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Abstract: In the contemporary landscape of data engineering, ETL (Extract, Transform, Load) processes are pivotal for efficient data 

management and analytics. Apache Airflow has emerged as a powerful platform for orchestrating complex ETL workflows, offering 

robust capabilities for automation, scheduling, and monitoring. This article delves into the core functionalities and architecture of 

Apache Airflow, illustrating its efficacy in managing ETL pipelines. It covers the creation and management of Directed Acyclic Graphs 

(DAGs), task scheduling, and execution, as well as integration with various external systems. Additionally, the article highlights best 

practices for optimizing performance and ensuring reliability in ETL operations. Through comprehensive examples and case studies, 

readers will gain insights into the practical application of Apache Airflow for streamlined data workflows, ultimately enhancing data 

processing efficiency and accuracy.  
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1. Introduction to ETL Processes 
 

ETL simply stands for extract, transform, and load. While 

the words themselves are explanatory, it's important to note 

that there are different ways to perform ETL operations.  

 

For instance, many development teams believe in 

performing multiple ETL operations through scripts that are 

scheduled on cron jobs. As one can imagine, this approach 

not only has to scale facing dynamic requirements, but it 

becomes difficult for scheduling as well. Similarly, some of 

these scripts tend to perform ETL operations that are second 

- degree parameters of the script itself.  

 

Another way in which ETL can be performed is setting up 

batch jobs. Many cloud - based services provide capabilities 

that allow the individual to schedule a job which involves 

specifying functions that perform ETL operations. While 

many cloud services provide predefined functions that we 

could take advantage of, one of the limitations of using such 

a service is that we are often left in isolation with certain 

parameters. For instance, these services provide a certain 

driver that is compatible with them, while all the functions 

should use this driver. This results in the user being trapped 

as far as the choice of technologies are concerned.  

 

1.1 Definition and Importance of ETL 

 

Modern data analytics practice almost always involves the 

collection, preparation, and transformation of raw data - a 

step commonly characterized as ETL (extract, transform, 

load). Decades ago, ETL was executed mainly by batch 

processes that moved data mostly at a particular frequency 

(such as weekly, daily or hourly). In the current context, data 

ETL typically involves the reification of data flow processes 

that run continuously in real time, as well as at scheduled 

intervals. ETL engineering frequently attempts to optimize 

these triple data flow problems (batch, real - time, and 

continuous) by choosing the right tools and languages, and 

the right amount of oversight, governance, and management 

of the data process.  

 

Industry has produced various tools, libraries, and domain - 

specific languages to address these data flow problems in 

diverse data scenarios and environments: ETL tools such as 

Talend, Alteryx, Pentaho, and Informatica, as well as Unix 

system utilities such as cat, awk, and sed, and programming 

languages like R, Perl, Python, and their associated libraries, 

are frequently used to create complex batch - oriented 

transform - and - transition processes. Real - time data 

processing and streaming frameworks such as Apache Spark, 

Kafka, and Nifi, among others, facilitate the construction of 

resilient streaming processes. Recent software frameworks 

and libraries allow data practitioners to effortlessly 

orchestrate these transitions at scale: Apache NiFi, Pass, 

Workflow (percolate), Bubbles (Airflow/link), Conductor, 

Digdag, Ruigi, Marionette Collective, Chronos, Flink, 

Oozie, and Azkaban are only a few examples of such tools. 

Although these tools often fulfill their primary mission, no 

clear industry standard as of yet fully allows and simplifies 

organization, orchestration, and monitoring of ETL - based 

data portability challenges at scale and ease.  

 

1.2 Key Components of ETL Processes 

 

Before talking about automation, we need a clear 

understanding of the tasks involved with ETL. Of course, it 

goes without saying that we start with extraction and add a 

transformation and load component to our processes. Some 

processes require a higher level of understanding and, thus, a 

fourth translation step. No matter how complex or simple the 

ETL process, we must all adhere to the same rules: the 

underlying data must always be available; it is the scope of 

the architecture to ensure data is easily accessible.  

 

Central to this concept is a list of key components of an ETL 

process. The first component refers to the data itself; any 

part of the ETL process can be included in generating data. 

