
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 11, November 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Integrating Blazor for Full Stack .Net Development

Naga Lalitha Sree Thatavarthi

Email: thatavarthinagalalithasree2020[at]gmail.com

Abstract: Develop online applications in C# and Microsoft. NET 6 that run on any modern browser to become a full - stack web

developer. For each of these tasks, use the Microsoft Blazor framework and the techniques described in this paper. This paper shows you

how to construct user interfaces and transmit data to a user for display and modification so that you may use data binding to record the

user's changes. This paper shows how to access a multitude of. NET capabilities, such as generating reusable components that can be

used on several pages and websites or using a component model to construct a composable user interface. Data interaction with a server

via gRPC, SignalR, and REST is also addressed, allowing you to access database services and microservices. By removing the need for

you to master several languages and frameworks for client - and server - side programming, Blazor offers a novel approach to web

development. Blazor offers a rich feature set that is well suited towards scalable, enterprise - level applications by enabling the usage of

C# and. NET on both the server - side and the client - side. Blazor allows us to leverage thousands of pre - existing libraries and all of

ours. NET 6 experience from within the browser.

Keywords: Microsoft Blazor framework, .net

1. Introduction

Acting on both a program's front end and back end is known

as full stack web development. Most people who work in web

development use this word. The developers are skilled

programmers with a background in front - end user

experience. They also possess strong knowledge in a

programming language that is utilised for managing the

appliance's logic, which is back - end. The term "full stack"

refers to a software system or web development layer that

includes both the front - end and back - end components of an

application. The user interface of your application is what

users can see and interact with. The back - end of a

programme refers to its logic, database, server, and other

components that users do not see.

The back - end and front - end technologies needed to create

a functional website or application are all within the comfort

zone of a fullstack web developer. Programming

environments, programming tools, front - end and back - end

functionality, and the functioning of different operating

systems are all specific technical knowledge that Full Stack

Developers possess. Full stack developers are sometimes

referred to as "developer generalists" since they can create

any complex application from the ground up as long as they

understand how each and every technical layer should interact

with the others. Full stack web development comprises three

layers: the display layer (front end), the database layer

(information layer), and the logic layer (back end). Full stack

web development refers to both the front end and the back end

of an online application.

Being proficient in the entire stack of technologies is not only

advantageous, but also necessary in the fast - paced world of

current software development. With Microsoft's. NET

platform (previously known as. NET Core), developers may

create an end - to - end suite of applications using an entire

stack of open source development components. Blazor, ASP.

NET Core MVC, ASP. NET Core Razor Pages, ASP. NET

Core RESTful services, and Entity Framework (EF) Core are

all included in this.

Microsoft developed the open - source. NET Blazor web

development framework in 2018. Using. NET and C#, this

framework is used to create interactive client - side online

user interfaces. It can be seen as a descendant of Razor pages,

which were formerly employed in full stack. NET

development using an MVC methodology. Blazor was

developed with contemporary web development in mind,

accommodating several eventualities:

• Utilising WebSockets to push DOM diff updates for

server - side rendering

• Rendering on the client side by utilising WebAssembly

(WASM) and modifying the DOM via JavaScript

compatibility

• Using native desktop and mobile frameworks with Blazor

to develop a hybrid system WPF or MAUI

The most widely used contemporary browsers support Blazor.

Every Blazor app is essentially component - based. This

indicates that the user interface's elements are divided up into

more manageable, reusable parts, like tables, forms, and

modals. Razor markup, which was previously utilised for

Razor pages, is employed to write these components. This

syntax allows you to quickly switch between HTML markup

and C# markup. Blazor uses components only for client - side

design and logic implementations, eschewing the antiquated

request and response approach in favour of methods from

contemporary JavaScript UI frameworks.

As class libraries or NuGet packages, the Blazor components

can be used in different projects or nested within the same

project for reuse. They can also be reused both inside and

outside of their assemblies. Blazor does not immediately

transfer a whole webpage across the line once an action is

triggered, not even with the server - rendering option enabled.

