
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 12, December 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Strategies for Effective Internationalization and

Localization in Software Development

Chakradhar Avinash Devarapalli

Software Developer

E-mail: avinashd7[at]gmail.com

Abstract: i18n and l10n aim to make the finished software useful and easy to use for everyone, everywhere. What does

Internationalization do? It's about designing the software so anyone around the globe can use it. This paper looks into the significance of

i18n and l10n strategies, addressing challenges faced by frontend developers during implementation. By exploring practical solutions and

emphasizing the adoption of Unicode character encoding, dynamic content management, and culturally neutral designs, this paper

provides insights into creating seamless global user experiences. Furthermore, it highlights the importance of rigorous testing, clear

consistency guidelines, and resource allocation strategies to streamline the internationalization and localization process while optimizing

efficiency and reducing costs.

Keywords: Internationalization, Localization, Software Development, Frontend Development, User Experience, Multilingual Content,

Cultural Design, Dynamic Content Management

1. Introduction

Internationalization (i18n) and Locaclization (l10n) are

both essential processes for software development,

designed to help make the final product more accessible

and usable for users across the globe. Internationalization

refers to making the design such that it allows the

application or website more accessible to audiences across

the globe. From the design element all the way to the

language itself is adaptable to user preferences with this.

The website's content also adapts to different regions,

cultures, and other preferences without significant

engineering changes.

Figure 1: Representation of Internationalization for i18n

On the other hand, the concept of localization is more

inclined toward the regulatory requirements of the primary

region in which the website is being accessed. It also caters

to the linguistic and cultural preferences of the target

audience market.

Figure 2: Representation of Localization as l10n

Over the years, both these concepts have been used rather

effectively to enhance user experience – especially by front

end developers. Where WCAG 2.0 guidelines are used to

make websites more accessible for those with disabilities,

i18n and l10n cater to a much broader market. From

allowing applications to speak specific languages to the

cultural preference arrangement of components, developers

have actively been ensuring compliance with these two for

a broader reach and acceptance [1].

However, much like any other compliance requirements,

frontend developers face several challenges in

implementation here as well.

For example, one major challenge is the complexity

involved in managing such a large number of multilingual

content, cultural design options, and intuitive user

interfaces to accommodate varying text lengths, character

weight, font styles, and writing directions. The same word

could be weighed differently in different languages.

Furthermore, cultural nuances and regional preferences

pose challenges in ensuring that localized versions of the

software are culturally appropriate and sensitive to local

customs. [2]

This paper discusses i18n and l10n practices and their

importance for businesses, especially considering the

diverse demographics that it targets. Furthermore, it will

discuss some of the most common issues that arise for

frontend developers when implementing

internationalization and localization in their products.

2. Literature Review

There is a lot of literature concerning i18n and l10n

concepts, with various studies elucidating their

implementation and significance. Scholars such as

Hoschek and R. R. (2017) have delved into the processes

and tool support necessary for internationalization and

localization testing in software product development. Their

insights shed light on the intricacies of ensuring global

accessibility for digital products.

Moreover, resources like Phrase (2018) provide a quick

guide to iOS Internationalization (i18n) and Localization

(l10n), offering practical insights into implementing these

concepts in mobile app development. Understanding the

nuances of i18n and l10n is crucial for developers seeking

to create globally inclusive applications.

Paper ID: SR24402002509 DOI: https://dx.doi.org/10.21275/SR24402002509 1836

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 12, December 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

LingoPort (2010) emphasizes the symbiotic relationship

between i18n and l10n in achieving successful

globalization endeavors. Their insights underscore the

interconnected nature of these processes and highlight the

importance of seamless integration for international

product launches.

Additionally, studies by Ramler and Hoschek (2017)

explore automation support for localization testing across

sixteen languages, showcasing advancements in testing

methodologies to ensure linguistic accuracy and cultural

relevance in software products.

3. Current Landscape

While the concept has been around for quite a while, in

2020, both concepts are actively utilized by frontend

developers extensively. The current development model

focuses on combining the concepts of Internationalization

(i18n) and Localization (l10n) [3]. There interconnected

nature means that they work together to create a seamless

global user experience while presenting frontend

developers with a number of opportunities, but at the same

time a number of challenges as well.

3.1 Complexity and Multilingual Content

Managing a vast array of multilingual content poses

significant challenges for frontend developers. This

includes handling diverse character sets, which may

include alphabets, symbols, and diacritics unique to

different languages.

Additionally, varying text lengths and font styles across

languages add to the complexity. Developers must work

through these challenges to ensure that the application or

website can display content accurately and aesthetically

across different linguistic contexts.