This might only mean summarization, but it will also include 
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data collected during extraction, generated and archived to 

extract. Other data is used only during transformation; for 

example, data cleaning and correction is completed. Data is 

also stored and required for running an ETL process, 

including cloning and storing. Data extraction and 

generating the pipeline, and log the problem are illustrated in 

a variety of data source or data. Great lots to partner 

products were location - based, but not necessarily available 

to support multiple steps throughout the ETL process. 

Consequently, users did not have the ability to support ETL 

without the development of custom scripts.  

 

2. Overview of Apache Airflow 
 

Developed at Airbnb, Apache Airflow is an open - source 

application for scheduling, monitoring, and orchestrating 

arbitrarily complex as well as relatively simple data - related 

workflows. The code base is written in Python, the 

hypervisor of the data science community. Airflow is 

particularly well - suited for ETL tasks. It allows teams to 

execute ETL workflows that are streaming and which are 

partitioned into (identical) time intervals. The latter results in 

data pipelines that are simple and easier to maintain because 

a single task can encapsulate the processing of many time 

periods. Airflow deals well with the rate of data growth, and 

it is relatively simple to horizontally scale the Airflow 

infrastructure. In addition, the workflows are modeled in 

Python, which results in data science teams being more 

productive, and it allows data science teams to work with 

technologies they already know, such as Pandas, 

Sqlalchemy, and/or Spark. [1] 

By encapsulating tasks in Docker containers, Airflow also 

allows for heterogeneous processing demands, where the 

type of task (I/O bound, CPU bound, etc.) defines the 

machine on which they are run, including any required 

processing frameworks or libraries. The deployment of 

Dask, Apache Beam, Spark, Pandas, Jupyter, and Flask tasks 

are all possible in Kubernetes. By making heavy use of 

Docker, both Dask and Apache classifiers, often needed for 

this type of work, can be installed as part of the base image, 

while Spark tasks are simpler when deployed through either 

images or DockerHubs. Finally, Airflow allows both for on - 

premises and off - premises deployment, including cloud - 

based solutions.  

 

2.1 Introduction to Apache Airflow 

 

Apache Airflow is an open - source platform that facilitates 

the orchestration and automation of complex, primarily data 

- driven workflows. By using Airflow, data engineers can 

author, schedule, and monitor workflows programmatically 

from simple task chains to complex, multi - step data 

pipelines. Airflow was originally developed at Airbnb. Since 

the project's open - source release, Airflow has seen 

widespread adoption and a strong community of 

contributors. With a choice of plugins and a high degree of 

user customization, Airflow can represent it any way you 

like. It's a relevant tool for any data pipeline formed with a 

connection of sharing and understanding of the context and 

state of the automation.  
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Data pipeline orchestration tools (such as Apache Airflow) 

are increasingly being asked to solve problems that can only 

be solved by ETL tools. In some enterprises, the advent of 

the E in ELT (loading data into cloud platforms first and 

transforming in the platform) has led to useful delegation of 

the T function to cloud platforms. However, orchestration 

tools such as Apache Airflow need to continue to assume 

roles of crucial importance for data engineers to earn 

retention in their respective data engineering roles. Being 

able to deliver into more locations with common paradigms 

will help Apache Airflow in particular and orchestration 

tools in general to retain their place at the center of many 

organizations' data architectures. [2] 

 

2.2 Key Features and Benefits 

 

The primary role of Apache Airflow is system orchestration 

and task automation. It is a powerful tool with a rich 

ecosystem of a wide variety of providers of different 

services, with which to integrate. This makes Airflow 

suitable for developing the overall Data Lakes & Analytics 

platforms. [4] 

 

We can acknowledge the main benefits: Ad Hoc parallel 

ETL code parallelization, with no modifications in the 

DAGs. Very handy Airflow UI - for developers, analysts, 

ETL Engineers, Data Scientists, DevOps, and Data Ops. 

Workflow scheduling - we don't need to manually trigger 

pipelines. Airflow distributes, monitors and tests the data 

processing. It recognizes the pipeline result, and if negative, 

does not trigger the next pipeline.  