Rather, it will contrast the browser's DOM with its own

version, extract any differences, and only return this reduced

portion via SignalR. By preventing the page from needing to

reload completely or partially after every user interaction, this

keeps the site from seeming inactive and slow.

For Blazor WebAssembly (WASM), a comparable method is

applied. To quickly review, a stack - based virtual machine

Paper ID: SR24628184130 DOI: https://dx.doi.org/10.21275/SR24628184130 1732

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 11, November 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

can execute binary instructions in the WASM format. The

ability to compile programming languages other than

JavaScript is essentially built into all four of the current

browsers (Chrome, Firefox, Edge, and Safari). This makes an

environment that is safe for memory to run modules in, and it

functions somewhat similarly to Docker. Using the JavaScript

context that it can access within this WASM sandbox, Blazor

creates a copy of the DOM, compares it to the original, and

updates the browser DOM if any changes occur.

2. Advantages Using Blazor

• All pre - existing. NET APIs and other tools/components

may be used by any ASP. NET Core development

business to create beautiful online applications.

• It gives users access to a rich. NET programming

experience.

• Like native programmes, Blazor runs incredibly fast and

smoothly in a secure, sandboxed environment.

• Blazor has an extremely feature - rich code editing and

completion tool called IntelliSense built in to cut down

on development time. It is not necessary to create distinct

model classes for the client and server because Blazor

allows you to reuse and share a single model class with

both of them.

• The feature - rich and contemporary C# language is easy

for developers to utilise, which facilitates the creation of

web applications.

• In case we are currently using a. NET platform, things

become considerably easier. If so, you can begin

designing your web apps with just a basic understanding

of the C# language, negating the need for extensive

training.

• We can develop. NET applications seamlessly on a

variety of platforms and operating systems, including

Windows, Linux, and macOS, thanks to Blazor's support

for both Visual Studio Code and Visual Studio 2017.

• Blazor's open - source architecture and strong

community support are its finest features. Web designers

may create a one - page application more easily and

differently while still getting the same outcomes thanks

to WebAssembly's interaction with Blazor

• In addition, Blazor's interaction with WebAssembly

makes server - side rendering possible.

• Like static files, you can even run Blazor programmes on

platforms and devices without. NET support.

• In web development operations,. NET provides effective

capabilities that address performance, speed, security,

dependability, and scalability.

• Future JavaScript improvements can be accommodated

by Blazor WebAssembly, eliminating the need for

laborious replacement procedures.

Blazor enables us to complete full - stack web development

tasks more quickly and efficiently.

3. Hosting Models

Only open web standards are used by Blazor. It works without

a need for any extra plugins on desktop and mobile versions

of all current browsers. The hosting model determines how it

functions. There are now two primary hosting models

accessible:

• Blazor Server

• Blazor Web Assembly.

3.1 Blazor Server

The only model that is officially supported and issued at this

time is this one. Your application runs on the server, not in

the browser, when you use Blazor Server. The server changes

the browser's user interface (UI) via a SignalR connection. In

order to calculate the diffs and send them in a compact binary

format, Microsoft devised an effective algorithm. Blazor

Server apps store their state on the server, in contrast to most

web apps, which typically take a state - less approach. This

occasionally calls for a reevaluation by developers. But

generally, the fundamentals are the same as in any other

application built with ASP. NET Core.

3.2 Blazor WebAssembly

Only the WebAssembly model was included in Microsoft's

initial Blazor announcement. Furthermore, this model

intrigues and fascinates me the most. Running pure. NET

code in the browser is made possible by it. Initially, the

runtime is loaded in WebAssembly binary format by a Blazor

WebAssembly programme. It then loads every dependency

and assembly for our application. The framework itself

System. dll, mscorlib. dll, and so forth is also one of the

requirements. In WebAssembly binary format, just the

runtime is available. As with a typical. NET programme, all

other assemblies are in the same. NET assembly format.