3.2 Cultural Design Options

Designing user interfaces that resonate with diverse

cultures requires frontend developers to consider various

cultural design elements such as icons, images, and color

schemes.

What may be visually appealing and culturally relevant in

one region may not necessarily translate well to another.

Frontend developers must carefully select design elements

that are culturally neutral and adaptable to different locales

while avoiding elements that may inadvertently offend or

exclude certain user groups.

3.3 User Interface Adaptation

User interfaces (UIs) need to accommodate varying text

lengths, which may expand differently across different

languages. This poses challenges for maintaining visual

coherence and usability across different language versions

of the application or website.

Frontend developers must design flexible UI components

capable of dynamic adjustment to accommodate text

expansion or contraction without compromising usability

or aesthetics.

Extensive testing with various languages is essential to

ensure that UI elements remain visually appealing and

functional across different linguistic contexts.

3.4 Date and Time Formats

Different regions utilize distinct date and time formats,

leading to inconsistencies in how dates and times are

displayed. For example, the order of day, month, and year

may vary across different locales.

Frontend developers must implement localization-specific

date and time formatting to ensure that dates and times are

displayed accurately and consistently across different

language versions of the application or website.

Utilizing libraries or frameworks capable of automatic

adjustment based on user preferences or locale settings can

help streamline this process.

3.5 Currency and Units of Measurement

Currency symbols, decimal separators, and measurement

units vary globally, posing challenges for frontend

developers when designing applications or websites for

international audiences.

Providing users with a seamless experience regardless of

their geographical location requires frontend developers to

implement localized currency formats and offer options for

users to switch between measurement units, such as metric

and imperial.

Ensuring consistency and accuracy in currency and

measurement displays is essential for enhancing user

experience and usability across different regions.

3.6 Testing and Quality Assurance

Rigorous testing is imperative to identify language-specific

issues, layout discrepancies, and functional errors that may

arise during internationalization and localization efforts.

Frontend developers must establish comprehensive

localization testing procedures involving native speakers to

ensure the accuracy and usability of the software across

different languages and regions.

Thoroughly verifying UI elements, translations, and

functionality helps identify and address potential issues

before deployment, thereby enhancing the overall quality

and user experience of the application or website.

3.7 Maintaining Consistency Across Versions

Balancing localization efforts with maintaining a consistent

user experience presents a significant challenge for

frontend developers. While adapting the application or

website to different languages and cultures is essential for

global reach, maintaining consistency in terms of design,

Paper ID: SR24402002509 DOI: https://dx.doi.org/10.21275/SR24402002509 1837

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 12, December 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

functionality, and user experience across different language

versions is equally important.

Frontend developers must establish clear guidelines for

consistency and regularly synchronize all language

versions to ensure uniformity while accommodating

localization requirements.

3.8 Resource Intensity and Cost

Both internationalization and localization projects demand

substantial time, expertise, and resources from frontend

development teams.

Managing the resource-intensive nature of these projects

requires careful planning, resource allocation, and

utilization of available resources. Frontend developers must

prioritize tasks, streamline workflows, and consider the use

of automation tools to enhance efficiency and mitigate

costs associated with internationalization and localization

efforts.

The concepts of i18n and l10n were developed and used

separately by developers for many years before their

interconnected nature became more mainstream [4].

However, even then, it was clear that internationalization

serves as the foundation for successful localization efforts.

Incorporating internationalization principles during the

design and development stages allows frontend developers

to create a flexible framework capable of seamless

adaptation to diverse languages and cultures.

4. Proposed Solution

To address these challenges, the proposed solutions focus

on adopting Unicode character encoding and employing

dynamic content strategies. Unicode character encoding

ensures compatibility across different languages by

providing a standardized representation of characters,

accommodating diverse alphabets, symbols, and diacritics.

Simultaneously, the use of dynamic content, rather than

hard-coding text, facilitates easier updates and translations

without significant manual intervention, offering a

streamlined approach to content management.

4.1 Multi-Cultural Designs

When it comes to designing frontend user interfaces that

resonate with diverse cultures, the challenge extends to

considerations of various cultural design elements, such as

icons, images, and color schemes.

The proposed solutions emphasize the creation of culturally

neutral design elements adaptable to various locales. This

involves avoiding culturally specific visuals that may not

translate well globally.

Additionally, thorough research on cultural connotations

and sensitivities is recommended to ensure that design

elements are inclusive and do not inadvertently offend or

exclude certain user groups, promoting a more universally

appealing interface.

