
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 1, January 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The Collaborative Commons: Catalyst for Cross-

Functional Collaboration and Accelerated

Development

Ramakrishna Manchana

Independent Researcher, Dallas, TX – 75040

Email: manchana.ramakrishna[at]gmail.com

Abstract: The Collaborative Commons platform offers a strategic solution to the challenges of siloed development within organizations.

By providing a centralized repository for shared resources such as common libraries, services, infrastructure configurations, and

documentation, the Commons accelerates development cycles, improves software quality, and fosters collaboration across diverse teams.

This paper explores the key components of the Commons platform, outlines the diverse types of artifacts that can be shared, examines

implementation challenges, and highlights industry use cases and best practices.

Keywords: Collaborative Commons, cross-functional collaboration, code reuse, artifact sharing, version control, knowledge management,

platform engineering, DevOps, legacy system integration, cloud-native technologies

1. Introduction

In the modern software development landscape, the

proliferation of specialized teams (e.g., software, hardware,

firmware) and operational units (e.g., IT, security) often leads

to siloed development practices. Teams working in isolation

frequently reinvent the wheel, create incompatible solutions,

and miss opportunities for cross-pollination of ideas. This can

result in slower development cycles, duplicated effort, and

increased costs. The challenges of siloed development are not

limited to the technical realm; they can also hinder

collaboration and knowledge sharing across different

functional areas within an organization.

The Commons platform addresses these challenges by

establishing a centralized repository for shared resources.

These resources encompass a wide array of artifacts,

including common libraries, reusable services, infrastructure

configurations, documentation, and more. By making these

resources readily available to all teams, the Commons fosters

a culture of collaboration, accelerates development, and

improves the overall quality of software and systems. The

platform's effectiveness in breaking down silos and

promoting cross-functional collaboration has been

demonstrated in various industries. The purpose of this paper

is to explore the key components of the Collaborative

Commons platform, outline the diverse types of artifacts that

can be shared, examine the benefits and challenges associated

with its implementation, and delve into real-world case

studies across various industries, highlighting best practices

and future trends in the evolution of the Commons platform

concept.

2. Literature Review

The concept of a Collaborative Commons platform, while not

entirely novel, has gained significant traction in recent years

as organizations seek to streamline development processes,

foster collaboration, and leverage the power of shared

resources. This section explores existing research and

literature on related topics to provide a foundation for

understanding the theoretical underpinnings and practical

implications of Collaborative Commons platforms.

a) Collaboration and Knowledge Sharing

Numerous studies have highlighted the importance of

collaboration and knowledge sharing in software

development and IT operations. Research by Balalaie et al.

(2016) emphasizes how microservices architecture, a natural

fit for the Commons platform, enables DevOps practices,

fostering collaboration between development and operations

teams. The concept of a "shared code ownership" model,

where developers are collectively responsible for the entire

codebase, has been advocated by Extreme Programming (XP)

methodologies (Beck, 2000). This model aligns with the

Commons philosophy of shared resources and collective

responsibility for their quality and maintenance.

b) Reuse & Component Based Development

The idea of reuse has been a central theme in software

engineering for decades. Component-based development

(CBD) (Szyperski, 1998) and service-oriented architecture

(SOA) (Erl, 2005) both emphasize the creation of modular,

reusable components to reduce development time and

improve software quality. The Commons platform extends

these concepts by providing a centralized repository and

infrastructure for managing and sharing reusable artifacts

across the entire organization.

c) Platform Engineering & Internal Developer Platforms

The rise of platform engineering as a discipline has further

fueled the adoption of Collaborative Commons platforms.

Platform engineering focuses on building and maintaining

internal developer platforms (IDPs) that provide self-service

capabilities and streamline the development workflow. The

Commons platform can be seen as a core component of an

IDP, providing the foundation for shared resources and

services that accelerate development and improve operational

efficiency.

