S is a viable Γ-semigroup. Then, we 

have the following: 

1) δ is a congruence relation on S containing Green’s 

relation S . 

2) S/δ is a semilattice. 

3) each δ-class contains at most one idempotent and a Γ-

ideal wherever it contains an idem- potent. 

 

Proof:(i) Obviously, we see that δ is an equivalence 

relation. We need to prove that δ is right compatible. Let 

aδb. If aγc|e∈ E, then aαcβx = e for some x∈ S and α,β∈ Γ. 

By Lemma 2.3, we have cαxβeγa = e. Hence, a e. Thus, b e, 

so yγb = e for some y  S. Thus, yαbβcγxλeθa = e, for 

α, β, γ, λ,  ,𝜃   𝛤  therefore, bγc  e by Lemma 2.4. 

Hence, 

R(aγc) ∈ R(bβc). 

Similarly, R(bγc) ⊆ R(aγc) and hence, aαcδbβc, 

 

That δ is left compatible follows analogously. Consequently, 

δ is a congruence relation on Γ- semigroup S. Hence, we 

have 

 

(ii) We need to prove that S/δ is a band. 

Let a ∈ S. If a2 | e ⊆ E, then by Lemma 2.4, we have a | e. 

Hence,  

R(a
2

) ⊆ R(a). 

 

Suppose a | e ∈ E, and aαx = yβa = e, x, y ∈ S and α, β ∈ Γ. 

Therefore, 

yαa
2

βx = e. 

 

Again, applying Lemma 2.4, a2 e.  

Therefore, R(a2) = R(a) and aδa2.  

Hence, S/δ is a band. 

Now, suppose a, b ∈ S. If e ∈ R(aγb), then there exists x, y ∈ S 

such that 

aαbβx = yθaλb = e. 

 

for α, β, γ, θ, λ ∈ Γ. Therefore,  

yαaλ (bβa)γbθx = e, 

 

and by Lemma 2.4, e∈R(bγa). Therefore, R(aαb) ∈ R(bβa) R(bβa).  

 

By symmetry, we have 

R(bαa) ∈ R(aβb). 

Hence, aαbδbβa and S/δ is a semilattice. 

 

(iii) Let e1δe2 with e1, e2 E. Then, e1∈R(e1) = R(e2), therefore, 

e2| 𝑒1. In a similar fashion, e1|e2. Hence, by Lemma 2.4, e1 = 

e2.  

 

Therefore, each δ-class contains at most one idempotent. 

Now, let A be a δ-class containing an idempotent e. Suppose 

a∈ A. As, e∈R(e) = R(a) = R(a
2
), there exists x∈S such that 

a
2
γx = e. Now, aδa

2 a⇒ aαxδa2γx. Therefore, aγxδeδa. 

Hence, aγx∈ A and aα(aβx) = e⇒ e is a right zeroid of A. 

 

In a similar fashion, e is a left zeroid and by Lemma 2.4, A 

has a Γ-group Γ-ideal. 

 

Proposition 2.1. The following assertions are equivalent: 

(i) I(h) ∩ I(g) = I(hγg) for some h, g ∈ S and γ ∈ Γ,    

(ii) I(h) ∩ I(g) = I(h𝛾g) for some every h, g ∈ S. In this case, 

we further have  𝐼   (h) = I(h) for every h ∈ S.  

 

Proof: (i) ⇒ (ii). It follows from 𝐼   (h) ∩ E = I(h) for every h 
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∈ S. 

(ii)⇒ (i). We will prove that 𝐼   (h) = I(h) for every h ∈ S. Let a 

∈ I(h). Then, a = aαhβa. Hence, 

aαh = (aβh)γ(aλh) = (aαh)β (aγh)λ (aθh). 

Therefore, aαhβa = (aγhλa)θ (aγ1hγ2a) ⇒ a = a2 for α, β, γ, 

λ, θ, γ1, γ2 ∈ Γ. So, a ∈ 𝐼   (h) ∩ E = I(h). Thus, 𝐼  (h) ⊆ I(h). 

Obviously, I(h) ⊆ I(h). Hence, I(h) = I(h) for every h ∈ S. 

 

Proposition 2.2. Suppose N ⊆S such that 𝐼   (x) = ∅. If N is 

nonempty, then N is a Γ-ideal of S and idempotent free. 

 

Proof: Let N be a nonempty set. It is easy to observe that N 

is idempotent free. Let x ∈ N and y ∈ S.  If x, y ∈/ N, there 

exists a ∈ H such that a = aαxβyγx. Hence, yαa = (yβ a)γxλ 

(yθ a) and therefore, yγa ∈ I(x). This contradicts the fact that 𝐼   
= ∅. Therefore, xγy ∈ N. In a similar fashion, yγx ∈ N. 

 

Lemma 2.5. Suppose N is an idempotent free Γ-ideal of Γ-

semigroup S. Then, S satisfies the following: 

I(x, S) ∩ I(y, S) = I(xγy, S) 

for every x, y ∈ S if and only if the Rees  factor Γ-semigroup 

S/N satisfies the following: 

I(x, S/N) ∩ I(y, S/N) = I(xγy, S/N) 

for every x, y S/N and γ ∈ Γ. 