4.2 User Interface Design

User interfaces (UIs) also face the challenge of

accommodating varying text lengths, which may expand

differently across different languages. To overcome this

challenge, the proposed solutions advocate for the creation

of flexible UI components that can dynamically adjust to

varying text lengths.

This ensures that the UI remains visually coherent and

usable across different language versions. The importance

of extensive testing with various languages is also

highlighted to identify and address potential issues related

to text expansion or contraction, verifying that UI elements

maintain visual appeal and functionality across diverse

linguistic contexts.

4.3 Date and Time

Date and time formats vary in different places. This means

that how dates and times are shown can look different. For

example, some places might write the day first, then the

month, and then the year, while others do it differently.

To make sure that dates and times show up correctly and

the same way across different languages, frontend

developers need to set up specific ways to show dates and

times for each location. They can use special libraries or

frameworks that automatically adjust based on what the

user prefers or where they are from. This makes the process

smoother.

4.4 Symbols and Characters

Currency symbols, how decimals are shown, and what units

of measurement are used can be different around the world.

This can be tricky for frontend developers when they're

making apps or websites for people from different places.

To make sure users have a smooth experience no matter

where they're from, frontend developers need to set up

ways to show currency and measurements that match where

the user is. They can also give users options to switch

between different measurement systems, like metric and

imperial. It's important for currency and measurements to

look consistent and accurate across different regions to

make things easier for users.

4.5 Constant Frontend Testing

Testing is extremely important to find any problems that

might come up because of different languages. Developers

need to check everything really well to make sure the app

or website works right for people who speak different

languages and live in different places.

Developers need to do thorough tests involving people who

speak the languages they're targeting. This helps them find

and fix any issues with how things look or work before they

release the app or website. Checking things like how the

user interface looks, how things are translated, and if

everything works right helps make sure users have a good

experience [6].

Paper ID: SR24402002509 DOI: https://dx.doi.org/10.21275/SR24402002509 1838

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 12, December 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Keeping things consistent across different versions of an

app or website is hard. [7]. While it's important to make

sure the app or website works well for people who speak

different languages and have different cultures, it's also

important to keep things consistent. [8]

Frontend developers need to make clear rules for how

things should look and work across different versions. They

also need to regularly update all versions to keep things the

same. This helps make sure that users get a similar

experience no matter what language they use.

5. Academic Review of Perceived Challenges

Table 1: Table of Studied Literature Regarding Challenges
Name Title Challenge Discussed

Hoschek & R. R. Process and Tool Support for Internationalization and

Localization Testing in Software Product Development

Challenges in internationalization and localization

testing

Phrase Quick Guide: iOS Internationalization (i18n) and

Localization (l10n)

Practical challenges in iOS app internationalization and

localization

LingoPort Internationalization (i18n) and Localization (l10n) -

Partners in Successful Globalization

Interconnectedness of i18n and l10n in globalization

Molan Improvements of Software Testing for LSP Enhancing software testing for linguistic and cultural

relevance

Mozilla Internationalization (i18n) and Localization (L10n) Best practices for i18n and l10n in web development

Ramler &

Hoschek

How to Test in Sixteen Languages? Automation Support

for Localization Testing

Automation support for multilingual testing

Implementation & Deployment

Spring MVC, a robust Model-View-Controller (MVC)

framework for Java web applications, facilitates the

development of software adaptable to various languages

and regions without the need for code changes.

Prerequisites:

● Java Development Kit (JDK) 11 or higher

● Spring Boot 2.7.7 or higher

● Integrated Development Environment (IDE) of

choice (e.g., Eclipse, IntelliJ IDEA, STS)

In Spring MVC, several core components play critical roles

for internationalization and localizatoin:

1. LocaleResolver: This interface resolves the

current locale, determining it from the HTTP

request.

2. MessageSource: An interface providing a means

to resolve messages for a specific locale,

supporting properties, XML, and YAML formats.

3. ViewResolvers: These determine how to render

views based on the current locale, with

ContentNegotiatingViewResolver resolving the

best matching view.

4. LocaleChangeInterceptor: This interceptor

facilitates dynamic locale switching, updating the

locale in the request/session through the

LocaleResolver.

5. Resource Bundles: Properties files, such as

messages_xx.properties, contain localized text

values for each locale.

The practical example involves creating a Maven project,

setting up dependencies (Spring Web, Thymeleaf), and

configuring core components to implement i18n. [9]

Developers may start by creating a new Maven project in

their preferred IDE, such as IntelliJ, Eclipse, or Spring Tool

Suite, and include dependencies for Spring Web and

Thymeleaf.