 

Airflow can monitor a wide variety of processing: ETLs, 

AI/ML APIs, Data Lake downloads, and loads between on - 

prem deployments and cloud environments. Task retries - it 

retries the tasks if one fails - as long as the other upstream 

task completes successfully. We will configure the number 

of retries and wait time for each of the tasks. The developer 

community - a large and very active audience. If we have 

issues we didn't solve, we can get support from Data 

Engineer community at Stack Overflow. With such a rich 

ecosystem, we could get our answer from there in less than 

one hour. [3] 

 

3. Setting Up Apache Airflow 
 

By definition, a directed acyclic graph, or a DAG, is a graph 

where edges have a direction (they go from parent to child), 

and where there are no cycles. In other words, you could 

start your day by going to school, then go to work, then go 

home. But you couldn't go to school after going to work and 

then going home. In programming, DAGs are important in 

the visualization of the steps needed to achieve a specific 

goal. To set them up, we need to understand the topology of 

the data pipeline and the dependencies amongst the different 

steps needed in the pipeline. Your project setup will have a 

bunch of DAGs, and each DAG will describe the different 

steps in an end - to - end ETL orchestration workflow.  

 

In Apache Airflow, each DAG is a set of tasks. The ETL 

function for the pipeline is the task of each node in the 

graph. Each task is a piece of work in the workflow, and 

they all have to come together to complete the DAG. Task 

dependencies allow tasks to only start when one or more 

tasks are in the successful state. In this way, from the top - 

level, we escalated the how question to the more practical 

combination of what do I have to do, and in which order, to 

execute the steps required to achieve the final output.  

 

3.1 Creating and Managing DAGs 

 

The Directed Acyclic Graphs or DAGs are dataflow ones 

converting the high - level workflow logically to clearly 

defined tasks' configurations that are run by workers to 

ultimately perform their duties. Task metadata persists 

execution variables. Each DAG represents a value passed 

from outside, while each task - an action that relies on that 

parameter. DAGs themselves are valuable and can be 

complimented by the concept of an External Task in which a 

new DAG is created instead of a new Task, but all the nodes 

that were using the external task to signify that work is done 

can now reference the external DAG to query and dissect its 

logic.  

 

The power of the use of graphs is beautifully illustrated by 

the Airflow's parent possibilities. It's easy to create parental 

child relations with a constraint that a child may only be 

executed if the parent was successful. The recursion pattern 

may be executed until a defined limit.  

 

DAGs are defined in a. py file that gets executed and parsed 

by the scheduler at a defined run interval, which then maps 

out the blueprint for Worker actions. Custom operators may 

be created to accommodate required actions. Crucial 

parameter in DAG definition is the schedule_interval. 

Schedule interval is the periodicity of DAG runs in the 

format of cron expression, and DAG's can be set off by 

triggering the scheduling of this property, by CLI command, 

web interface, or by another DAG. Being launched they 

check if the task should run, and Task instances fire off 

workers that execute the developer's logic. Optionally the 

Unique constraint can be helpful to let Airflow know that the 

same task could be reused across multiple runs. In long 

running operations it may happen that the task is yanked in 

and out of the execution queue, but we are only interested in 

the task run with the dag_run execution.  

 

4. Automating ETL Workflows with Apache 

Airflow 
 

The main event in an ETL project is the creation of 

workflows. The ETL schedule is important to keep the 

project working efficiently and to keep the workflow on the 

right execution path. Workflows are sets of tasks that, in 

total, accomplish a particular kind of work. Complex 

workflows build on combinations of other workflows and 

data - driven dependencies. With Airflow, the workflows are 

the dynamically generated Directed Acyclic Graphs (DAGs) 

that organize and coordinate the user's tasks. Each DAG, a 

Python script, must define a unique dag_id. The data 

engineer can provide an ordered set of default args and 

provide metadata for each DAG. These can specify RBAC 

settings and start, end, and execute times as well as 

Paper ID: SR24801073723 DOI: https://dx.doi.org/10.21275/SR24801073723 1811 

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2019): 7.583 

Volume 9 Issue 10, October 2020 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

deschedule intervals. With DAG objects, the Airflow 

Pipeline objects can schedule the workflow.  

 

4.1 Defining ETL Tasks in DAGs 

 

To keep our ETL process manageable, we will break down 

the entire process into multiple tasks in a Directed Acyclic 

Graph (DAG). A DAG is a model that represents a sequence 

of tasks where some of the tasks are dependent on the others. 