3.3 Blazor PWA

All online apps that employ contemporary web standards to

provide a native - like experience are called Progressive

online Apps (PWAs). Among other things, this features install

- to - home, push alerts, and offline support. Installed PWAs

are still regular web applications with access to the browser's

sandbox and APIs, albeit having a native app - like

appearance. Blazor PWAs can already be created in the

present. However, Microsoft intends to release more

templates and improved tools support in the future.

3.4 Blazor Hybrid

Various techniques are available, and the Blazor Hybrid

model is presently in an experimental condition. Getting a

native desktop application for a Blazor app out there is the

aim. While the app is still rendered via web technologies, it

lets us utilise native functionalities of the operating system.

Its name "hybrid approach" stems from this.

3.5 Blazor Native

The Experimental Mobile Blazor Bindings project, which

Microsoft launched on January 14th, aims to facilitate the

development of native mobile apps using Blazor. Razor

syntax can be used to describe the user interface and bind to

Xamarin using Mobile Blazor Bindings. shapes the

components. The UI's native elements must then be rendered

on each platform by the Xamarin renderers.

Paper ID: SR24628184130 DOI: https://dx.doi.org/10.21275/SR24628184130 1733

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 11, November 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

4. Security

In terms of security, Blazor might be marginally superior to

JavaScript. Blazor operates in a memory - safe environment

because the majority of its processes are executed in

WebAssembly (WASM). Applications can only run in

standalone sandbox settings with WASM, and it can only

communicate with the outside world through the APIs it was

meant for. WASM's data flow is further limited by the same -

origin policy when it operates in a browser. This makes it

more challenging to alter the code that the WASM sandbox is

running. That being said, there are still weaknesses to be

aware of, such as side - channel attacks and vulnerabilities

depending on racial circumstances, therefore WASM is not

completely safe. Compared to JavaScript code, it is more

difficult to decompile DLLs that are given to the client by the

Blazor server. Furthermore, decompiling DLLs can be made

much more challenging with the use of third - party

obfuscation tools like Babel Obfuscator. It is important to

remember that obfuscation by itself is not a strong security

precaution. By definition, neither of the client - side

frameworks is secure. Blazor, however, can be regarded as

somewhat more secure because it operates in WASM and uses

greater obfuscation.

5. Conclusion

Finally, it can be concluded that Blazor will make it easier and

more efficient for you to use the programming languages to

create dynamic apps. It saves you time when learning a new

language or developing new coding abilities. Furthermore,

web apps may be designed while on the go directly from

mobile devices, giving you greater freedom in your job.

Furthermore, we are not need to learn numerous

programming languages in order to become a full - stack web

developer. One language that we can use to build client - side

code is C#.

6. Future Scope

The need for developers is quite high and is expected to

continue growing at a rapid pace, making the future of full

stack web development extremely promising. Some of the

explanations for the same are given below:

Smaller Teams - Small teams perform better than huge teams,

according to Jeff Bezos as well. In comparison to smaller

teams, larger teams need greater communication and

resources.

Adaptability - The field of web development is really difficult.

When creating a new product, several things need to be taken

into account, including tools, languages, needs, and a sizable

development staff. If any of the variables became

problematic—for example, if the requirements for the product

changed at any point—or if a team member left in such a

situation Compared to other developers, full stack developers

can adjust to these changes more rapidly and efficiently.

References

[1] Valerio De Sanctis, Full Stack Web DevelopmentThird

Edition, 2020 book

[2] Chris Northwood, Full Stack Developer: Your Essential

Guide to the Everyday Skills Expected of a Modern Full

Stack Developer, 2018

[3] Frank Zammeti, Modern Full Stack Development: Using

Typescript, React, Node. js, Webpack, and Docker Full,

2020

[4] Juha Hinkula, Hands - on - Full Stack Development with

Spring Boot 2 and React, Second Edition, 2018

[5] Hassan Djirdeh, Nate Murray, Ari Lerner, Full Stack Vue:

The Complete Guide to Vue. js, 2018

Paper ID: SR24628184130 DOI: https://dx.doi.org/10.21275/SR24628184130 1734

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