5.1 Step 1: Spring MVC Project Setup

Create a new Maven project and include the necessary

dependencies for Spring Web and Thymeleaf in the

pom.xml file.

<dependencies>

 <!-- Spring Web -->

 <dependency>

<groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-web</artifactId>

 </dependency>

 <!-- Thymeleaf -->

 <dependency>

<groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-

thymeleaf</artifactId>

 </dependency>

</dependencies>

5.2 Step 2: Create Message Controller

(MessageController.java)

The MessageController class defines a controller

responsible for handling HTTP requests related to

messages.

<dependencies>

 <!-- Spring Web -->

 <dependency>

<groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-web</artifactId>

 </dependency>

 <!-- Thymeleaf -->

 <dependency>

Paper ID: SR24402002509 DOI: https://dx.doi.org/10.21275/SR24402002509 1839

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 12, December 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

<groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-

thymeleaf</artifactId>

 </dependency>

</dependencies>

Here,

● The @Controller annotation marks the class as a

Spring MVC controller.

● The @GetMapping("/message") annotation maps

the method to handle GET requests to "/message".

● Inside the message method, a Message object is

created with the key "data.message" representing

the message to be displayed.

● The message object is added to the model and

passed to the view.

5.3 Step 3: Create Message Model (Message.java)

The Message class represents a simple model containing a

message key.

package com.demo.model;

public class Message {

 private String key;

 public Message(String key) {

 this.key = key;

 }

 public String getKey() {

 return key;

 }

}

5.4 Step 4: Create Views (message.html)

The message.html Thymeleaf template renders the message

retrieved from the Message object.

<!DOCTYPE html>

<html xmlns:th="http://www.thymeleaf.org">

<head>

 <meta charset="UTF-8"/>

 <title>Spring MVC i18n</title>

</head>

<body>

 <h1 th:text="#{${message.key}}" style="color:

green;"></h1>

</body>

</html>

Here, the Thymeleaf attribute th:text retrieves the message

corresponding to the key from the message properties files.

5.5 Step 5: Configure Internationalization

(WebConfig.java)

The WebConfig class configures internationalization and

localization settings for the Spring MVC application.

package com.demo.config;

import

org.springframework.context.annotation.Bean;

import

org.springframework.context.annotation.Config

uration;

import

org.springframework.context.support.ResourceB

undleMessageSource;

import

org.springframework.web.servlet.LocaleResolve

r;

import

org.springframework.web.servlet.config.annotat

ion.InterceptorRegistry;

import

org.springframework.web.servlet.config.annotat

ion.WebMvcConfigurer;

import

org.springframework.web.servlet.i18n.CookieL

ocaleResolver;

import

org.springframework.web.servlet.i18n.LocaleCh

angeInterceptor;

@Configuration

public class WebConfig implements

WebMvcConfigurer {

 @Bean

 public LocaleResolver localeResolver() {

 return new CookieLocaleResolver();

 }

 @Bean

 public LocaleChangeInterceptor

localeChangeInterceptor() {

 LocaleChangeInterceptor

localeChangeInterceptor = new

LocaleChangeInterceptor();

localeChangeInterceptor.setParamName("lang")

;

 return localeChangeInterceptor;

 }

 @Bean

 public ResourceBundleMessageSource

messageSource() {

 ResourceBundleMessageSource messageSource

= new ResourceBundleMessageSource();

messageSource.setBasename("messages/messag

es");

 messageSource.setDefaultEncoding("UTF-8");

 return messageSource;

 }

 @Override

 public void addInterceptors(InterceptorRegistry

registry) {

Paper ID: SR24402002509 DOI: https://dx.doi.org/10.21275/SR24402002509 1840

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 12, December 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

registry.addInterceptor(localeChangeInterceptor

());

 }

}

In this snippet,

● LocaleResolver and LocaleChangeInterceptor

beans handle the resolution and change of locales

based on the HTTP request.

● The ResourceBundleMessageSource bean

resolves messages from properties files based on

the current locale.

● Interceptors are added to the registry to intercept

locale change requests.

5.6 Step 6: Messages Properties

Properties files contain localized messages for different

languages.

messages.properties:

data.message=Hello and goodbye!

messages_fr.properties:

data.message=Bonjour et au revoir!

And finally, you can run the application. Execute the Spring

Boot application, and it will render the message based on

the locale provided in the request.