The sequence assures that if a task depends on other tasks, 

these other tasks will be executed first - and this allows us to 

walk the path of the graph without repeating a node.  

 

In computerized systems, the sequential tasks that need to be 

executed can happen because a process is dependent on the 

one before to operate, as in a chain; or because there is a 

natural sequence of insertion/ transference/ 

organization/transformation, etc., on the items processed by 

the tasks (ETL tasks, for example).  

 

In our case, it's also important to make sure that our ETL 

process continues to be a reactive process: If Team A decides 

to start uploading data at the same time every day, we should 

be able to accommodate that. Given a DAG to define, we 

need to lay down the edges of the graph to establish the 

order of the execution of our tasks - by setting up the so - 

called "task dependencies". One thing to bear in mind is that, 

at a given point in time, in our ETL process there should be 

multiple tasks running, each one working on a different 

portion of the data we want to process, in parallel with the 

other tasks. This will make sure that our ETL process will be 

able to scale with increased data loads.  

 

4.2 Scheduling and Monitoring ETL Jobs 

 

A DAG runs four times and is disabled after a successful 

execution. The first task plays the role of populating and 

preparing the target table and takes care of creating and 

recreating the target table. This operation may be part of a 

pre - ETL session, but we merge it into the airflow operation 

for simplicity. The other four tasks run the actual ETL 

operations. The first task operates on data which is less than 

30 days (the number is arbitrary) old. The final three process 

older data and provide a 12 - month rolling total (month - to 

- date, previous month, and second prior month). After the 

last task 0528 - Airflow ETL Orchestration 165 is run, a final 

task performs some record count verification, and post - ETL 

activities may also be added. The actual DAG definition is 

straightforward. It consists of ten basic operations. Airflow's 

idea of an ETL process may be broader and more 

encompassing than the traditional concept; for example, 

basic administrative operations like table creation may be 

included as well as more typical ETL - type operations. 

Ultimately, the DAG is converted to Kubernetes pod 

operators on the Airflow Toaster k8s.  
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Airflow UI: Airflow provides a very powerful and modular 

UI. The ETL orchestration configurations can be monitored 

on the UI, and any problems quickly identified. The web UI 

is a view of the metadata DB. A combination of RBAC 

(Role - Based Access Control) and a general info page (the 

general structure of any Airflow Job) can be created and 

inform the ETL orchestration functions about these issues. 

The metadata tables pg_public. dag_run, pg_public. dag_tag, 

and pg_public. task_instance contain the runtime, status, and 

tag information regarding the dag and should provide a 

starting point. The Airflow structure also provides for a 

logging system which automatically maintains the 

operational logs of every operation performed. In our case, 

the airflow. cfg is modified, AIRFLOW - LOGGING - TO - 

OUTPUT is available and pointing to STDOUT. The ETL 

function probjoblib. out_and_in also contains code that 

integrates the logs into the standard airflow log table. A 

monitor dashboard can be set up for real - time monitoring 

of the ETL process. [5] [6] 

 

5. Best Practices and Advanced Techniques 
 

In the context of a robust ETL system, achieving a stable 

operation is key. The consequent aspects and techniques 

focus on considerations that are necessary for the efficient 

handling of many levels of issues/problems that may arise in 

operation. The use here of complex software helps ease 

operations. Ensuring privacy, separate environments of all 

types for both testing and processes in operation 

(development, production), configuration driven by 

orchestrated and version - controlled files, logging and 

alerting mechanisms, use of the retry mechanism, exceptions 

and automatic recovery/backfill of incomplete, failed, or 

stalled tasks, free up resources for further operations, while 

automated metadata db cleaning through the use of 

changelog tables between big ETL pipeline runs, helps keep 

high performance. On the other hand, avoiding complex 

tasks and/or execution of several tasks concurrently, 

handling failures in a special way, dealing with data 

inconsistencies (available data problems), using highly 

available services for ETL and its db operations, using db 

connection pooling through optimized large batch inserts, 

alerting on db connection problems, using proven easy help 

thread or processes for backfilling, or fixed data availability 

issues often create stability and avoid failures. [7] 

 

5.1 Performance Optimization Tips 

 

To minimize the memory required for a task, Apache 

Airflow includes a configuration cmdopt flag "pickle" that 

determines how a task object's state is serialized to the 

database. You could disable pickling by setting the pickle 

options to False. This will make the dependencies between 

the tasks less informative and some of the visualization 

functions won't work, but you will save a lot of database 

space. The tasks' dependencies and parameters will still be 

recorded by Airflow, but you won't be able to access them 

easily. Therefore, this would not be a recommended option, 

especially for organizations that require all the dependency 

details to be stored.  

