
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 1, January 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Analysis of Distributed Object Technologies

Dr. Sanjay E. Yedey

P. G. Department of Computer Science and Technology, DCPE, Amravati, Maharashtra, India

Abstract: The advancement in hardware as well as software technologies leads towards more and more use of computers in day to day

life. Every field from Education, Business, Agriculture, Sports, Entertainment or whatever, the use of computers became an essential

part. All the fields need data, resources as well as applications required to be shared among the users which leads towards the

development of distributed systems. The most popular and challenging among distributed technologies is ‘Distributed Objects’. The

Distributed Object technology allows objects active in one process be accessed by another facilitating the computation be split over

multiple processes. The processes involved may be running in different address spaces on single system or may be on different systems in

a network in a local area network or the Internet in different networks may be having the systems located seven sees apart. The most

popular distributed object technologies are CORBA, RMI and DCOM. This paper presents an analysis of architecture and working of

these technologies and presents performance comparison on the basis of data marshalling, interoperability, heterogeneity, design

transparency and speed.

Keywords: Distributed Objects, CORBA, RMI, Marshalling, Interoperability, Heterogeneity, Design Transparency

1. Introduction

With the advancement of the technology and the growth of

the Internet, the use of Internet has been increased many

folds. Many applications useful in our day to day life are

available on the internet and are accessed at ease using

portable devices like smart phones and laptops along with

micro to mainframe or even supercomputers. This creates an

environment of heterogeneous distributed systems spread

across all over the world. The requests from large number of

users create a tremendous burden on the server, affecting

performance of the services on web server. The high

performance is required in many server situations such as

Hyper Text Transfer Protocol (HTTP) [1] and File

Transfer Protocol (FTP) [2], e-mail[5], chat[6], etc.

Although a centralized system approach facilitated by

powerful systems like supercomputer or mainframe

computer was employed to solve the problem at an early

stage, it had its own limitations with respect to aspects like

bandwidth, traffic congestion, reliability and even cost. The

limitations made client/server [3] and distributed

processing[3][4] approach more suitable. In addition, the

fast growth of a network performance [7] has accelerated

the multiple computer approaches. A distributed processing

is widely used these days, especially in multi-tier

environments.

Among the distributed processing technologies, Remote

Procedure Call (RPC) [10] and Remote Method Invocation

(RMI) [11] exist as early models. However, as the object

oriented paradigms flourished, these models have been

evolved into distributed object technologies such as

Distributed Component Object Model (DCOM) [12],

Common Object Request Broker Architecture (CORBA)

[13], and along with RMI.

This paper describes the architecture and working of these

technologies along with advantages and disadvantages of

each technology, providing a guideline to the developers,

vendors, and practitioners to help them to choose an

appropriate technology to develop mission critical

application in distributed environment.

2. Distributed Systems

A distributed system consists of a collection of autonomous

computers linked by a computer network equipped with

distributed system software. This software enables

computers to coordinate their activities and to share the

resources of the system hardware, software and data. Users

of a distributed system should perceive a single, integrated

computing facility even though it may be implemented by

many computers in different locations. This is in contrast to

a network, where the user is aware that there are several

machines whose locations, storage replications, load

balancing and functionality are not transparent. Benefits of

distributed systems include bridging geographic distances,

improving performance and availability, maintaining

autonomy, reducing cost and allowing for interaction.

3. Distributed Objects

In distributed system technologies, the concept of

‘Distributed Objects’ refers to a technique in which

‘objects’ are distributed across different address spaces,

either in different processes on the same computer, or even

in multiple computers connected via a network. Distributed

object models and tools extend an object-oriented

programming system. These objects, though active on

different machines, work together in collaboration by

sharing data and invoking methods. This communication

often involves location transparency, where remotely located

objects appear the same as local objects. The principal way

of communication among these distributed objects is by

using ‘Remote Method Invocation (RMI)’, generally by

message-passing. In message-passing, one object sends a

message to another object in a remote machine or process to

perform some task. The results are sent back to the calling

object.

The objects may be distributed on different computers

throughout a network, living within their own dynamic

library outside of an application, and yet appear as though

they were local within the application. This is the essence of

plug-and-play software. Several technical advantages result

from a distributed object environment. The overall technical

Paper ID: SR20203002839 DOI: 10.21275/SR20203002839 1888

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 1, January 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

goal of distributed object computing is to advance

distributed information technologies so that they may be

more efficient and flexible, yet less complex. The benefits of

distributed objects are indeed solutions to the problems with

existing, monolithic client/server paradigms. [3]

3.1 CORBA

CORBA is part of the Object Management

Architecture (OMA), developed by OMG, which is also the

broadest distributed object middleware available in terms of

scope. It allows integration of a wide variety of object

systems. The basic OMA reference model from the OMG

specification presents CORBA architecture [11]. The Object

Request Broker (ORB) component enables clients and

objects to communicate in a distributed environment. Four

categories of object interfaces use ORB to interact:

 Object Services are interfaces for general services that

are likely to be used in any program based on distributed

objects.