Paper ID: SR24820051747 DOI: https://dx.doi.org/10.21275/SR24820051747 1951

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 1, January 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

d) Challenges & Consideration

Existing research also highlights the challenges and

considerations associated with implementing and maintaining

Collaborative Commons platforms. Issues such as

governance (Ambler, 2005), adoption (Herbsleb et al., 2000),

and maintenance (Messerschmitt & Szyperski, 2003) have

been identified as critical factors that can impact the success

of such initiatives. Addressing these challenges requires

careful planning, clear communication, and a commitment to

continuous improvement.

e) Future Directions

While the Collaborative Commons concept has already

shown significant promise, there are several emerging trends

that could shape its future. The integration of artificial

intelligence and machine learning for resource discovery,

enhanced collaboration tools, data-driven insights, and

automated testing and validation are some of the areas where

further research and development are likely to occur.

Additionally, the expansion of the Commons platform to

include non-technical artifacts and its integration with

external repositories are potential avenues for future

exploration.

f) Conclusion (Literature Review)

The literature review reveals a rich body of research that

supports the underlying principles and benefits of the

Collaborative Commons platform. By drawing upon existing

knowledge in areas such as collaboration, reuse, platform

engineering, and overcoming implementation challenges,

organizations can better understand the potential of the

Commons platform and develop strategies for its successful

implementation. As the concept continues to evolve, ongoing

research will be essential to identify best practices, address

emerging challenges, and unlock the full potential of

Collaborative Commons platforms in driving innovation and

efficiency across organizations.

3. Architecture & Components

The Commons platform comprises several key components

that facilitate the sharing, discovery, and management of

resources:

• Repository Structure: A well-organized structure

ensures that resources are easily discoverable and

categorized, making it simple for teams to find what they

need. Metadata such as descriptions, tags, and usage

statistics can further aid in the discovery process.

• Access Control: A robust access control mechanism is

essential to ensure that only authorized users can access,

modify, or contribute resources. Granular permissions

can be assigned based on team roles, project

requirements, or the sensitivity of the resource.

• Versioning: Version control systems (e.g., Git) are

crucial for tracking changes, collaborating on

improvements, and managing compatibility between

different versions of a resource. Branching strategies can

be employed to support parallel development efforts or

to isolate experimental changes.

• Contribution Guidelines: Clear guidelines for

contributing resources to the Commons ensure

consistency, quality, and maintainability. These

guidelines may cover aspects like code style,

documentation standards, testing requirements, and

licensing.

• Search and Discovery: A powerful search functionality

enables users to quickly locate relevant resources based

on keywords, tags, or metadata. Advanced search

features like filtering and sorting can further refine search

results.

• Feedback and Rating Mechanisms: Allowing users to

provide feedback and ratings on shared resources helps

identify high-quality contributions and areas for

improvement. This can also foster a sense of community

and encourage continuous improvement.

• Knowledge Base: A centralized repository of

information that complements the shared artifacts. It

includes documentation, tutorials, best practices, FAQs,

and discussion forums, fostering a culture of learning and

knowledge sharing. The knowledge base empowers

teams to understand and utilize shared resources

effectively, promoting collaboration and maximizing the

value of the Commons platform.

a) Types of Shared Artifacts and Colloborating Teams

The Collaborative Commons platform can host a diverse

range of artifacts, catering to the needs of various teams

across the organization:

Here is the table of artifacts, collaborative teams, and the

description:

Artifact Type Description Collaborating Teams Potential Benefits

Code & Libraries

Common Libraries
Code modules for authentication, data processing, UI

components, logging, etc.
Software Engineering

Code reuse, standardized core

functionalities, faster

development

Reusable

Components

Larger, self-contained modules with specific

functionality (e.g., shopping cart, payment processing).
Software Engineering

Modularity, improved

maintainability, reduced

development time

Frameworks
Collections of libraries and tools for building specific

types of applications.
Software Engineering

Standardized development

practices, accelerated

development

SDKs and APIs

Software development kits and application

programming interfaces that allow different systems to

communicate.

Software Engineering
Seamless integration, improved

interoperability

Infrastructure & DevOps

Paper ID: SR24820051747 DOI: https://dx.doi.org/10.21275/SR24820051747 1952

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 1, January 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Hardened Images
Pre-configured virtual machine templates for secure

and consistent deployments.