 

Proof: Suppose  𝑛  be the equivalence class N in S/N. Since, 

N is idempotent free, we have 

E(S/N) = E(S) ∪ {𝑛 }. 

 

If a, x / N, then a ∈ I (x, S) if and only if a ∈ I (x, S|N). 

 

Furthermore, I (𝑛 ,  S|N) = 𝑛  and I (z, S) = ∅ for z ∈ N, since N 

is an idempotent free Γ-ideal of S.  

 

Hence, 

                                          I(x, S) ∪ {n} = I(x, S/N) 

for every x ∈ S, where x = x if x ∈/  N and 𝑥  = 𝑛  if x ∈ N. 

This proves the Lemma. 

 

Combining Proposition 2.1, Proposition 2.2 and Lemma 2.5, 

we have the following: 

 

Theorem 2.3. Suppose E(S) is a nonempty set. Then, the 

following are equivalent: 

(i) (x,S) ∩ I(y,S) =I(xγy,S) for every x,y∈ S and γ ∈ Γ; 

(ii) S is a Γ-ideal extension of an idempotent free Γ-

semigroup(possibly empty) by a Γ-semigroup 

T such that 

I(x, T ) ∩ I(y, T ) = I(xγy, T ), 

and 

I(x, T ) ƒ= ∅ 

for every x, y ∈ T . 

 

Theorem 2.4. The following are equivalent: 

(i) I(x) ∩ I(y) = I(xγy) for every x,y ∈ S and γ Γ; 

(ii)  (a) σ is a semilattice congruence on S;  

(b) each σ-class is either idempotent free or a quasi-

rectangular Γ-semigroup; 

(iii) H is a semilattice of s-indecomposable Γ-semigroups, 

each of which is either idempotent free or quasi-rectangular; 

(iv) H is a semilattice of Γ-semigroups each of which is 

either idempotent free or quasi- rectangular. In this case, for 

a semilattice congruence τ on S induced by the decom- 

position in (iv), we have ρ ⊆ τ ⊆ σ and ρ | E = τ | E = σ | E. 

Furthermore, for every a, b ∈ E, we have 

aσb ⇐ ⇒ a = aαbβa 

and                               

b = bαaβb. 

for α, β ∈ Γ. 

 

Proof: (i) ⇐⇒ (ii). is straight forward. 

(i) ⇐⇒ (iii). S is a semilattice of s-indecomposable Γ-

semigroups. Also, since S satisfies: 

I(x) ∩ I(y) = I(xγy) 

for some every x, y S, any Γ-subsemigroup of S satisfies also 

the same. Therefore, if we consider the congruence σ on each 

component of S, it follows from (ii)(b), that any component is 

idempotent free or quasi-rectangular. Hence, (iii) holds. 

(ii) ⇐⇒ (iv) and (iii) ⇐⇒ (iv) are straightforward. 

(iv) ⇐⇒ (i). Let τ be the congruence induced by the 

decomposition in (iv) and suppose x, y ∈ S. If a ∈ I(x) ∩ I(y), 

we have the following: 

a = aαxβa = aγyδa. 

Since, τ is a semilattice congruence on S, we have 

aτaαxτaβy. 

Thus, aαxβy∈ aτ. Also, a ∈ aγτ ∩ E.  

 

Hence, 

a = aα(aβxδy)θa = aαxβyγa. 

So, 

a ∈ I(xγy). 

 

Conversely, if a ∈ I(xγy), we have the following: 

a = aαxβyγa. 

Hence, 

aτaαxβy 

Thus, 

Aαyτaβxγy
2
τaαxβy. 

Hence, aγy ∈ aτ. Since, a ∈ aτ ∩ E, aτaαxβy.  

a = aα(aβy)γa = aαyβa. 

 

Hence, a ∈ I(y). In a similar fashion, a ∈ I(x). Hence, a ∈ 

I(x) ∩ I(y). Therefore, I(x) ∩ I(y) = I(xγy), i.e., (i) holds. 

Now, suppose x, y ∈ S such that xτy. Let a ∈ I(x). Then, a = 

aαxβa. Hence, aαx ∈ aβxτ ∩ E, and aαy ∈ aγxτ. Since, aγxτ 

is quasi-rectangular, 

aαx = (aβx)γ(aαy)β (aγx). 

 

Hence, a = aαxβa = (aγx)θ (aλy)(aγ1x)γ2a = (aαxβa)γyλ 

(aθxγ1a) = aγ2yγ3a. 

 

Therefore, a ∈ I(y). Thus, I(x) ⊆ I(y). By symmetry, we have 

I(y) ⊆ I(x). Hence, I(x) = I(y). Thus, xτy. This shows that τ ⊆ 

σ. On the other hand,  clearly,  ρ  ⊆ τ.  Now,  let a, b ∈ E.  If 

aσ | E(b), then a, b ∈ I(a) = I(b). Hence, a = aαbβa and b = 

bαaβb. 

 

Conversely, if a = aαbβa and b = bαaβb, we have aρ | E(b) 

since ρ is a semilattice congruence on S. On the other hand, 

ρ ⊆ τ ⊆ σ. Hence, ρ | E = τ | E = σ | E. 
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