 

Configure a logging level that fits your demand. It is 

recommended to use "logging. WARNING" for lower log 

levels to prevent the log from blowing up. For a single 

DAG, the log can be comprehensible. However, when you 

have hundreds of DAGs, especially running in a tight 

schedule, traceback actions and detailed logs can bring a 

large performance overhead for the Webserver. In this case, a 

higher logging level setting can reduce the workload 

significantly. Also, it is highly suggested to set the 

embedding of Scheduler job inside a DAG to True. This 

function can provide more satisfactory insights on where the 

scheduling errors occurred, and if the logging level is not 

well - organized, the display of the Scheduler job inside a 

DAG parameter will be removed accordingly. [8] 

 

5.2 Error Handling and Retry Strategies 

 

Skipping data or returning null is seldom useful whenever an 

error occurs. It is generally better to get the operation to 

perform a specific operation, allowing the end user of the 

data set to understand and investigate the ETL process. Both 

the OperatorBase and the BashOperator have an error_msg, 

and the BashOperator has an error_tags parameter. It is easy 

to use this feature with Bash scripts because they can output 

custom messages without emitting erroneous messages. 

However, the failure status of the OperatorBase will be 

determined based on whether the task gets a status code of 0.  

 

If you have conditional logic that must pass to avoid errors, 

the only way to handle this condition for a task is to build 

that logic into workflow code such as if you're programming 

it. The TaskGroup/Chain can be used to create simplified 

branching logic or common sub - graph definitions, a little 

like functions or macros.  

 

The common structure describes a series of tasks that should 

implement the exact same operational parameters, such as 

the same parameters, the same retries strategy, etc., but they 

may have different business logic. You can delegate this 

logic to a separate evolutionary operator instead of using the 

PythonOperator for your logic if it becomes important. At 

each stage, a task of different operators meant to call all 

tasks is established via the remaining set of operator 

services. In general, there is no consideration of renaming or 

saved naming of particular kinds of managers and, for the 

purpose of groups and their points, task settings apply only 

once.  

 

6. Conclusion 
 

Apache Airflow stands out as a robust platform for 

orchestrating ETL processes, providing unparalleled 

capabilities in automation, scheduling, and monitoring. By 

leveraging its Directed Acyclic Graph (DAG) structure, 

users can design complex workflows with ease, ensuring 

that tasks are executed in a precise and orderly manner. The 

integration with various external systems allows for 

seamless data movement and transformation, catering to 

diverse data engineering needs. Throughout this article, we 

have explored the fundamental architecture of Apache 

Airflow, highlighting its modular components that contribute 

to its flexibility and scalability. The detailed examination of 

task scheduling and execution mechanisms underscores the 

platform's ability to handle complex dependencies and large 

- scale data processing. Additionally, the discussion on 
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monitoring and logging emphasizes the importance of 

transparency and control in maintaining reliable ETL 

pipelines.  

 

Best practices for optimizing performance and ensuring 

reliability have been presented, offering practical guidance 

for data engineers to maximize the potential of Apache 

Airflow. The inclusion of real - world examples and case 

studies provides a concrete understanding of how these 

concepts are applied in practice, demonstrating the 

platform's efficacy in various scenarios. In summary, Apache 

Airflow is an indispensable tool for modern data 

engineering, enabling the automation and orchestration of 

intricate ETL workflows with efficiency and precision. Its 

comprehensive features and adaptability make it a preferred 

choice for organizations aiming to streamline their data 

processing operations. By adopting the strategies and 

insights discussed in this article, data engineers can harness 

the full power of Apache Airflow, driving enhanced 

performance and accuracy in their ETL endeavors.  
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