In the use case discussed above;

● Internationalization (i18n): The

ResourceBundleMessageSource resolves

messages from properties files based on the

current locale, enabling the application to display

messages in different languages without code

changes.

● Localization (L10n): The LocaleResolver and

LocaleChangeInterceptor beans facilitate the

resolution and change of locales, allowing the

application to adapt its content based on the user's

language and region preferences.

6. Significant Impact on the Field

The impact of effective i18n and l10n strategies on the field

of software development cannot be overstated. These

strategies fundamentally change how software is designed,

developed, and deployed across global markets.

By making software accessible and usable for users

worldwide, i18n and l10n practices expand the potential

user base and market for software products. This inclusivity

fosters a global community of users.

Furthermore, tailoring software to meet the linguistic,

cultural, and regional preferences of users significantly

enhances the overall user experience. This leads to higher

satisfaction, increased engagement, and stronger loyalty

among users.

Implementing i18n and l10n strategies also ensures

compliance with various regional regulations and

standards, enhancing the software's competitiveness in

international markets.

This way, developers are prompted to create more

adaptable, flexible, and resilient software architectures.

While the initial implementation of i18n and l10n strategies

requires investment, they ultimately lead to economic

efficiencies. Streamlined processes for managing

multilingual content and automated localization workflows

reduce the long-term costs associated with entering and

maintaining a presence in international markets.

7. Conclusion

Effective internationalization (i18n) and localization (l10n)

strategies are integral components of modern software

development, particularly in a globalized digital world.

With i18n and l10n principles, businesses can expand their

reach to diverse demographics, enhance user experience,

and ensure compliance with regulatory requirements across

different regions.

Throughout this paper, we have explored the significance

of i18n and l10n practices, addressing the challenges faced

by frontend developers during implementation. From

managing multilingual content to accommodating cultural

design options and adapting user interfaces, frontend

developers encounter various issues that require solutions.

The proposed strategies emphasize the adoption of Unicode

character encoding, dynamic content management,

culturally neutral designs, and flexible UI components to

address the challenges associated with i18n and l10n.

Additionally, implementing localization-specific

formatting for date, time, currency, and measurement units

enhances user experience and consistency across different

language versions of applications and websites.

Furthermore, rigorous testing procedures and clear

guidelines for consistency play crucial roles in maintaining

the quality and coherence of software products in diverse

linguistic contexts.

References

[1] R. R. &. R. Hoschek, "Process and Tool Support for

Internationalization and Localization Testing in

Software Product Development," in International

Conference on Product-Focused Software Process

Improvement, 2017. [Access 12 08 2020]

[2] Phrase, "Quick Guide: iOS Internationalization (i18n)

and Localization (l10n)," 11 04 2018. [Online].

Available: https://medium.com/i18n-and-l10n-

resources-for-developers/quick-guide-ios-

internationalization-i18n-and-localization-l10n-

bce64b0de5c2. [Access 12 08 2020].

[3] LingoPort, "Internationalization (i18n) and

Localization (l10n) - Partners in Successful

Globalization," 15 04 2010. [Online]. Available:

https://www.slideshare.net/Lingoport/internationalizat

ion-i18n-

Paper ID: SR24402002509 DOI: https://dx.doi.org/10.21275/SR24402002509 1841

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 12, December 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

localizationl10npartnersinsuccessfulglobalization.

[Access 12 08 2020].

[4] G. Molan, IMPROVEMENTS OF SOFTWARE

TESTING FOR LSP, HERMES Softlab Research

Group, 2008. [Access 12 08 2020]

[5] R. Ramler and R. Hoschek, "How to Test in Sixteen

Languages? Automation Support for Localization

Testing," 18 03 2017. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/792801

3. [Accessed 12 08 2020].

[6] C. P. B Shneiderman, Designing the User Interface:

Strategies for Effective Human-Computer Interaction,

India: Pearson, 2010. [Access 12 08 2020]

[7] M. Resin, "An empirical examination of

interdisciplinary collaboration within the practice of

localisation and development of international

software," 10 10 2015. [Online]. Available:

https://repository.uwl.ac.uk/id/eprint/2858/. [Access

12 08 2020]

[8] Luis A. Leiva, Vicent Alabau, " Automatic

Internationalization for Just In Time Localization of

Web-Based User Interfaces " 27 05 2015. [Online].

Volume Issue 3, Article 13, Pages 1-32. Available:

https://dl.acm.org/doi/abs/10.1145/2701422. [Access

12 08 2020]

Paper ID: SR24402002509 DOI: https://dx.doi.org/10.21275/SR24402002509 1842

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