IT/Operations,

Security

Enhanced security, streamlined

deployment, reduced

configuration errors

Infrastructure as Code

(IaC)

Templates (e.g., Terraform, CloudFormation) for

provisioning and managing infrastructure.

IT/Operations,

DevOps

Infrastructure automation,

improved consistency, version

control for infrastructure

Configuration

Management Scripts

Scripts (e.g., Ansible, Chef, Puppet) for automating the

configuration of servers and applications.

IT/Operations,

DevOps

Automated configuration

management, reduced manual

errors, improved scalability

Docker Images

Containerized applications or services for easy

deployment and portability across environments. These

images can be stored and shared through container

registries like Docker Hub or private registries hosted

on platforms like Artifactory.

DevOps,

IT/Operations,

Software Engineering

Consistent deployment, improved

portability, simplified

dependency management

Helm Charts

Packages for deploying applications on Kubernetes

clusters, simplifying complex deployments. These can

also be stored and shared in artifact repositories like

Artifactory.

DevOps,

IT/Operations

Streamlined Kubernetes

deployments, improved release

management

Deployment Scripts
Scripts for automating the deployment process of

applications and services.

DevOps,

IT/Operations

Automated deployments, reduced

manual errors, faster release

cycles

Documentation & Knowledge

API Reference

Guides

Detailed explanations of how to use libraries, APIs, and

services.

Software Engineering,

Technical Writing

Improved developer experience,

reduced onboarding time, better

understanding of shared

resources

System Design

Documents

High-level overviews of system architecture and

components.

Software Engineering,

Technical Writing

Clear understanding of system

design, improved collaboration

between teams

Architectural

Diagrams

Visual representations of system structure and

relationships between components.

Software Engineering,

Technical Writing

Enhanced understanding of

system architecture, improved

communication

Tutorials Step-by-step guides for common tasks.
Software Engineering,

Technical Writing

Facilitated learning, reduced

learning curve for new team

members

Best Practices
Guidelines for optimal use of the platform and its

resources.

Technical Writing,

Various Teams

Standardized practices, improved

code quality, reduced errors

Troubleshooting

Guides

Resources for diagnosing and resolving common

problems.

Technical Writing,

Support Teams

Faster issue resolution, improved

user experience

Data & Analytics

Sample Datasets
Anonymized or synthetic datasets for testing and

development purposes.

Data Science/Machine

Learning, Quality

Assurance

Realistic testing, accelerated

development of data-driven

applications

Test Data Generators Tools for creating realistic test data.

Data Science/Machine

Learning, Quality

Assurance

Efficient test data creation,

improved test coverage

Data Models
Schemas and descriptions of data structures used within

the organization.

Data Science/Machine

Learning, Quality

Assurance

Data standardization, improved

data understanding, better

collaboration between teams

Data Dictionaries Descriptions of data elements and their meanings.

Data Science/Machine

Learning, Quality

Assurance

Clear data definitions, improved

data governance

Anonymized

Production Data

Subsets of production data that are scrubbed of

sensitive information, useful for analysis and training

machine learning models.

Data Science/Machine

Learning, Legal/

Compliance

Data-driven insights, improved

model training, compliance with

data privacy regulations

Design & Branding

Design Patterns Solutions to common software design problems. Software Engineering
Improved code quality,

maintainability, and reusability

Style Guides
Guidelines for consistent code formatting and

conventions.
Software Engineering

Code consistency, improved

readability, easier collaboration

Presentation

Templates
Branded templates for creating slides and documents. Marketing, Design

Brand consistency, professional

appearance, timesaving

Icon Libraries Collections of icons for use in user interfaces. Design
Visual consistency, improved

user experience

Other

Research Findings
Reports and summaries of research conducted within

the organization.

Research and

Development

Knowledge sharing, informed

decision-making

Scripts
Useful scripts for automation, data processing, or

system administration tasks.