 Common Facilities are interfaces for horizontal end-user-

oriented facilities applicable to most application

domains.

 Domain Interfaces are application domain-specific

interfaces, which may also be a collection of different

Domain Interfaces such as Finance, Telecom,

Transportation, etc.

 Application Interfaces are non-standardized application-

specific interfaces.

The key component in OMA is ORB, or specified as

CORBA. From the above description, it is not hard to see

that ORB needs to provide the functions of delivering

requests to objects and returning any responses to the clients

targeted. As a distributed environment, ORB shall also

support the transparency requirement. CORBA presents a

nice architecture of an ORB, which handles a series of jobs

like object allocation, object implementation, object

execution state, object communication mechanisms, etc.

Following the CORBA architecture, most of the jobs to

delivery object communication are transparent. In this sense,

the four categories of OMA objects can be connected to a

CORBA ORB to form a distributed computing environment

without worrying about any of the communication issues

among them. Above Figure demonstrates CORBA ORB

architecture with its key components. Here, we try to

understand CORBA structure through studying some of its

key components. Some features that are important to

CORBA are also discussed below.

3.2 DCOM

DCOM is more or less an architecture specification designed

to be language-independent. DCOM is primarily

implemented on Windows platforms, and specified by

Microsoft [10]. Microsoft DCOM is often called ``COM on

the wire''. It supports remote objects by running on a

protocol called Object Remote Procedure Call (ORPC).

A DCOM client calls into the exposed methods of a DCOM

server by acquiring a pointer to one of the server object's

interfaces. The client object then starts calling the server

object's exposed methods through the acquired interface

pointer as if the server object resided in the client's address

space. Since the COM specification is at the binary level it

allows DCOM server components to be written in diverse

programming languages like C++, Java, Object Pascal

(Delphi), Visual Basic and even COBOL. As long as a

platform supports COM services, DCOM can be

implemented on the platform. However, it is practically not

available except Windows systems.

3.3 RMI

Sun Java RMI is a built-in native ORB in Java language. It

supports making method invocations on remote objects. From

practical programming point of view, developing distributed

applications in RMI is simpler than developing with sockets

since there is no need to design a protocol, which is an error-

prone task. In RMI, the developer has the illusion of calling a

local method from a local class file, when in fact the

arguments are shipped to the remote target and interpreted,

and the results are sent back to the callers. The underlying

protocol for RMI is Java Remote Method Protocol (JRMP).

3.4 Feature Analysis and Semantic Comparison

As distributed object technologies the architectures of

CORBA, DCOM and Java/RMI provide mechanisms for

transparent invocation and accessing of remote distributed

objects. Though their objective and approach is more or less

same the mechanisms that they employ to achieve remoting

and many other issues with respect to their central objective

is a lot different. The following table provides detailed

comparisons based on different aspects.

DCOM CORBA Java/RMI

Base Interface

(Base Type)

Every sever object implements

IUnknown interface

Every sever object

implements CORBA.Object
Every server object implements java.rmi.Remote

IDL

CORBA IDL defines the

methods and attributes of

component interface The IDL

compiler creates proxy stubs for

the client and server.

The Microsoft’s MIDL

DCOM interfaces. The

MIDL compiler creates

proxy stubs for the client and

server.

RMI defines interfaces in Java language. RMIC

compiler is used tocompile and create proxy stub

and skeleton

Unique Identification

interface – an interface is

uniquely identified by an id

called IID named

implementation of the server

object is uniquely identified by

id called CLSID

interface – an interface is

uniquely identified by an

‘interface name’ named

implementation of server

object is uniquely identified

by its mapping to a name in

the Implementation

interface – an interface is uniquely identified by

an interface named implementation of the server

object is uniquely identified by its mapping to a

URL in the Registry

Paper ID: SR20203002839 DOI: 10.21275/SR20203002839 1889

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 1, January 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Repository

Remote Object

Reference (object

handle at run-time)

Uniquely identifies a remote

server object through its

interface pointer, which serves

as the object handle at run-time.

Uniquely identifies remote

server objects through object

references(objref), which

serves as the object handle at

run-time

Uniquely identifies remote server objects with

the ObjID, which serves as the object handle at

run-time.

Object Handle interface pointer Object Reference Object Reference

Remote Object

Reference Creation
Generated by Object Exporter

Generated by the Object

Adapter

Generated by the call to the method Unicast

Remote Object. Export Object (this)

object and skeleton

instantiation

Tasks like Object and skeleton

registration are performed by

server program or handled

dynamically by the COM run-

time system.