IT/Operations,

DevOps

Automation, improved

efficiency, reduced manual errors

Paper ID: SR24820051747 DOI: https://dx.doi.org/10.21275/SR24820051747 1953

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 1, January 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Tests & Quality Assurance

Tests
Unit, integration, and end-to-end tests that ensure the

quality of software components.

Software Engineering,

Quality Assurance

Improved software quality,

reduced defects, faster release

cycles

b) Versioning and Collaboration

The Collaborative Commons platform leverages version

control systems (VCS) to manage and track changes to shared

resources. This enables teams to collaborate effectively,

experiment with new ideas, and maintain compatibility

between different versions of a resource. Popular VCS tools

like Git, SVN, or Mercurial facilitate collaborative workflows

through branching and merging capabilities, allowing

multiple teams to work on the same codebase concurrently

without conflicts.

Additionally, artifact repositories like JFrog Artifactory and

Nexus Repository offer specialized features for managing

binary artifacts. These repositories provide versioning,

metadata management, access control, promotion through

development lifecycles, and integration with CI/CD

pipelines, ensuring shared resources are properly versioned,

organized, and accessible to the right teams throughout the

development lifecycle.

The combination of VCS and artifact repositories empowers

teams to collaborate seamlessly, track changes, and maintain

a history of shared resources, fostering transparency and

accountability. It also enables experimentation and

innovation by allowing teams to create branches for new

features or bug fixes without affecting the main codebase.

c) Benefits of the Commons Platform

The adoption of a Collaborative Commons platform brings

numerous benefits to organizations, both in terms of technical

efficiency and cultural transformation:

• Accelerated Development: Teams can leverage

existing, well-tested resources, eliminating the need to

reinvent the wheel for common tasks. This frees up

valuable time and resources to focus on higher-value

activities.

• Improved Quality: Shared resources are typically

subjected to more rigorous testing and review than

individual projects, resulting in higher quality and fewer

bugs.

• Increased Collaboration: The Commons fosters a

culture of collaboration and knowledge sharing, breaking

down silos between teams and encouraging cross-

functional interactions.

• Enhanced Consistency: Shared resources promote the

use of consistent tools, processes, and conventions across

the organization, leading to greater standardization and

interoperability.

• Reduced Costs: By avoiding duplication of effort and

leveraging existing investments, the Commons can

significantly reduce development and maintenance costs.

• Faster Time to Market: With readily available

resources, teams can rapidly assemble solutions and

deliver products and services to market faster.

• Innovation: The Commons platform enables teams to

build upon each other's work, fostering innovation and

creativity by freeing them from repetitive tasks

4. Challenges and Considerations

While the benefits of a Collaborative Commons platform are

compelling, several challenges and considerations need to be

addressed for successful implementation:

• Governance: Establishing clear ownership, decision-

making processes, and contribution guidelines is crucial

for maintaining order and ensuring the quality of shared

resources. A well-defined governance model helps

prevent conflicts, ensure fair representation, and promote

trust among contributing teams.

• Adoption: Overcoming cultural resistance to sharing and

promoting the benefits of the Commons can be a

significant hurdle. Encouraging participation through

incentives, recognition, and demonstrating the value of

shared resources is essential.

• Maintenance: Ensuring resources are kept up-to-date

and relevant over time requires dedicated effort and

resources. Establishing a process for reviewing,

updating, and deprecating resources helps maintain the

value of the Commons.

• Intellectual Property: Defining policies for ownership

and licensing of shared resources is essential, especially

when dealing with external contributions or open-source

components. Clear guidelines help avoid legal issues and

ensure fair use of intellectual property.

• Security: Protecting sensitive information and ensuring

access controls are appropriate is paramount.

Implementing security measures such as encryption,

authentication, and authorization helps safeguard the

integrity and confidentiality of shared resources.

• Technical Debt: As with any software system, the

Commons platform can accumulate technical debt over

time. Regular refactoring, code reviews, and adherence

to best practices are essential to maintain the platform's

health and performance.

• Scalability: As the number of resources and users grows,

the platform needs to scale to accommodate increased

demand. Designing a scalable architecture and

employing appropriate technologies is crucial to ensure

the platform's responsiveness and availability.

5. Knowledgebase as a Component of

Collaborative Commons Platform

While the primary focus of the Collaborative Commons

platform is on sharing code and artifacts, it's equally

important to provide a centralized location for

documentation, tutorials, best practices, and discussions

related to these resources. This is where a knowledge base

comes into play.

A knowledge base is a repository of information that is

organized for easy access and retrieval. In the context of the

Commons platform, a knowledge base can serve as a central

hub for all documentation related to shared resources. It can

include:

Paper ID: SR24820051747 DOI: https://dx.doi.org/10.21275/SR24820051747 1954

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 1, January 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

• API Reference Guides: Detailed explanations of how to

use libraries, APIs, and services.

• System Design Documents: High-level overviews of

system architecture and components.

• Architectural Diagrams: Visual representations of

system structure and relationships between components.

• Tutorials: Step-by-step guides for common tasks.

• Best Practices: Guidelines for optimal use of the

platform and its resources.

• Troubleshooting Guides: Resources for diagnosing and

resolving common problems.

• FAQs: Answers to frequently asked questions.

• Discussion Forums: Spaces for users to ask questions,

share ideas, and collaborate on solutions.

By integrating a knowledge base into the Commons platform,

you create a one-stop shop for both the code and the

information needed to understand and utilize it effectively.

This fosters a culture of learning and knowledge sharing,

empowering teams to make the most of shared resources and

collaborate more effectively.

6. Architecture Considerations

The architecture of the Commons platform plays a crucial role

in its scalability, performance, and ease of use. Several

architectural patterns and technologies can be employed to

optimize the platform's design:

• Microservices Architecture: As discussed earlier, a

microservices architecture is a natural fit for the

Commons platform. It promotes modularity, scalability,

and independent deployment of shared resources.

• API Gateways: An API gateway acts as a single-entry

point for clients accessing multiple services within the

Commons platform. It provides features such as

authentication, rate limiting, caching, and routing,

simplifying the consumption of shared resources.

• Service Meshes: A service mesh is a dedicated

infrastructure layer for handling service-to-service

communication in a microservices architecture. It

provides features like traffic management, observability,

and security, making it easier to manage and scale shared

services.

• Containerization: Containerization (e.g., using Docker)

allows for the packaging of shared resources and their

dependencies into portable units that can be easily

deployed and run on different environments without

compatibility issues.

• Cloud Platforms: Public cloud platforms like AWS,

Azure, or Google Cloud provide scalable infrastructure

and managed services that can be leveraged to host and

manage the Commons platform. This can reduce the

operational overhead and allow teams to focus on

developing and sharing resources.

7. Enabling the Collaborative Commons in

Legacy and Modern Systems

To fully realize the benefits of the Collaborative Commons

platform, it's essential to integrate it seamlessly into both

legacy and modern systems. This requires different

approaches depending on the existing technology stack and

architecture.

a) Legacy Systems:

Integrating the Commons platform with legacy systems can

be challenging but is crucial for maximizing its benefits

across the organization. Strategies for integrating with legacy

systems include:

• API Wrappers: One approach for legacy systems is to

create API wrappers around existing components or

functionalities. This allows them to be exposed as

reusable services that can be consumed by other

applications through the Commons platform.

• Gradual Migration: For monolithic legacy applications,

a gradual migration towards a microservices architecture

can be adopted. This involves breaking down the

monolith into smaller, independent services that can be

individually managed and shared through the Commons.

• Refactoring and Extraction: In some cases, it might be

possible to refactor legacy code and extract reusable

components that can be published as libraries or services

within the Commons. This requires careful analysis and

testing to ensure compatibility and maintainability.

b) Modern Systems:

Modern systems, especially those built on microservices

architectures, are inherently well-suited for integration with

the Commons platform. Key considerations for modern

systems include:

• Microservices Architecture: Modern systems built on a

microservices architecture are well-suited for the

Commons platform. Microservices are designed to be

loosely coupled and independently deployable, making

them ideal candidates for sharing and reuse.