Tasks like Object and

skeleton registration are

performed by

object registration is done through RMI Registry

using Naming class. skeleton registration is done

by its instantiation on calling

UnicastRemoteObject.exportObject(this) method

Underlying Remoting

Protocol

Object Remote Procedure

Call(ORPC)

Internet Inter-ORB

Protocol(IIOP)
Java Remote Method Protocol (JRMP)

Object Activation

Client calls

 CoCreateInstance()it needs a

server object

Client binds to a naming or a

trader service when it needs

server object

Client calls lookup() on the remote server

object's URL name when it needs server object

Mapping of Object

name to Object

Implementation

Handled by the windows

Registry

handled by the

Implementation Repository
Handled by the RMIRegistry

Type Information for

methods locating an

object implementation

Stored in Type Library Handled

by Service Control Manager

(SCM)

Stored in Interface

Repository Handled using

Object Request Broker

(ORB)

Any type information is held by the Object itself

handled Java Virtual Machine (JVM)

Activating object

implementation

Handled by Service Control

Manager (SCM)

Handled either by Basic

Object Adapter (BOA) or

Portable Object Adapter

(POA)

Handled by Java Virtual Machine (JVM)

Parameter passing

All parameters passed between

the client and server objects are

passed either by value or by

reference.

All interface types are passed

by reference. All other

objects are passed by value

including highly complex

data types

All objects implementing ‘remote interfaces’

extending java.rmi.Remote are passed by remote

reference. All other objects are passed by value

Parameter Marshalling

Parameter marshalling is

accomplished in the stub code

that is generated by the IDL

compiler. The client stub and

server skeleton are responsible

for marshalling of parameters.

DCOM provides automatic

marshalling for primitive

types and object references.

For user defined structures

and structured arrays Custom

marshalling is preferred.

RMI provides automatic marshalling of

predefined types and object references

Serialization is used for marshalling objects.

Platform Independence

Runs on any platform having a

COM Service implementation

available on it.

Runs on any platform having

CORBA ORB

implementation available on

it.

Runs on any platform having Java Virtual

Machine implementation available on it

Language Independence Yes Yes No. Only Java

Exception Handling

Through HRESULT return

status, and Error Objects

of type IErrorInfo and server

object implementing

ISupportErrorInfointerface.

Through Exception Objects Through RemoteException

Support for data and

code reuse

Supports code reuse by writing

CORBA compatible new

objects.

Supports code reuse just by

modifying the registry entry,

without needing to recompile

code on the client or server.

Supports code reuse through Object Inheritense

Support for Multiple

Inheritacne

Yes, at Interfaces as well as

Object implementation.
Yes, at interface level Yes, at interface level

Security Provided by CORBA Security Provided by NT security RMI security is provided by java security API.

4. Conclusion

The Distributed Object Technologies facilitate methods of

an object active on one machine to be accessed by remotely

located programs in a smooth, secure and transparent

manner. The two communication parties called client and

server programmes may be running on heterogeneous

platform both in terms of hardware as well as software. This

paper presented a analytical survey of most popular

Distributed Object Technologies, CORBA, DCOM and

RMI. The survey conducted with respect to aspects like

platform independence, language independence,

marshalling, reusability, remoting protocol, security etc. and

a comparison is presented which helps choosing technology

most suitable for one’s application.

Paper ID: SR20203002839 DOI: 10.21275/SR20203002839 1890

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 1, January 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

References

[1] Berners-Lee, Tim. "Hyper Text Transfer

Protocol". World Wide Web Consortium. Retrieved 31

August 2010.

[2] Prince, Brian. "Should Organizations Retire FTP for

Security?". Security Week. Security Week. Retrieved 14

September 2017.

[3] Dustdar, S.; Schreiner, W. (2005). "A Survey on web

services composition" . International Journal of Web

and Grid Services. IJWGS.2005.007545

[4] "Distributed Application Architecture " (PDF). Sun

Microsystem. Archived from the original (PDF) on 6

April 2011. Retrieved 2009-06-16.

[5] Herbert P. Luckett, What's News: Electronic-mail

delivery gets started, Popular ScienceArchived 2016-04-

30

[6] Conrad, Jennifer (2003). "Institutional Trading and

Alternative Trading Systems". Journal of Financial

Economics

[7] "IRC Chatiquette–Chat Etiquette". Livinginternet.com.

28 November 1995. Retrieved 19 January 2012.

[8] Arpaci-Dusseau, Remzi H.; Arpaci-Dusseau, Andrea C.

(2014), Introduction to Distributed Systems (PDF),

Arpaci-Dusseau Books.

[9] "RMI Unleashes the Highest Performing Multi-core

Processor and Product Family in the Industry, Driving

System and Performance Scalability". Press release.

RMI. May 19, 2009.

[10] J. D. Schoeffler, "A Model For Estimating Overhead in

DCOM and CORBA Function Calls", NASA Report,

1998

[11] Elfwing, R., Paulsson, U., and Lundberg,

L,Performance of SOAP in Web Service Environment

Compared to CORBA, In Proceedings of the Ninth

Asia-Pacific Software Engineering Conference, IEEE,

2002

Paper ID: SR20203002839 DOI: 10.21275/SR20203002839 1891