• Cloud-Native Technologies: Leveraging cloud-native

technologies such as containers (e.g., Docker) and

orchestration platforms (e.g., Kubernetes) can simplify

the deployment and management of shared resources

across different environments.

• API-First Design: Designing new systems with an API-

first approach ensures that functionalities are exposed

through well-defined APIs, making them easily

accessible and reusable by other teams through the

Commons platform.

c) Industry Case Studies

The Commons platform concept has been embraced by

several leading technology companies to streamline their

development processes and foster collaboration across teams.

Here are a few notable examples:

• Netflix: Netflix's internal platform, known as the "Paved

Road," provides a comprehensive set of shared libraries,

services, and tools that enable their engineering teams to

rapidly build and deploy microservices. This platform

has been instrumental in scaling their streaming service

to millions of users worldwide.

• Amazon: Amazon's internal platform teams develop and

maintain a wide array of shared services that are used

across their various businesses, including retail, cloud

computing, and digital media. These services provide

essential functionalities such as authentication,

authorization, messaging, and data storage, allowing

Paper ID: SR24820051747 DOI: https://dx.doi.org/10.21275/SR24820051747 1955

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 1, January 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Amazon's teams to focus on their core business logic

rather than reinventing the wheel.

• Google: Google's engineering culture strongly

emphasizes code reuse, and they have a robust internal

platform for sharing libraries and tools. This platform,

known as "Google3," contains a vast collection of code,

documentation, and best practices that are accessible to

all Google engineers.

• Spotify: Spotify's engineering teams leverage a shared

platform called "Backstage" to manage their

microservices architecture. Backstage provides a

centralized catalog of services, tools for building and

deploying new services, and a developer portal for

accessing documentation and support.

These examples demonstrate the effectiveness of the

Commons platform concept in real-world scenarios. By

adopting a similar approach, organizations can achieve

significant benefits in terms of development efficiency, code

quality, and collaboration.

d) Industry Adoption: Sucessful Implementations of

Commons Framework

The Commons Framework, as outlined in the table below, has

been successfully implemented at various companies across

industries like Retail, Logistics, CPG, Supply Chain, and

Manufacturing. The widespread adoption of these common

artifacts underscores the framework's adaptability and its

effectiveness in promoting collaboration and efficiency. The

diverse projects within the framework, ranging from code

libraries to standardized deployment mechanisms, have

empowered these organizations to overcome development

challenges and streamline their processes.

The table below showcases the common artifacts that have

been successfully implemented across these industries,

highlighting their key benefits and the packaging methods

used for their distribution and management.

Common

artifact
Resources

Packaging

Methods
Benefits

Library-

commons

Java classes,

Properties,

Spring

Components,

Hibernate

Components

Jar

Code reuse,

standardized

core functionalities,

faster development

Ui-

commons

JavaScript files,

Csv, Methods,

functions, JSON

classes,

Validations,

Jquery, Html

Pages, images &

Gifs

Zip

UI consistency,

reusable UI elements,

efficient updates

asset-

commons

Logos, Org level

components
Zip

Centralized asset

management,

brand consistency

Webapp-

commons

Common

webpages

included in all

webapp projects

War

overlay

Shared web page

templates,

streamlined updates

npm-

commons

Angular

components

Npm

modules

Reusable Angular

components,

improved frontend

development

efficiency

Service-

commons

Services common

across projects

with REST API

versioning

Jars or

Dockers

Standardized

services, seamless

integration, API

versioning support

Parent-

pom

POM with

framework

versions

accepted by

framework,

Database

versioning with

Flyway

Jar with

flyway

Consistent

framework versions,

simplified

dependency

management,

database migration

support

Docker-

commons

Optimized Docker

images for

projects

Docker

image

Standardized and

efficient

containerized

deployments

Product

packing -

Kubernetes

Baselining the

releases

Helm

Charts

Simplified

Kubernetes

deployments,

improved release

management

AMI,

Golden

Image

OS Level Images

with required

softwares

AMI

Accelerated

provisioning,

consistent

development/testing

environments

The widespread adoption of these common artifacts further

validates the potential of the Collaborative Commons

approach to break down silos, enhance collaboration, and

foster a culture of reuse. This leads to faster development

cycles, improved software quality, and increased overall

efficiency. The positive outcomes observed across multiple

industries demonstrate the value and relevance of the

Collaborative Commons approach in today's dynamic

business landscape.

In the subsequent sections, we will delve into specific case

studies and best practices that highlight the tangible benefits

and lessons learned from implementing the Commons

Framework.

8. Best Practices

Implementing and maintaining a successful Commons

platform requires adherence to certain best practices:

• Start Small and Iterate: Begin with a few high-value

artifacts and gradually expand the scope of the Commons

as teams gain familiarity and trust in the platform.

• Focus on Quality: Ensure that shared resources are well-

documented, thoroughly tested, and maintained

regularly. High-quality resources are more likely to be

adopted and reused by other teams.

• Promote Adoption: Actively promote the benefits of the

Commons and make it easy for teams to contribute and

consume resources. This can involve providing training,

showcasing successful use cases, and recognizing

contributions.

• Establish Clear Governance: Define clear ownership,

decision-making processes, and contribution guidelines

to ensure that the Commons is managed effectively and

remains an asset for the organization.

Paper ID: SR24820051747 DOI: https://dx.doi.org/10.21275/SR24820051747 1956

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 1, January 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

• Monitor and Measure: Track the usage and impact of

shared resources to identify areas for improvement and

demonstrate the value of the platform.

9. Extending the Commons Platform

The types of artifacts shared within the Collaborative

Commons platform can be further expanded beyond the ones

listed in the previous section. By leveraging the capabilities

of artifact repositories like JFrog Artifactory and Nexus

Repository, organizations can include additional artifact types

such as:

• Build Artifacts: Compiled binaries, executables, and

other build outputs can be stored and managed within the

Commons, providing traceability and reproducibility of

builds.

• Dependencies: External libraries and packages used in

projects can be centralized, improving build performance,

and reducing the risk of dependency conflicts.

• Deployment Artifacts: Packaged applications or services

ready for deployment can be stored and versioned,

streamlining the deployment process and enabling

rollback capabilities.

• Terraform Modules: Reusable Terraform configurations

can be shared, promoting infrastructure as code

reusability, and simplifying infrastructure management.

• Security & Compliance Artifacts: Vulnerability scan

results and license compliance reports can be included to

enhance security and ensure compliance with open-source

licenses.

By extending the types of artifacts supported by the

Commons platform, organizations can further leverage its

benefits to streamline various aspects of the software

development lifecycle, from development and testing to

deployment and security. The platform's flexibility and

adaptability make it a valuable tool for fostering collaboration

and driving efficiency across diverse teams and functions.

Artifact

Type
Description

Collaborating

Teams
Potential Benefits

Build Artifacts

Build Output

Compiled

binaries,

executables,

and other

build outputs.

Software

Engineering,

DevOps, QA

Centralized storage

and management of

build artifacts,

traceability, and

reproducibility of

builds.

Dependencies

Libraries and

Packages

External

libraries and

packages used

in projects.

Software

Engineering,

DevOps

Centralized

management of

dependencies,

improved build

performance, and

reduced risk

of dependency

conflicts.

Deployment Artifacts

Release

Bundles

Packaged

applications

or services

ready for

deployment.

DevOps,

IT/Operations

Streamlined

deployment process,

version control for

releases,

and rollback

capabilities.

Container Images

Docker

Images

Containerized

applications

or services for

easy

deployment

and

portability

across

environments.

DevOps,

IT/Operations,

Software

Engineering

Consistent

deployment,

improved

portability,

simplified

dependency

management.

Infrastructure as Code (IaC)

Terraform

Modules

Reusable

Terraform

configurations

for

provisioning

and managing

infrastructure.

DevOps,

IT/Operations

Infrastructure as

code reusability,

improved

consistency, and

simplified

infrastructure

management.

Security &

Compliance

Vulnerability

Scan Results

Reports from

security scans

of artifacts.

Security,

DevOps

Identification and

remediation of

security

vulnerabilities,

improved

compliance.

License

Compliance

Reports

Reports on

the licenses of

used

dependencies.

Legal,

DevOps

Ensuring

compliance with

open-source

licenses, mitigating

legal risks.

Note: The specific artifact types and their associated benefits

might vary depending on the organization's needs and the

chosen artifact repository. The examples provided here serve

as a starting point for exploring the potential extensions of the

Commons platform.

10. Future Trends

The Commons platform concept is continuously evolving,

with new trends and technologies emerging to further

enhance its capabilities. Some of the future trends to watch

out for include:

• Enhanced Collaboration Tools: Integrating real-time

collaboration features like code editing, commenting,

and discussions directly within the Commons platform.

This can foster a more collaborative development

environment and streamline communication between

teams.

• Data-Driven Insights: Utilizing usage analytics to

identify the most popular or impactful resources,

enabling better decision-making and prioritization of

maintenance efforts. This data can also be used to

identify areas where new resources might be needed.

• Automated Testing and Validation: Implementing

automated testing frameworks to ensure the quality and

compatibility of shared resources before they are

published to the Commons. This can help prevent bugs

and compatibility issues from affecting downstream

consumers.

Paper ID: SR24820051747 DOI: https://dx.doi.org/10.21275/SR24820051747 1957

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 1, January 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

• Integration with External Repositories: Seamlessly

connecting the Commons platform with public code

repositories like GitHub or npm, allowing teams to

leverage both internal and external resources. This can

provide access to a wider range of resources and promote

collaboration with the open-source community.

• Expansion to Non-Technical Artifacts: Including non-

technical assets like marketing materials, legal

documents, and HR guidelines to foster cross-functional

collaboration across the entire organization. This can

help break down silos between departments and improve

overall organizational efficiency.

11. Conclusion

The Collaborative Commons platform represents a paradigm

shift in how organizations approach software development

and IT operations. By promoting collaboration, reusability,

and knowledge sharing, it enables teams to break down silos,

accelerate development cycles, and deliver higher quality

products and services. While implementing and maintaining

a Commons platform presents challenges, the potential

benefits far outweigh the costs, making it a valuable

investment for organizations seeking to stay competitive in

today's fast-paced digital landscape. The successful adoption

of the Commons Framework across various industries, as

exemplified by the case studies presented, further reinforces

its value in driving efficiency, innovation, and cross-

functional collaboration.

Glossary of Terms

• Artifact: A tangible by-product produced during the

software development process, such as code,

documentation, or test results.

• CI/CD: Continuous Integration/Continuous Delivery, a

set of practices that automate the integration, testing, and

delivery of code changes.

• Common Library: A collection of reusable code

modules that perform common tasks.

• Hardened Image: A virtual machine template that has

been pre-configured and secured for specific purposes.

• Infrastructure as Code (IaC): The practice of

managing and provisioning infrastructure through

machine-readable definition files.

• Microservices Architecture: An architectural style that

structures an application as a collection of loosely

coupled services.

• Service Mesh: A dedicated infrastructure layer for

handling service-to-service communication in a

microservices architecture.

• Version Control: A system that records changes to files

or sets of files over time so that you can recall specific

versions later.

• Knowledge Base: A centralized repository of

information, including documentation, tutorials, and best

practices, that is organized for easy access and retrieval.

References

[1] Fowler, M. (2014). Microservices: a definition of this

new architectural term. martinfowler.com.

[2] Balalaie, A., Heydarnoori, A., & Jamshidi, P. (2016).

Microservices Architecture Enables DevOps: Migration

to a Cloud-Native Architecture. IEEE Software, 33(3),

42-52.

Paper ID: SR24820051747 DOI: https://dx.doi.org/10.21275/SR24820051747 1958

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

